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Abstract: Our current understanding of the pathogenesis of skin aging includes the role of ultraviolet
light, visible light, infrared, pollution, cigarette smoke and other environmental exposures. The
mechanism of action common to these exposures is the disruption of the cellular redox balance by
the directly or indirectly increased formation of reactive oxygen species that overwhelm the intrinsic
antioxidant defense system, resulting in an oxidative stress condition. Altered redox homeostasis
triggers downstream pathways that contribute to tissue oxinflammation (cross-talk between inflam-
mation and altered redox status) and accelerate skin aging. In addition, both ultraviolet light and
pollution increase intracellular free iron that catalyzes reactive oxygen species generation via the
Fenton reaction. This disruption of iron homeostasis within the cell further promotes oxidative
stress and contributes to extrinsic skin aging. More recent studies have demonstrated that iron
chelators can be used topically and can enhance the benefits of topically applied antioxidants. Thus,
an updated, more comprehensive approach to environmental or atmospheric aging protection should
include sun protective measures, broad spectrum sunscreens, antioxidants, chelating agents, and
DNA repair enzymes.

Keywords: skin aging; ultraviolet light; solar radiation; pollution; reactive oxygen species; oxidative
stress; antioxidants; chelators

1. Introduction

The clinical stigmata of skin aging are the result of intrinsic or natural aging super-
imposed by extrinsic or environmental aging. Dermatologists have long used the term
photoaging as a synonym for extrinsic aging, since it is known that exposure to ultraviolet
light (UVL) is a major contributor to the phenotype of aging skin [1,2]. More recently,
however, they have come to view extrinsic aging differently. Studies have demonstrated
that skin is exposed to a variety of internal and external environmental factors that influ-
ence the aging process [3,4]. These factors, referred to as the exposome, include not only
ultraviolet light but visible light (VL) and infrared (IR), pollution, cigarettes, temperature,
poor diet, lack of sleep, and stress [3]. Thus, instead of using photoaging as a synonym
for extrinsic aging, the term atmospheric aging is gaining favor, as it acknowledges that
there is more than one important environmental factor that accelerates skin aging [5]. In
this review, we will discuss the role of light and pollution on skin aging and how to best
protect against environmental aggressors, with a focus on the use of topical antioxidants
and chelating agents.

2. Ultraviolet Light

The prolonged exposure to UVL is associated with many skin pathologies, including
sunburn, photoaging and skin cancer. Effective strategies to protect against UV-induced
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skin damage are, therefore, essential. Photoaged skin is characterized by wrinkling, mottled
pigmentation, brown spots, scaling, and dryness [6]. In more terminal forms of photoaging,
actinic keratoses and skin cancers, including melanoma and non-melanoma skin cancers,
occur. Thus, protection from UVL is necessary not only to preserve skin’s appearance, but
to improve health span as well (Figure 1).

Figure 1. The skin is exposed to a variety of environmental aggressors including solar radiation,
cigarette smoke and pollutants that increase directly or indirectly the production of reactive oxygen
species (ROS). Exposure to infrared light (IR) upregulates mitochondrial ROS, further increasing
intracellular ROS accumulation. In addition, both UV light and pollution increase intracellular
free iron, or labile iron (Fe(II)-ion), which further catalyzes formation of ROS. As ROS accumulate
within the cell, they overwhelm the intrinsic antioxidant defense system, triggering oxidative stress.
Oxidative stress upregulates redox sensitive transcription factors, such as activator protein 1 (AP-1)
involved in transcribing for collagen degrading matrix metalloproteinases (MMPs) and nuclear factor
kappa beta (NF-кβ), master regulator of the pro-inflammatory cytokines production. Polycyclic
aromatic hydrocarbons (PAHs) in particulate matter are ligands of aryl hydrocarbon receptors
(AhR). PAHs activate AhR that translocate to the nucleus and after binding to the DNA (xenobiotic-
responsive element) induces the transcription of detoxifying enzymes that are able to increase the
ROS levels and further activate redox sensitive transcription factors, such as NF-кβ and nuclear factor
erythroid 2- related factor 2 (NRF2). Prevention strategies include antioxidants (AOXs) that can be
delivered topically or through nutrition to increase the skin’s ability to neutralize ROS. Topically
applied chelators can also be used to bind metals, thus preventing ROS generation.

UVL as it reaches the earth’s surface is 95% ultraviolet A (UVA) and 5% ultraviolet
B (UVB). UV light penetrates the skin in a wavelength dependent manner [7]. UVB is a
shorter wavelength of light (290–320 nm). It penetrates through the epidermis to the basal
layer, where it is absorbed by chromophores including melanin, urocanic acid, porphyrins,
nucleic acids, amino acids tryptophan and tyrosine. [5]. Hydrogen peroxide and reactive
oxygen species (ROS), such as singlet oxygen and hydroxyl radicals, are generated by UVB’s
interaction with chromophores. In addition, UVB has a direct mutagenic effect on DNA,
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causing the signature mutations cyclobutane pyrimidine dimers (CPDs) and pyrimidine
cross-linked dimers [8]. If not repaired, for instance, by nucleotide excision repair (NER) or
base excision repair (BER) mechanisms, these mutations found in keratinocytes accumulate,
possibly leading to carcinogenesis. UVA is a longer wavelength of light (320–400 nm) and
penetrates more deeply into the skin, reaching the dermal layer. UVA is more efficient
than UVB at oxidation and exerts its harmful effects on the skin by further generating ROS.
It is of interest that the chromophores for UVA remain elusive and only trans-urocanic
acid has been identified [9]. UVA causes DNA damage primarily through oxidation of
guanine to 8-hydroyx-deoxyguanine (8-OHdg), thus contributing to carcinogenesis [10].
Additionally, UVL exposure suppresses the number and function of Langerhans cells
(antigen presenting cells) in the skin. This immunosuppression is a major contributor to
photocarcinogenesis [11].

UVA exposure has a profound effect on the dermal matrix and is the main contributing
wavelength to photoaging. Photoaging occurs via oxidative stress triggered by UVA
exposure [9]. UVA triggers immediate release of free iron or labile iron (Fe(II)-ion) via
proteolysis of ferritin [12]. Free iron catalyzes hydroxyl radical generation via the Fenton
reaction (Scheme 1), further contributing to UVA-induced ROS accumulation [13].

Scheme 1. The Fenton reaction describes the formation of hydroxide (OH−) and hydroxyl radical by
a reaction between iron (II) (Fe2+) and hydrogen peroxide (H2O2).

Under normal circumstances, endogenous antioxidants, such as vitamin C, vitamin E,
carotenoids, ubiquinol, alpha lipoic acid, and urocanic acid, protect skin from UVA-induced
ROS by neutralizing them [14,15]. Enzymatic antioxidants, including superoxide dismu-
tase, glutathione peroxidase and hemoxygenase 1, also play a key role in neutralizing free
radicals and help to regenerate non-enzymatic antioxidants that have been used [14,15].
These enzymatic antioxidants are under the transcriptional control of nuclear factor ery-
throid 2-related factor 2 (Nrf2). The Nrf2 signaling pathway is activated in response to
oxidative stress and leads to the dissociation from Keap1, allowing its translocation into the
nucleus to bind to the antioxidant response element (ARE) [16]. This binding upregulates
the transcription of several genes involved in enzymatic antioxidant production, including
intracellular heme oxygenase 1, catalase, superoxide dismutase (SOD) and glutathione
peroxidase. Oxidative stress ensues when the endogenous antioxidant defense system
is overwhelmed.

If left unchecked, ROS induced by UVA exposure can directly damage DNA, cell
membranes and dermal matrix proteins, such as collagen and elastin [17]. ROS can also
indirectly damage dermal proteins by upregulating redox sensitive transcription factors,
such as activator protein 1 (AP-1) and nuclear factor beta (NF-kβ), both important in ex-
tracellular matrix homeostasis. The activation of AP-1 increases the production of matrix
metalloproteinases (MMPs) that breakdown collagen and elastin [17]. ROS-induced AP-1
activity also downregulates transforming growth factor beta (TGF-β) signaling to fibrob-
lasts, reducing collagen production [18]. It is this net loss in dermal collagen that causes
the exaggerated wrinkling observed in actinically damaged skin [18]. In addition, NF-kβ
activation leads to premature senescence of keratinocytes, fibroblasts, melanocytes and
preadipocytes [19]. These cells display a pro-inflammatory senescence-associated secretory
phenotype (SASP) and release inflammatory mediators, including tumor necrosis factor
alpha (TNF-α), interleukin 1 (IL-1), IL-6 and IL-8 [20]. This chronic low grade inflammatory
state contributes to skin aging in a process now referred to as inflammaging [19–21].
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3. Beyond UV: Visible Light and Infrared

Visible light (VL) is a longer wavelength of light than UV (400–700 nm) and accounts
for 50% of solar radiation. Visible light is divided by color and detected by the eye. VL
has gained recent interest, as our exposure to high energy blue light (400–500 nm) from
devices such as computer screens and smartphones is on the rise. VL from sun exposure
is of greater intensity than VL from interior sources, so it contributes more significantly
to skin damage. Melanin, water, riboflavin, hemoglobin, and bilirubin are chromophores
that are receptive to VL [22]. The role of visible light in the process of skin aging was
recently reviewed [23]. In vitro studies demonstrate that cultured fibroblasts exposed to
VL generate ROS in a dose-dependent fashion [24]. Wavelengths between 400 and 450 nm
resulted in the highest rate of ROS generation, with almost no effect noted at wavelengths
greater than 500 nm [24]. Similarly, dose-dependent increases in ROS, IL-1α and MMP-1
were observed in human skin equivalents exposed to VL [25]. In addition, stress-induced
changes in the morphology of cultured human fibroblasts were noted following exposure
to VL [26]. An increased expression of enzymes involved in collagen degradation, such as
MMP-1 and cathepsin K (CTSK), accompanied the morphologic changes observed after VL
exposure [26]. Thus, it is likely that visible light contributes to skin aging.

VL appears to play a major role in inducing pigmentation, particularly in melanin-rich
skin. It is now known that the key sensor in melanocytes for VL is the opsin 3 receptor [27].
Clinical studies have shown that VL induces erythema in darker skin types [28]. This
is likely because there is more melanin in skin of color to absorb VL, inducing heat and
causing vasodilation. VL also causes immediate pigment darkening, tanning and long-
lasting pigmentation in Fitzpatrick skin types IV-VI, but not in skin type I [28]. Using
LEDs on the backs of human subjects, exposure to shorter wavelengths of VL, such as blue
light (415 nm), resulted in hyperpigmentation, while red light (630 nm) had no effect [29].
Since the currently available sunscreens provide little protection against VL, alternative
protection strategies are necessary.

Infrared (IR) (760 nm–1 mm) makes up almost 50% of the solar energy that reaches the
earth’s surface. IR is divided by wavelength into IR-A (760–1400 nm), IR-B (1400–3000 nm)
and IR-C (3000 nm–1 mm). IR exposure generates heat energy and can increase the tem-
perature of the skin to more than 40 degrees centigrade [30]. Erythema ab igne, a mottled
reticulated erythema, is the result of chronic exposure to heat from space heaters, heating
pads and hot water bottles. It is also observed in jewelers, metalworkers, glassblowers,
and cooks [31]. Histologically, this condition is characterized by degradation of dermal
connective tissue and alteration of elastic tissue, such as the elastotic changes observed
in solar elastosis [32]. Heat is known to increase the expression of MMP-12, which can
degrade the elastin fiber network. Heat also increases fibrillin-1, 2 and tropoelastin mRNA,
further contributing to the deposition of elastotic material [32]. Thus, IR contributes to
the accumulation of elastotic material in photoaged skin. IR also induces angiogenesis by
altering the balance between vascular endothelial growth factor (VEGF) and endogenous
angiogenic inhibitor [33].

It is of interest that IR-A, also called near infrared radiation, penetrates human skin,
deeply reaching the level of the subcutaneous tissue without raising skin temperature.
IR-B and IR-C increase skin temperature and are absorbed mostly in the epidermis [34].
When exposed to IR, the skin temperature rises to a point and then plateaus. The dose
required to reach the plateau is called the minimal heating dose [30]. Studies on human
skin irradiated with the minimal heating dose demonstrate that a single dose of IR increases
type 1 procollagen expression, while repeated exposures reduce it [35]. This is mediated by
changes in the transforming growth factor beta (TGF-β) pathway signaling in response to IR.
Repeated IR exposure also increases MMP-1 in the dermis, causing collagen breakdown [35].
Animal studies have confirmed that IR contributes to skin wrinkling. Hairless albino mice
irradiated with repeat doses of IRA developed course wrinkling after 15 weeks, while
exposure to IRA plus UV irradiation produces wrinkling greater than that achieved by



Antioxidants 2022, 11, 1484 5 of 20

either wavelength alone [36]. Thus, there appears to be an additive effect between UV and
IR for inducing skin aging.

Although both IRA and UV cause oxidative stress, IRA plays a role in generating
mitochondrial ROS. Copper atoms found in complex IV of the respiratory chain serve as
the major IRA chromophore [37]. Upregulation of ROS within mitochondria is believed
to initiate IR-mediated damage. These ROS trigger signaling mechanisms start in the
mitochondria and diffuse into the cytoplasm, where they increase intracellular calcium
levels and activation of extracellular signal-regulated kinase (ERK) and mitogen active
protein kinase (MAPK) pathways. This retrograde signaling in human skin fibroblasts
affects gene transcription within the nucleus and is central to IRA-induced skin damage [38].

4. Environmental Pollutants

The continuous release within the atmosphere of organic and inorganic particulates
as particulate matter (PM), gases (carbon monoxide (CO), sulfur dioxide, nitrous oxides
(NOx), chlorofluorocarbons (CFCs, etc.) and other volatile biomolecules (VOCs) from in-
dustries, cars exhaust, etc., are contributing to the environmental air pollution phenomena
that is now considered an important global health issue. According to the World Health
Organization (WHO), 4.2 million premature deaths are linked to ambient air pollution and
the incidence of cardiovascular, neurodegenerative, pulmonary, and skin diseases associ-
ated with exposure to pollution is rising. Among air pollutants, particulate matter (PM),
ozone (O3) and cigarette smoke (CS) are considered the most dangerous toxic insults for
human health, since they can be both inhaled and directly enter through contact with skin.
The mechanism of action of these pollutants varies based on their chemical and physical
properties, allowing them to interact differently with the skin, and to induce oxidative and
inflammatory reactions that affect the skin’s homeostasis (oxinflammation) [39,40]. How-
ever, the impact of environmental pollution on health is a very complex field to investigate,
considering the individuality of human beings in terms of genome and habits [4,41], and
the ability of toxic compounds to be simultaneously released within the lower atmosphere,
interacting with each other. Considering that the deterioration of the O3 layer is increasing
our exposure to ultraviolet radiations, the interaction between toxic compounds with UV
light has becoming more common, resulting in a combined and synergistic noxious effect on
human skin tissues in terms of skin pathologies, sunburn, cancer, and photoaging [7,42,43].

5. Ozone (O3)

Among the outdoor pollutants to which living organisms are exposed to daily, tro-
pospheric O3 is one of the most noxious for human health [44,45]. O3, or trioxygen, is
an unstable blue gas with a pungent smell (resembling chlorine bleach) and it is readily
perceptible at a concentration of 0.01 ppb but can reach concentrations as high as 0.8 ppm
in polluted cities. Due to its triatomic oxygen structure, O3 is quite unstable, resulting in
a very strong oxidant molecule. The anthropogenic emissions have led to an increase in
tropospheric O3 concentration (more than 1000 ppb), which is associated not only with
lung diseases, such as asthma, COPD, and lung cancer, but also heart disease, inflammatory
skin disorders and skin aging [45–47]. Exposure to high levels of O3 is associated with
depletion of antioxidants levels within the skin and the activation of several inflammatory
and oxidative pathways [48,49]. Although ozone cannot penetrate skin, it can initiate
free radicals by interacting with biomolecules present within the stratum corneum, in-
cluding lipids, proteins, and DNA, leading to the production of hydroxyl radical (HO−),
superoxide anion (O2−) and hydrogen peroxide (H2O2) or nonradical species as aldehydes
(4-hydroxy-nonenal, 4-HNE) and related 4-HNE protein adducts (PAs) [40,50–52]. O3 sec-
ondary mediators (ROS and 4-HNE protein adducts) can perpetuate the pollutant damage
throughout the skin by interacting with keratinocytes and fibroblasts, inducing oxidative
stress reactions and lipid peroxidation. The consequent activation of pro-oxidative and
pro-inflammatory pathways, such as NRF2, NF-kβ, aryl hydrocarbon receptor (Ahr) and
heat shock proteins (HSPs), triggers the release of oxidative and pro-inflammatory media-
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tors, such as IL-8 and COX2, exacerbating various skin pathologies and the inflammaging
process [40,48,53–57]. In addition, O3 induces the activation of collagen degrading metal-
loproteinases (MMPs) MMP2 and MMP9 that play a role in photoaging and skin cancer
progression [58].

6. Particulate Matter (PM)

Particulate matter (PM) is the principal component of air pollution. It is a mixture
of solid and liquid particles suspended in the air, including poly-aromatic hydrocarbons
(PAHs), metals, inorganic, and organic toxins, which may have an anthropogenic or a
natural biogenic origin. These particles originate naturally from volcanoes, forest fires,
living vegetation and dust storms, but are also generated by human activities, such as
industrial process, burning of fossil fuels, coal combustion, in vehicles, road dust and
in cooling systems. Some of these particles can be involved in oxidative reactions that
rely on the oxidation of primary gases, such as nitrogen oxides (NOx), sulfur, but also
volatile organic compounds (VOCs). The interaction between the particle’s components
(NOx, CO and VOCs), mineral dust, black carbon, and sulfur dioxide (SO2) with UV light
leads to photochemical smog, which is visible and contributes to the deterioration of the
stratospheric O3 layer, as well as the formation of the ground level O3. PM particles exhibit
irregular shapes and are classified based on their aerodynamic diameter. The coarse fraction
includes particles with a size ranging from 2.5 to 10 µm (PM2.5–PM10), whereas the fine
fraction contains particles ranging from 0.1 and 2.5 µm. All particles that display a diameter
less than 0.1 µm are ultrafine particles (UFPs). Fine and ultrafine particles are the most
dangerous for human health, since they can be inhaled, deposited deep in the airways,
and may even be distributed systemically. Thus, exposure to PM is associated with the
development and exacerbation of respiratory diseases, such as asthma and COPD, [59–61]
and nervous system-related pathologies [62].

The skin is another important target organ for PM. Particles can directly interact and
eventually penetrate cutaneous tissue, contributing to increased oxidative stress, activation
of inflammatory pathways, DNA damage and skin aging [5,63,64]. Indeed, despite the
inability of O3 to cross the skin barrier, some PM components, such as polyaromatic carbons
(PAHs), can penetrate transdermally or through hair follicles, triggering the production
of ROS and lipid peroxidation (4-HNE), leading to apoptosis, DNA and mitochondria
damage, activation of pro-inflammatory pathways (NF-kβ, AP1) and the antioxidant
response (NRF2) [5,63–66]. In addition, oxides of nitrogen display an oxidizing effect in
skin tissue [67], and their effect on human skin is strictly related to ultrafine PM and black
carbon, since they are all emitted during traffic and industries emission [68,69]. Moreover,
considering that PM can be inhaled and be released in the bloodstream, it is possible
that some particles can reach the skin and affect skin homeostasis from the inside, thus
contributing to the damage induced by air pollutant exposure.

7. Cigarette Smoke (CS)

CS is one of the most dangerous indoor and outdoor environmental pollutants. It
is a complex aerosol composed of a mix containing more than 4700 chemical substances,
distributed in a gas phase and a particulate phase, making CS a peculiar pollutant. CS
toxicity is mainly associated with the presence of a high level of pro-oxidants, such as free
radicals, which can trigger oxidative stress reactions or can lead to secondary oxidative
events, such as lipid peroxidation [40,70,71]. Indeed, CS has been estimated to contain
1014 low molecular-weight carbon- and oxygen-centered radicals within the gas
phase [71,72], and nitric oxide (NO), up to 500 ppm, which can be oxidized into NO2
and participates in oxidative events [73]. Besides the mainstream smoke represented by
the combination of inhaled and exhaled smoke while taking a cigarette puff, second-hand
smoke or side stream smoke is released into the air directly by a burning cigarette, dis-
playing even more toxic properties than mainstream CS [74]. In addition to the oxidative
damage, CS stimulates the release of pro-inflammatory cytokines and consequent epige-
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netic modifications [75]. For instance, elevated levels of IL-1β, IL-6 and TNF-α have been
found in mice exposed to CS for 120 min/day, as well as elevated levels of MMP-1 [76,77].

Cigarette smoke contributes to premature skin aging and wrinkling and to several
inflammatory pathologies. These effects are mainly due its ability to induce ROS production
within the epidermal layers, lipid peroxidation and up-regulation of MMPs, such as MMP-1
and -3, which contribute to dermal collagen degradation and skin aging [40,78–81]. Human
keratinocytes exposed to CS display decreased wound-healing capacity, increased NRF2
and MMP9 expression levels, as well as an altered epidermal barrier integrity [82]. More-
over, water-soluble PAHs of CS have been demonstrated to induce an oxidative imbalance
and increased NADPH oxidase activity within the skin [79,83]. Thus, CS has been corre-
lated with the development of several skin pathologies, fueling both the oxidative and the
inflammatory responses of the cutaneous tissue and compromising skin integrity [84–86].

8. Synergy between Solar Radiation and Pollution

Despite our daily exposure to different pollutants and solar radiation, few studies have
investigated the possible interaction between the two and their combined effects on skin.
Although UV radiation is the most aggressive environmental agent, the role of pollution in
damaging skin is significant. The impact of the combined exposure to pollutants and UV ra-
diations on skin is due to their additive effects on oxinflammation [42,43,87–91]. PM, due to
its composition, has been shown to interact with UV light [90]. Poly aromatic hydrocarbons
from PM and cigarette smoke can absorb UVA photons, and therefore be photoactivated by
UV, exacerbating skin damage. Indeed, photoactivated PAHs can transfer energy and elec-
trons to oxygen (singlet oxygen), initiating oxidative reactions that lead to the production
of ROS and DNA damage [91–94], and ultimately skin damage [95]. Squalene, one of the
main lipids present within the skin, can be oxidized by singlet oxygen, suggesting that the
combination of UV and PAHs could exacerbate skin damage [96–98]. O3, in combination
with UV light, can potentiate UV-induced depletion of vitamin E, which is essential for skin
health [99,100]. The oxinflammatory damage induced by pollutants can then culminate
in the alteration of skin functionality by affecting the main components of the stratum
corneum (SC), the cornified envelope, which is the primary barrier of the skin [101]. PM, O3
and UV are all able to modulate cutaneous proteins that are essential for skin differentiation
and proper barrier function, such as involucrin, filaggrin, and keratins [102–104], poten-
tiating the damage when acting together [42,105]. Moreover, pollutants can affect other
essential skin barrier components, such as tight junctions (TJs), including claudin-1, zonula
occludens-1 (ZO-1), occludins and water channels that are involved in maintaining skin
barrier integrity [106,107]. Pollutant exposure and UV radiation as well can compromise the
distribution of TJs within human skin and keratinocytes, deteriorating the cutaneous tissue
functionality [108]. For instance, PM has been found to downregulate ZO-1 via a redox
mechanism [109]. These findings suggest that the combination of pollutants can enhance
skin damage by acting synergistically to activate inflammatory pathways and to induce ox-
idative stress reactions, exacerbating skin disorders, carcinogenesis and contributing to the
skin inflammaging [5,110–112]. Of note, all air pollutants and UV radiation can modulate
important inflammatory platforms of the innate immune system, the inflammasomes, via
oxidative-related mechanisms [49,113–115]. Inflammasomes are multiprotein complexes
that form in the cytoplasm and regulate IL-1 cytokines [116]. Nod-like receptors, including
NLRP1 and NLRP3, are integral to the formation of inflammasomes and are activated in
several skin conditions related also to pollutant exposure [91,116,117].

The transcription factor aryl hydrocarbon receptor (AhR) represents another important
target for air pollutants, mediating both the antioxidant and the inflammatory responses.
AhR activation has been involved in the exacerbation of skin pathologies such as acne,
atopic dermatitis, skin aging, carcinogenesis, and skin barrier impairment [118–123]. Air
pollutants, such as PAHs in PM, O3 but also UV, can mediate the upregulation of CYP1
enzymes and reactive oxygen species (ROS) via AhR receptor activation, exacerbating the
skin damage when acting together [42,105,121,124–126].
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9. Environmental Protection Strategies
9.1. Sunscreen

As reviewed here, there is a need for broad spectrum protection against solar radiation,
including UV, VL and IR. Currently, most broad-spectrum sunscreens provide protection
against UVB radiation and shorter wavelength UVA. There is a paucity of FDA-approved
sunscreen ingredients that protect against longer wavelength UVA (>370 nm) and none that
confer protection against visible light [127]. Thus, it is not surprising that sunscreens touting
UVA protection were found to reduce UVA-induced ROS formation by only 55% [128].
Tinted cosmetics and sunscreens that contain iron oxides are now recommended to extend
protection into the visible light spectrum [129], but unfortunately do not confer protection
against IR. Sunscreens, of course, provide no protection against environmental pollutants;
thus, other strategies are necessary to prevent oxinflammatory damage caused by this
pollutant exposure (Table 1).

9.2. Antioxidants Compounds as a Therapeutic Approach to Prevent the OxInflammatory Damage
within the Skin

Our skin is equipped with defense systems to counteract oxidative damage induced by
environmental exposure. However, the depletion of skin defensive system can lead to pre-
mature skin aging [55]. To counteract oxidative damage, topical antioxidant formulations
have been developed to protect skin [130]. Moreover, a healthy diet, including vitamins
and micronutrients helps restore the gut microbiome, and provides further protection to
preserve the skin health [131].

9.2.1. Endogenous Defensive Enzymes

As mentioned above, human skin contains endogenous enzymes, such as superoxide
dismutase (SOD), catalase (Cat) and glutathione peroxidase (GPx), which scavenge ROS
and protect our skin from environmental insults [132–134]. These enzymes are able to
catalyze the dismutation of the superoxide radical O2

− into oxygen and H2O2 (SOD) and to
convert H2O2 in water (Cat, GPx), therefore preventing the production of hydroxyl radicals
(.HO) known to trigger lipid peroxidation [134–136]. However, environmental pollutants
can modulate the activity of these cutaneous antioxidant enzymes and alterations in their
activity can be associated with inflammatory skin conditions [137–139], altering skin redox
homeostasis, skin barrier function, and lead to skin aging and carcinogenesis [14,140–142].
PM exposure has been associated with elevated levels of SOD and GPx in human ker-
atinocytes and higher levels of oxidative stress [143], whereas a decrease in Cat activity
was noted in mice skin exposed to UVB radiation [144]. Environmental pollutants have
been found to increase the cutaneous levels of SOD and oxidized stratum corneum proteins
in patients with atopic dermatitis [145], suggesting that they might be involved in the
exacerbation of skin pathologies by modulating the antioxidant response. Nevertheless,
the depletion of these enzymes caused by environmental pollutants can be restored by the
application of antioxidant compounds [54,146–148].

9.2.2. Skin Micronutrients and Topical Antioxidant Application

Besides endogenous enzymes, skin is equipped with a non-enzymatic set of antioxi-
dant molecules that can be absorbed through the diet and they play a key role in protecting
the skin from oxidative reactions, and lipid peroxidation, and promote keratinocyte dif-
ferentiation, as well as skin barrier function [14,149–151]. The most abundant antioxidant
components within the cutaneous tissue are tocopherol (vitamin E) and ascorbic acid (vita-
min C) [152,153]. Carotenoids, uric acid, and co-enzyme Q10 (CO-Q10) are other important
micronutrients with antioxidant properties for human skin [55]. Pollutant-induced photo-
oxidative stress can lead to the depletion of skin surface antioxidants, especially vitamin
E, vitamin C and glutathione, resulting in structural skin damage and an impairment of
the barrier function, as well as skin aging. For instance, O3 has been shown to deplete
vitamins E and C in mice skin, leading to lipid peroxidation [154–156]. The application of
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topical compounds containing vitamin E, C and caffeic acid can prevent skin structural
damage, counteracting photoaging, DNA damage and reducing UV-induced free radical
production [150,157–159]. Indeed, the photoprotection properties of vitamin C resides in
its ability to inhibit the UV-induced activation of AP-1 or NF-kβ, which in turn upregulate
MMPs, leading to collagen degradation and consequent wrinkle formation, photoaging and
elastin accumulation [160]. Moreover, vitamin C displays an antiaging effect by helping in
the cross-linking of collagen fibers, in the biosynthesis of collagen [152], and in reducing
oxidized vitamin E [161]. However, L-ascorbic acid, which is the form of vitamin C found
in the skin, is a hydrophilic molecule and it displays poor penetration properties through
the stratum corneum [162]. To improve L-ascorbic acid stabilization and permeability,
new formulations containing other compounds, such as ferulic acid or esterified forms
of vitamin C, have been established [163,164]. Indeed, ferulic acid can stabilize vitamin
C solutions by adjusting the pH and favoring skin permeability [165]. Several new for-
mulations containing these compounds have been shown to protect from UV-induced
photodamage by improving the protecting effect of UV filters [166–168], and they can also
prevent O3 cutaneous damage [146]. Another important skin micronutrient, β-carotene,
belongs to the carotenoid family, and is a precursor of vitamin A. β-carotene needs to
be taken in through diet and can inhibit the lipoxygenase enzymes that are responsible
for the production of ROS. Moreover, β-carotene quenches singlet oxygen and peroxyl
radicals and can protect skin from sunlight and photodamage, together with vitamin
E [169,170]. Indeed, the chlorophyll present within carotenoids can absorb UVA through
the porphyrin-related molecular structure called chlorin [171]. Other plant antioxidants,
including epigallocatechin gallate (EGCG), resveratrol, and lycopene, have been shown to
protect skin against UV-induced damage [15]. Coenzyme Q10 (CoQ10) or ubiquinone is a
co-enzyme involved in metabolic cells processes, such as the production of energy within
mitochondria, and displays antioxidant properties [171,172]. Although CoQ10 topical
absorption can be limited, its topical application, together with dietary intake, has been
demonstrated to improve the antioxidant defense of the skin, prevent wrinkles and skin
aging [173–175].

Protection against IRA-induced damage by topical antioxidants has also been demon-
strated. A randomized, prospective, controlled, double-blind study was conducted to
compare the efficacy of an SPF30 sunscreen alone versus the same sunscreen supplemented
with an antioxidant mixture for protecting against IRA-induced damage [176]. As expected,
IRA exposure upregulated MMP-1 expression compared to unirradiated skin and pre-
treatment for ten days with an SPF30 sunscreen supplemented with vitamin C, vitamin
E, ubiquinone, and grape seed extract that effectively prevented IRA-induced MMP-1
mRNA expression. In contrast, the use of SPF30 sunscreen alone did not provide signifi-
cant protection. This study confirms that topical antioxidants can be used to mitigate the
detrimental effects of IRA on human skin. Similar results have been shown with topical
formulations with ferulic acid combined with vitamins C and E [177]. Antioxidants also
appear promising for protecting against VL. [24,178] Licochalcone A added to cultured
fibroblasts prevented VL-induced upregulation of ROS compared to UV filters alone [24].
More recently, the use of an antioxidant enriched sunscreen was found to reduce VL-
induced pigmentation in human skin when compared to the sunscreen alone [178]. The
protection was equivalent to that of a tinted sunscreen.

9.3. Chelating Agents to Modulate and Iron and Redox Homeostasis in Skin

Besides the utilization of natural antioxidant compounds, another way to counteract
ROS production induced by environmental pollutants and UV radiation is the applica-
tion of chelating agents in cosmetic formulations. Chelating agents can bind with metal
ions, such as copper and iron, preventing them from chemically reacting with other sub-
stances [179]. Iron has been identified as one of the primary metals modulated by air
pollutant exposure in human skin [180,181]. Air pollutants have been shown to lead to
perturbation of iron homeostasis, resulting in iron accumulation within cells that can be
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used as a catalyzing agent in Fenton’s reaction to produce ROS [12,44,45,182,183]. Indeed,
iron is an essential cofactor involved in several biological and metabolic functions, such
as transport of oxygen, DNA synthesis and electron transport. Excessive amounts of iron
within cells can interact with O2

•−, fueling mitochondrial ROS production that can cause
oxidation of biomolecules such as lipids, DNA, and proteins [184], resulting in the devel-
opment of several oxidative stress-related pathologies [185–187]. As discussed previously,
UVA radiation, as well as other pollutants, such as PM and O3, can induce the release of
iron from the iron-binding proteins, resulting in the accumulation of labile iron (Fe(II)-ion),
within the skin, resulting in ROS production [12,180,181,188,189]. The use of drugs that are
able to reduce the excessive accumulation of iron within cells is a novel strategy to prevent
iron from participating in Fenton’s reaction and to attenuate lipid peroxidation in response
to pollutant exposure. Data suggest that the combination of iron chelators and antioxidant
compounds work synergistically to counteract skin photodamage [190,191], representing
a good approach to enhance the protective effect of formulations containing antioxidant
compounds. Deferoxamine (DFO) is one of the most potent iron chelators with a high
affinity for iron and it has been used since 1986 to treat iron overdoses, hemochromato-
sis, and blood transfusions [192,193]. DFO can help in skin wound healing and diabetic
ulcer regeneration by upregulating the hypoxia-inducible factor-1 alpha (HIF-1a) that is
involved in angiogenesis, vascularization and in regulating other important mediators,
such as the vascular endothelial growth factor (VEGF), which help bring nutrients and
other essential factors for tissue regeneration [194–197]. Besides angiogenesis properties,
DFO displays antioxidant properties, due to its ability to directly quench ROS, such as HO
and O2−, and can form the deferoxamine nitroxide radical (DfNO) [198,199]. Moreover,
DFO can stop the iron-mediated propagation of lipid peroxidation by quenching and re-
ducing the levels of alkoxyl and peroxyl radicals [200]. In a study designed to evaluate the
protective effects of topically applied DFO, singularly or in combination with antioxidants,
human skin explants were exposed to diesel engine exhaust (DEE). DFO alone and in
combination with antioxidants vitamin C, E and ferulic acid was effective at counteracting
DEE-induced skin damage, including lipid peroxidation, MMP-9 activation, and loss of
filaggrin and involucrin [89]. In a recent review on the role of iron and redox homeostasis
in skin aging, the authors suggest the need for studies to identify botanicals that have both
antioxidant and iron chelating properties [201]. These naturals would be bi-functional
ingredients capable of modulating iron and redox homeostasis and provide skin benefits,
including environmental protection and anti-aging. Although, out of the scopes of this
review, it should be mentioned that several natural compounds, including polyphenols,
anthocyanins, and flavonoids, have shown to protect the skin against outdoor stressors, as
reviewed elsewhere [202].
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Table 1. Cutaneous stressors, skin damage and protection technologies.

Solar Radiation Pollution
Environmental Aggressor

UVA/UVB VL and IR Tropospheric Ozone (O3) Particulate Matter Transition Metals Cigarette Smoke

Biomarkers of Exposure
and Damage

UVB (290–320 nm) [5,8]

• Skin erythema
• DNA mutations (CPDs)

UVA (320–400 nm) [11,12,17,18]

• Dermal matrix protein degradation

√ Reduction in collagen
and elastin via
upregulation of MMPs

√ Reduction in collagen
production via
downregulation of
TGFβ pathway

• Release of labile iron (Fe(II)-ion)
• Suppression of cutaneous APC
• Photodamage

VL (400–700 mm) [23–29]

• Includes high energy blue light
(400–500 nm)

• Erythema in darker skin types
• Immediate and long-lasting

pigmentation in darker skin types
• Increase MMPs
• Increase inflammatory cytokines

IR (760 nm–1 mm) [30–36]

• Generates heat energy and increases
skin temperature

• Erythema ab igne
• Increase MMPs
• Accumulation of elastotic material
• Induces angiogenesis
• ROS within mitochondria
• Modulates fibroblast activity

• Interacts with stratum corneum
lipids, proteins, and DNA

• Increases ROS HO− , O2− , and
H2O2 [40,50–52]

• 4-HNE adducts form and induce
further lipid peroxidation

• Activation of NF-кβ aryl
hydrocarbon receptor Ahr and
HSPs enhance release of IL-8, COX2
(ozone-induced inflammation)
[40,48,53–57]

• Increases in MMP-2 and MMP-9
(ozone-induced aging) and skin
cancer progression, respectively [58]

Particulate matter (PM)

• Includes poly-aromatic hydrocarbons
(PAHs), metals, inorganic and
organic toxins

• Combines with oxidized nitrogen oxides,
sulfur and volatile organic compounds
and UV light to form photochemical smog

• Decreases stratospheric O3
• Increases ground level O3
• Absorbed through inhalation, skin

and hair
• 4-HNE from lipid peroxidation can

damage DNA and mitochondria
• Stimulates key oxidative and

inflammatory transcription factors
NF-кβ, AP-1, NRF2, Ahr [5,63–66]

• Increase in skin barrier disruption,
inflammatory and skin diseases (COPD,
asthma, acne, atopic dermatitis, skin
aging) [59–62]

• PM in combination with UV can
liberate bound iron in the skin as
labile iron

• Interacts with ROS to cause
oxidative stress and damage to
mitochondria, lipids, DNA, and
cellular proteins [91–95]

• Increase lipid peroxidation
• Increase MMP-9
• Decrease filaggrin and involucrin

[102–104]
• Disruption of skin barrier [106–108]

• Increase ROS
• Secondary lipid peroxidation
• Increase release of inflammatory

cytokines IL-1α, IL-6. TNF-α
• Increase MMP-1
• Increase collagen degradation
• Increase cutaneous inflammation

and skin diseases [40,78–81]
• Increase NRF2 and MMP-9
• Decrease skin barrier and

wound-healing [82]

Protection

Physical Barriers-

• Sun shirts
• Hats
• Sunglasses

Sunscreens-

• Broad spectrum chemical
• Mineral

TopicalAOX- [151–153,165–168]

• Vitamins C, E
• Ferulic acid
• Resveratrol
• Carotenoids
• Epigallocatechin gallate (EGCG)
• Co-enzyme Q10
• Caffeic acid
• Lycopene
• Other botanicals

Chelators [190,191]

• 2-furildioxime
• Kojic acid

DNA Repair Enzymes with sunscreen
and/or AOX [203–208]
Diet, Micronutrients [131]

Physical Barriers-

• Sun shirts
• Hats
• Sunglasses

Sunscreens and Cosmetics-

• Tinted containing iron oxide (FeO)
for VL [129]

Topical AOXs for IRA- [176,177]

• Vitamins C, E
• Ferulic acid
• Resveratrol
• Co-enzyme Q10
• Grape seed extract

Sunscreen with AOX blend for VL [178]
Diet and Micronutrients [131]

Topical AOX- [42,146,147]

• Vitamins C, E
• Ferulic acid
• Other botanicals

Diet and Micronutrients [131]

Topical AOX- [42]

• Vitamins C, E
• Ferulic acid
• Other botanicals

Diet and Micronutrients [131]

Combination- [89]

• Chelators PLUS topical AOX

Diet and Micronutrients [131]

Topical AOX- [148]

• Resveratrol

Diet and Micronutrients [131]
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9.4. DNA Repair Enzymes

More recently, DNA repair enzymes, including photolyase and T4-bacteriophase
endonuclease V (T4 endonuclease V), have been studied alone or in combination with
UVA/UVB sunscreens with or without antioxidants as a supplement to intrinsic DNA repair
mechanisms [203–207]. DNA repair enzymes have been shown to scan and repair DNA
mutations to prevent the effects of UV damage from skin photoaging to more malignant
manifestations, including AK and skin cancers. Beyond prevention, topical application has
demonstrated reversal of existing AK lesions and photoaging [208]. In addition to DNA
repair, MMP-9 induction and cutaneous inflammatory cytokines have also been shown to
be attenuated. Moreover, these beneficial effects occurred with little to no adverse reactions
or events reported. While the current formulations are promising, more clinical studies are
needed to better understand the full potential of benefits that these enzymes can offer in
mitigating the effects of UV and other environmental aggressors.

10. Conclusions

While UV light has long been viewed as the primary offender of inducing environ-
mental cutaneous damage, nowadays, we need to also consider the role of other factors,
particularly pollutants, in contributing to skin damage. It is now well documented that
stressors such as ozone, particulate matter, cigarette smoke, etc., all components of the
so-defined “skin exposome”, can seriously affect cutaneous extrinsic aging and even have
an additive effect when present in combination. Therefore, the next generation of cutaneous
protection must include not only sunscreen technologies and the usage of hats and clothing,
but also new approaches aimed to protect the skin from other stressor sources derived from
the pollutants. Indeed, the development of new sunscreens with enhanced UV coverage,
DNA repair enzymes, topical antioxidants, and safe and effective chelating agents could
better protect our cutaneous tissue from extrinsic aging and pathologies correlated to pollu-
tion exposure. This combination approach is necessary to ensure skin health and maintain
its youthful appearance.
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