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It is becoming increasingly clear that neurotransmitters impose direct influence on 
regulation of the immune pr ocess. Recently, a simple but sophisticated neuroendocrine– 
immune (NEI) system was identified in oyster, which modulated neural immune response 
via a “nervous-hemocyte”-mediated neuroendocrine immunomodulatory axis (NIA)-like 
pathway. In the present study, the de novo synthesis of neurotransmitters and their 
immunomodulation in the hemocytes of oyster Crassostrea gigas were investigated to 
understand the autocrine/paracrine pathway independent of the nervous system. After 
hemocytes were exposed to lipopolysaccharide (LPS) stimulation, acetylcholine (ACh), 
and norepinephrine (NE) in the cell supernatants, both increased to a significantly higher 
level (2.71- and 2.40-fold, p < 0.05) comparing with that in the control group. The mRNA 
expression levels and protein activities of choline O-acetyltransferase and dopamine 
β-hydroxylase in hemocytes which were involved in the synthesis of ACh and NE were 
significantly elevated at 1 h after LPS stimulation, while the activities of acetylcholinester-
ase and monoamine oxidase, two enzymes essential in the metabolic inactivation of ACh 
and NE, were inhibited. These results demonstrated the existence of the sophisticated 
intracellular machinery for the generation, release and inactivation of ACh and NE in oyster 
hemocytes. Moreover, the hemocyte-derived neurotransmitters could in turn regulate the 
mRNA expressions of tumor necrosis factor (TNF) genes, the activities of superoxide dis-
mutase, catalase and lysosome, and hemocyte phagocytosis. The phagocytic activities 
of hemocytes, the mRNA expressions of TNF and the activities of key immune-related 
enzymes were significantly changed after the block of ACh and NE receptors with different 
kinds of antagonists, suggesting that autocrine/paracrine self-regulation was mediated by 
transmembrane receptors on hemocyte. The present study proved that oyster hemocyte 
could de novo synthesize and release cholinergic and adrenergic neurotransmitters, and 
the hemocyte-derived ACh/NE could then execute a negative regulation on hemocyte 
phagocytosis and synthesis of immune effectors with similar autocrine/paracrine signaling 
pathway identified in vertebrate macrophages. Findings in the present study demonstrated 
that the immune and neuroendocrine system evolved from a common origin and enriched 
our knowledge on the evolution of NEI system.
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regulation
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inTrODUcTiOn

The nervous and endocrine systems regulate the immune sys-
tem through releasing neurotransmitters, neuropeptides, and 
endocrine hormones as they modulate the other physiological 
activities (1). Recently, it has been realized that neurotransmitters 
derived from sources outside the nervous and endocrine systems, 
especially from immune system, can also serve as immunomodu-
lators (2). The immune cell-derived neurotransmitters can bind 
to autocrine receptors on their own, exerting a considerable and 
reciprocal influence on the function of immune system (3). By far, 
such neuroendocrine autocrine/paracrine signaling has been well 
studied in vertebrates. The dendritic cells, leukocytes, and lym-
phocytes can synthesize and/or release classical neurotransmit-
ters, including acetylcholine (ACh), dopamine (DA), serotonin 
(5-HT), and glutamate (4–7). These neurotransmitters in turn 
exert diverse effects during inflammation via autocrine/paracrine 
signaling pathways (2). For instance, DA and glutamate are able 
to interact directly with T-cell expressed receptors, leading to the 
activation or suppression of various T-cell functions including 
cytokine secretion, proliferation, integrin-mediated adhesion, 
and migration (8–12).

Comparing with model species, study on the neuroendocrine 
immune (NEI) regulation in invertebrates is still at the very outset. 
Most of the previous research focused on the immunomodula-
tion of neurotransmitters released from neuroendocrine system. 
For instance, catecholamines (CAs), ACh, 5-HT, γ-aminobutyric 
acid (GABA), histamine, enkephaline (ENK), glutamic acid 
(GA), neuropeptide Y (NPY), and nitric oxide (NO) have been 
identified from the nervous and endocrine tissues in mollusks 
(13, 14). These neurotransmitters conduct neural immune 
regulation through a nervous-hemocyte neuroendocrine immu-
nomodulatory axis (NIA)-like pathway, modulating both cellular 
and humoral immune activities in mollusk (15). Astonishingly, 
recent studies have illustrated that molluskan immune system 
can also synthesize neurotransmitters and may conduct auto-
crine/paracrine immune regulation. The key enzymes for CAs 
synthesis [dopamine β-hydroxylase (DBH)] and ACh degrada-
tion [acetylcholinesterase (AChE)] are reported to be present in 
molluskan hemocytes (16–18), and ACh and NE can be detected 
in hemolymph (17, 19, 20). These findings imply the existence of 
cholinergic and adrenergic autocrine/paracrine pathways in mol-
luskan hemocytes, which mediate neural immunomodulation at 
cellular level.

Circulating immunocytes play the most important roles in 
both neural immune regulation generated by nervous-derived 
neurotransmitters and autocrine/paracrine immune regulation 
conducted by cell-derived neurotransmitters (2, 21). Moreover, 
in both vertebrates and invertebrates, immunocytes act as 
fundamental players in the crosstalk between the NEI systems 
since they display significant overlap in molecular components 
and physiological functions (22). Numerous morphological and 
functional studies have indicated that there is a common pool of 
molecules shared by the immune and neuroendocrine systems, 
and there should be a common evolutionary origin for the two 
systems in both invertebrates and vertebrates (23). Therefore, 
the neuroendocrine autocrine/paracrine signaling existing in 

immunocytes exhibits perfect example for this hypothesis, and 
study on the neuroendocrine autocrine/paracrine pathway in 
invertebrate hemocytes can also provide insights into the evolu-
tion of the NEI system.

The complexity of immune and neuroendocrine components 
in mammals has prompted corresponding studies in simpler 
models. Among these, mollusks have been considered as valu-
able model for analyzing the basic patterns of the immune and 
neuroendocrine interactions (22) since they are the most primi-
tive organisms evolved with a sophisticated NEI system (24), in 
which the circulating hemocytes are described as the “immune-
mobile brain” for their ability to recognize a variety of stimuli 
and to set up sophisticated responses (25). Most of the previous 
studies focused mainly on the immune response of hemocytes 
mediated by neurotransmitters, while their potentials to produce 
neurotransmitters were rarely mentioned. The aims of the present 
study are to (1) confirm the de novo synthesis of cholinergic and 
adrenergic neurotransmitters in oyster hemocytes, (2) investigate 
the immunomodulation of cholinergic and adrenergic systems 
mediated by hemocytes, and (3) evaluate the immunological 
activity of autocrine/paracrine neurotransmitters at cellular level. 
Investigation on the cholinergic and adrenergic autocrine immu-
nomodulation in oyster hemocytes will enrich our knowledge 
about the common origin of NEI systems, as well as the evolution 
of NEI system.

MaTerials anD MeThODs

Oysters and Primary culture of hemocytes
Oysters Crassostrea gigas (with an average of 150  mm in shell 
height) were collected from a local farm in Qingdao, Shandong 
Province, China, and maintained in aerated seawater at 18°C for 
2 weeks before processing.

Oyster hemolymph was aspirated from the blood sinus with a 
thin syringe, and centrifuged at 800 g to harvest the hemocytes. 
The hemolymph from five oysters was pooled together, and there 
were three parallel pools for each test. Primary culture of oyster 
hemocytes was carried out based on the protocol described by Jiang 
et al. (26). The cell viability was detected by Trypan Blue exclusion 
technique using commercial kit (Beyotime Biotechnology).

All animal-involving experiments of this study were approved 
by the Ethics Committee of the Institute of Oceanology, Chinese 
Academy of Sciences.

lipopolysaccharide (lPs) stimulation, 
antagonist Treatment, and sample 
collection
For the LPS stimulation experiment, hemocytes were incubated 
with 100  ng mL−1 of LPS origin from Escherichia coli 0111:B4 
(Sigma) for 30 min and 1 h, respectively, while the same volume of 
PBS (Gibco, pH 7.4) was added in the negative control (Neg-Ctrl) 
group.

The incubation of antagonists for neurotransmitter receptors 
on oyster hemocytes was performed according to the description 
in previous studies to explore whether hemocyte-derived neuro-
transmitters could exert autocrine/paracrine immune regulation 
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Table 1 | Sequences of the primers used in the experiment.

Primer sequence (5′-3′) sequence information

P1 (forward) CGCAATGGTCGCTTGGTGGTC Real-time CgTNF (CGI_10005109) primer
P2 (reverse) CGTAGGGGCGGAAGGTCTCG Real-time CgTNF (CGI_10005109) primer
P3 (forward) CAACGGTCTAACTTACCATCCAAAC Real-time CgTNF (CGI_10005110) primer
P4 (reverse) TGGTGGTAGATAAAATGGGACAGTG Real-time CgTNF (CGI_10005110) primer
P5 (forward) ATTGGAGCACCTGGAGGATAAG Real-time CgTNF (CGI_10006440) primer
P6 (reverse) CAGTCTTCCGTGCTGGTATTTC Real-time CgTNF (CGI_10006440) primer
P7 (forward) TGAGTCCAGATTCCTTTATCCAGTTAG Real-time CgChAT (CGI_10023267) primer
P8 (reverse) TCCAAAGCATCTGGGGTGTTAG Real-time CgChAT (CGI_10023267) primer
P9 (forward) GGTAATAACGAAAGGAAACGAAG Real-time CgDBH (CGI_10027734) primer
P10 (reverse) CACCGATAACTTCCCGACAC Real-time CgDBH (CGI_10027734) primer
P11 (forward) ACCTATTCAATCATCGCTCCTCC Real-time CgAChE (CGI_10019411) primer
P12 (reverse) TCTCTTTATACGTGTGAAGGGGC Real-time CgAChE (CGI_10019411) primer
P13 (forward) AGACAACTGATGGAGTGACGGTG Real-time CgMAO (CGI_10022845) primer
P14 (reverse) TCCAAAAAGGGGTCTTGTAGTAGC Real-time CgMAO (CGI_10022845) primer
P15 (forward) ATCCTTCCTCCATCTCGTCCT Real-time CgEF (CGI_10012474) primer
P16 (reverse) GGCACAGTTCCAATACCTCCA Real-time CgEF (CGI_10012474) primer
M13-47 CGCCAGGGTTTTCCCAGTCACGAC pMD18-T simple vector primer
RV-M GAGCGGATAACAATTTCACACAGG pMD18-T simple vector primer
P17 (forward) GGCCACGCGTCGACTAGTACT17 Oligo(dT)-adaptor
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via cell-surface receptors (27–29). In the present study, non-
selective nicotinic acetylcholine receptor (nAChR) antagonist 
mecamylamine hydrochloride (Tocris Bioscience) was employed 
in the non-selective nAChR antagonists group, while α-7 nAChR 
antagonist α-Bungarotoxin (Tocris Bioscience) was added in the 
α-7 nAChR antagonists group. In order to block the muscarinic 
acetylcholine receptors (mAChRs) on the hemocyte surface, 
five antagonists including pirenzepine (Tocris Bioscience), 
AFDX 116 (Tocris Bioscience), 4-DAMP (Tocris Bioscience), 
PD102807 (Tocris Bioscience), and darifenacin (Sigma) specific 
for the m1 to m5 mAChRs, respectively, were used in the m1–m5 
mAChRs antagonists groups (30). In addition, the mixture of 
doxazosin mesylate [specific antagonists for α-1 adrenergic 
receptor (A1AR), Tocris Bioscience] and idazoxan yohimbine 
[specific antagonists for α-2 adrenergic receptor (A2AR), 
Tocris Bioscience] were added in the α-antagonists group to 
inhibit the binding activities of α adrenergic receptors (AARs), 
while propranolol (Tocris Bioscience), specific antagonist for 
β-adrenergic receptor (BAR), was added in the β-antagonist 
group to block BARs (31–33). Furthermore, in order to explore 
the synergistic immunomodulation of ACh and NE, the mix-
ture of different kinds of antagonists was employed to block 
all AChRs and ARs. In the α-7  +  m1-5 group, α-7 nAChR 
antagonist (α-Bungarotoxin) and m1 to m5 mAChR antagonists 
(pirenzepine, AFDX 116, 4-DAMP, PD102807, and darifenacin) 
were added, while in α + β group, A1AR antagonists (doxazosin 
mesylate), A2AR antagonist (idazoxan yohimbine) and BAR 
antagonist (propranolol) were used to block the ARs and BRs 
on hemocyte surface. All antagonists were employed at a final 
concentration of 10.0 µmol L−1 and incubated with hemocytes 
for 1 h before LPS stimulation (100 ng mL−1). Hemocytes incu-
bated with Leibovitz-15 (L-15) medium for 1 h and subsequently 
with LPS stimulation were employed as Vehicle group, and cells 
incubated with PBS instead of antagonists or LPS were treated 
as the Neg-Ctrl group.

Hemocytes from different groups were collected at 3 h after LPS 
stimulation for the subsequent determinations of phagocytosis, 

mRNA expressions and enzyme activities. Three replicates were 
considered for each assay.

rna extraction and Quantitative  
real-time Pcr
Trizol reagent was used to extract the total RNA from oyster 
hemocytes. DNase I (Promega) and oligo (dT)-adaptor were then 
employed to synthesize the cDNA library. Next, the constructed 
cDNA library was used to evaluate the mRNA expression 
levels of three oyster tumor necrosis factors (TNFs) including 
CGI_10005109, CGI_10005110, and CGI_10006440, by using 
SYBR green quantitative real-time PCR technique (34). The 
amplified fragment (168 bp) of oyster elongation factor (CgEF, 
CGI_10012474) was employed as the endogenous control. The 
primers used in the present study (Table 1) have been verified 
in previous research according to the dilution curve detected by 
the 7500 real-time PCR system (Applied Biosystem) (35). Three 
replicates were detected for each sample and all data were shown 
in terms of relative expression using the 2−ΔΔCt method (36).

Quantification of ach and ne in hemocyte 
supernatants
The contents of ACh and NE in the primarily cultured hemocyte 
supernatants after LPS stimulation were determined using the 
ACh and NE ELISA kit (Abnova) according to previous reports 
(26, 37). The quantification of samples was conducted by compar-
ing the absorbance with a reference curve. There were about 105 
cells in each well, and three replicates were employed for each 
control and experimental group.

Measurements of enzyme activity in 
Oyster hemocytes
The activities of two key ACh/NE synthesis enzymes in oys-
ters, choline O-acetyltransferase (CgChAT) and dopamine 
β-hydroxylase (CgDBH), as well as two key ACh/NE degradation 
enzymes, acetylcholinesterase (CgAChE) and monoamine oxidase 
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(CgMAO), were measured in the present study. CgChAT activity 
was determined using a kit (Jiancheng, A079; Nanjing) according 
to its protocol. The cell lysates was first incubated with reagents 
1–6 provided by the kit at 37°C for 5 min, followed by terminating 
the reaction in boiling water for 2 min. The evaluation of CgDBH 
activity was conducted with two enzymatic reactions according to 
the previous description (38). In the first reaction, tyramine was 
added to the homogenate, and it could be converted to octopamine 
by DBH. In the subsequent second reaction, the enzymatically 
formed octopamine was further converted to N-methyl octo-
pamine by the added PNMT. S-adenosylmethionine served as a 
methyl donor, and the amount of C14-N-methyl octopamine was 
proportional to DBH activity. In addition, CgAChE activity was 
determined based on the colorimetric method (39). First, 330 µL 
of PBS, 20  µL of 5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB, 
0.0076 mol L−1) working as chromogenic agent, as well as 100 µL 
of hemocyte lysates were mixed and placed in a 96-well plate. 
Then, 10  µL of acetylthiocholine iodide (ATC, 0.076  mol  L−1) 
were added and the enzyme activity was evaluated. Wells without 
ATC or cell lysates were designated as controls and spontane-
ous substrate hydrolyzates was determined. The absorbance of 
2-nitro-5-thiobenzoate anion was measured at 405 nm. Finally, 
the activity of CgMAO was determined as described by Zhou 
et al. (16), taking the metabolism rate of serotonin as its activity. 
Three replicates were conducted for each assay.

The activities of superoxide dismutase (SOD), catalase (CAT), 
and lysozyme (LYZ) in hemocyte lysates were then measured. And 
the determinations were conducted using kits from Jiancheng 
(Nanjing).

Determination of hemocyte Phagocytic 
activity
The phagocytic activity of hemocytes was measured according 
to the previous report (34). The concentration of hemocytes, 
resuspended in seawater, was adjusted to 1.0  ×  106  cells  mL−1 
and 500 µL of hemocyte resuspension was incubated with 5 µL 
of dead, FITC-labeled Vibrio splendidus (1.0 ×  109  CFU  mL−1) 
at room temperature for 1 h. After washing in PBS, hemocytes 
were centrifuged to discard un-ingested bacteria. The intensity 
of FITC fluorescence was measured by flow cytometry, and the 
phagocytic activity was calculated as (number of phagocytic cells 
with ingested bacteria)/(number of phagocytes). Three replicates 
were determined for each assay.

statistical analysis
All data were presented as means ± SD, and subjected to one-way 
analysis of variance in SPSS software, followed by multiple compari-
sons (S-N-K). Differences were considered significant at p < 0.05.

resUlTs

concentration changes of ach and ne  
in hemocyte supernatants after lPs 
stimulation
The concentration of ACh and NE in supernatants of hemocyte 
at 30 min, 1, 3, and 6 h after LPS stimulation was quantified to 

evaluate the de novo production of cholinergic and adrenergic 
neurotransmitters (Figure 1). The concentrations of ACh and NE 
in hemocyte supernatants both increased to a significantly higher 
level (2.71- and 2.40-fold, p < 0.05) comparing with that in the 
Neg-Ctrl group at 1 h after LPS stimulation (Figures 1A,B). No 
significant changes of ACh and NE contents were observed at other 
time points after LPS stimulation (p > 0.05). Our results indicated 
that LPS stimulation could quickly trigger oyster hemocyte to  
de novo produce cholinergic and adrenergic neurotransmitters.

expression and activity Variations of Key 
enzymes in ach/ne Metabolism after lPs 
stimulation
The mRNA expression levels and protein activities of CgChAT, 
CgDBH, CgAChE, and CgMAO were examined to further 
ascertain the de novo production and degradation of ACh and 
NE in oyster hemocytes at 30 min and 1 h after LPS stimulation 
(Figure 1). In general, there were low mRNA expression levels in 
hemocytes for all the four examined genes under normal status. 
Except for the activity of CgDBH, the mRNA expressions and 
protein activities kept relatively stable levels at 30 min in most of 
the groups, while significant changes were observed at 1 h post-
treatment. At 1 h after LPS stimulation, the mRNA expression of 
CgChAT was significantly upregulated, which was 3.67-fold of 
that in the Neg-Ctrl group (Figure 1C, p < 0.05), and the expres-
sion of CgDBH also increased to 4.67-fold of that in the Neg-Ctrl 
group (Figure 1D, p < 0.05). Similarly, the enzyme activities of 
CgChAT and CgDBH were upregulated to 1.34-fold and 2.04-
fold comparing with that in the Neg-Ctrl group at 1 h after LPS 
exposure (Figures 1E,F, p < 0.05). Only in Figure 1F, the acti-
vity of CgDBH at 30 min after LPS stimulation was significantly 
higher (p < 0.01) than that in control group.

Conversely, both the mRNA expression levels and protein 
activities of CgAChE significantly decreased at 1  h after LPS 
stimulation, which were 0.42-fold and 0.74-fold of that in the Neg-
Ctrl group, respectively (Figures 1G,I, p < 0.05). As for CgMAO, 
although its mRNA transcripts in the LPS group remained to a 
comparable level with that in the Neg-Ctrl group (Figure  1H, 
p > 0.05), its protein activity was severely downregulated to the 
0.50-fold of that in the Neg-Ctrl group (Figure  1J, p  <  0.05). 
These results revealed the existence of the sophisticated intracel-
lular machinery for the generation, release and inactivation of 
ACh and NE in oyster hemocytes.

Phagocytic activities after Treatments 
with receptor antagonists and lPs
In order to understand the possible mediation of hemocyte-
derived ACh to cellular immune response, the phagocytic 
activity of oyster hemocyte after the incubation of ACh receptor 
antagonist followed by the LPS stimulation for 3  h was deter-
mined (Figure  2). The phagocytic activity of hemocyte in the 
non-selective nAChR antagonist group (35.6%) was significantly 
higher than that (25.87%) in Vehicle group in which receptors 
were not blocked before LPS stimulation (Figure 2A, p < 0.05). 
Significant increase of phagocytic activity was also observed 
after the block of α-7 nAChR with specific antagonist (33.73 vs. 
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FigUre 1 | Release of acetylcholine (Ach) and norepinephrine (NE) from oyster hemocytes and the presence of ACh/NE-producing enzymes in hemocytes.  
(a,b) After isolation and primary cell culture, hemocytes were incubated with 100 ng mL−1 of lipopolysaccharide (LPS) in vitro, while the same volume of PBS  
was added in the negative control (Neg-Ctrl) group. Hemocytes incubated with Leibovitz-15 (L-15) medium for 1 h and subsequently with LPS stimulation were 
employed as Vehicle group. Cellular supernatant fluids were collected as a function of time thereafter and then analyzed by enzyme-linked immunosorbent assay for 
acetylcholine (a) and norepinephrine (b). (c–h) After stimulation with 100 ng mL−1 of LPS in vitro, mRNA from hemocytes were sampled and subjected to real-time 
PCR analysates for choline O-acetyltransferase (c), dopamine beta-hydroxylase (D), acetylcholinesterase (g), and monoamine oxidase (h). (e,F,i,J), After stimulation 
with 100 ng mL−1 of LPS in vitro, protein from hemocytes were extracted and subjected to enzyme activity measurement of choline O-acetyltransferase (e), dopamine 
beta-hydroxylase (F), acetylcholinesterase (i), and monoamine oxidase (J). Each bar represents N = 6 samples. All data are presented as means ± SD.
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25.87% in Vehicle group, p  <  0.05). In addition, for the block 
of mAChRs, the phagocytic activity increased significantly from 
26.4% in Vehicle group to 35.03% in m5 mAChR antagonist group 
(Figure 2B, p < 0.05). No significant changes were observed in 
m1-4 antagonist treatment groups (Figure 2B, p > 0.05).

The phagocytic activities of oyster hemocytes after the incuba-
tion of NE receptor antagonist were also determined. The phago-
cytic activity in Vehicle group (without receptor block before LPS 
stimulation) was significantly upregulated to 26.23% (Figure 2C, 
p < 0.05) comparing with that in the Neg-Ctrl group (11.87%). After 
inhibiting AARs, a significant increase of hemocyte phagocytic 
activity (36.37%) was detected as compared with that in Vehicle 
group (Figure 2C, p < 0.05). However, the phagocytic activity of 
hemocyte showed no significant change (p > 0.05) after the incuba-
tion of BAR antagonist. These results suggested that the hemocyte-
derived ACh and NE could in turn modulate the immune responses 
of oyster hemocytes through autocrine/paracrine pathways via the 
mediation of nAChRs, m5 mAChR and AARs.

changes of TnF expressions in Oyster 
hemocytes after receptor inhibition and 
lPs stimulation
The mRNA expression levels of three oyster TNFs (CGI_10005109, 
CGI_10005110, and CGI_10006440) in hemocytes were exam-
ined by quantitative real-time PCR after receptor block and 
LPS stimulations to further explore the autocrine/paracrine 
immunomodulation patterns in oyster hemocytes. As shown 
in Figures  3A–C, the mRNA expressions of CGI_10005109, 
CGI_10005110, and CGI_10006440 all increased to a significant 
level at 3 h post-LPS stimulation (p < 0.05). After the inhibition 
of ARs on the surface of hemocytes by the incubation of α + β 
AR antagonists, the mRNA expression of CGI_10005109 and 
CGI_10006440 was significantly upregulated to 1.45-fold and 
1.65-fold that in Vehicle group, respectively (Figures  3A,C, 
p < 0.05). No obvious change of the CGI_10005110 expression 
level was detected (Figure 3B, p > 0.05).
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FigUre 2 | Transmembrane receptors mediate the immune regulation of hemocyte-derived acetylcholine (Ach) and norepinephrine (NE). The immune response 
(represented by hemocyte phagocytic activity) was induced by lipopolysaccharide (LPS). Adrenoceptors (a), muscarinic (b), and nicotinic (c) Ach receptors were 
blocked pharmacologically to explore their functions in mediating immune regulation of hemocyte-derived ACh and NE. Each bar represents N = 6 samples. All data 
are presented as mean ± SD. Asterisks indicate statistical significance comparing with the vehicle control.
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After AChRs were inhibited by nAChRs and mAChRs 
antagonists, the mRNA expression of CGI_10006440 increased 
to 1.49-fold of that in Vehicle group (Figure 3C, p < 0.05). No 
obvious variations of the expressions of CGI_10005110 and 
CGI_10006440 were observed after the incubation of AChRs 
antagonists (Figures 3A,B, p > 0.05). Our results illustrated that 
hemocyte-derived neurotransmitters could regulate cytokine 
production in oyster hemocyte through autocrine/paracrine 
pathways.

alteration of immune-related enzyme 
activities after receptor block and lPs 
stimulation
In order to investigate the humoral immune regulation induced 
by hemocyte-derived ACh and NE, the activities of SOD, CAT, 
and LYZ were determined postreceptor antagonist incubation 
and LPS stimulation. As shown in Figures 3D–F, the activities 
of SOD, CAT, and LYZ were severely upregulated at 3  h post 
LPS stimulation. After the block of AChRs with antagonists, the 
activities of SOD and LYZ were significantly increased, which 
were 1.44- and 1.63-fold of that in Vehicle groups, respectively 
(Figures 3D,F, p < 0.05), while no obvious change was observed 
in the α  +  β ARs blocking groups (Figures  3D–F, p  >  0.05). 
These results implied that hemocyte-derived neurotransmitters 
could regulate humoral immunity in oyster through autocrine/
paracrine pathways.

DiscUssiOn

Neurotransmitters are traditionally considered as nerve-secreted 
molecules that trigger or inhibit neurosecretion (40). Yet, it is dem-
onstrated that many vertebrate immune cells can also synthesize 
and/or release neurotransmitters to regulate immune function by 
autocrine signaling pathway (2), which offers a novel perspective 
in revealing the fine-tuning of immune regulation. In the present 
study, the possible capability of oyster hemocytes to produce 

cholinergic and adrenergic neurotransmitters was investigated to 
unveil the possible autocrine mechanism in marine invertebrates, 
and the immune regulation mediated by these immunocyte-
derived neurotransmitters was further explored. ACh and NE 
concentrations in the cell culture medium significantly increased 
at 1 h post-LPS stimulation, and these neurotransmitters should 
be produced by in  vitro cultured hemocytes. It was reported 
that noradrenaline and adrenaline levels in supernatants of 
human macrophages and polymorphonuclear cells increased 
significantly at 4 h after LPS exposure (6). CD4+ T cells contained 
substantially more ACh compared with CD8+ T cells or B cells, 
while the synthesis and release of ACh from lymphocyte were 
increased during mitogen (41). The present results indicated that 
oyster hemocytes can de novo produce neurotransmitters such as 
ACh and NE under LPS stimulation, like those immune cells in 
vertebrates.

ACh is synthesized from acetyl coenzyme A and choline by the 
enzyme ChAT (42), while NE is converted from DA by the activity 
of the enzyme DBH (43). ChAT is known as a rate-limiting enzyme 
in ACh synthesis (44), whereas DBH is a copper-containing enzyme 
that uses molecular oxygen and ascorbate to catalyze the addition of 
a hydroxyl group on the beta-carbon of dopamine to form norepi-
nephrine (45). In the present study, the mRNA expressions and pro-
tein activities of CgChAT and CgDBH in hemocytes both increased 
dramatically at 1 h after LPS stimulation. These results suggested 
that oyster hemocytes possessed the molecular components to 
produce ACh and NE post LPS stimulation like mammalian phago-
cytes (6). Usually, the actions of neurotransmitters are terminated 
in three ways including reuptake into nerve terminals, diffusion 
into extracellular fluids and metabolic transformation (6). AChE 
and MAO are crucial enzymes for the degradation of ACh and NE  
(2, 22). In the present study, the mRNA expression levels of 
CgAChE decreased significantly at 1 h after LPS stimulation, and 
the activities of CgAChE and CgMAO also decreased (Figure 1). 
These results were consistent with the dramatic increase of ACh 
and NE concentrations after LPS stimulation (Figures 1A,B), sug-
gesting that the degradation of ACh and NE was inhibited by the 
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FigUre 3 | Hemocyte-derived acetylcholine and norepinephrine regulate cellular and humoral immunity. (a–c) After stimulation with 100 ng mL−1 of 
lipopolysaccharide (LPS) in vitro, mRNA from hemocytes were sampled and subjected to real-time PCR analysates for three oyster tumor necrosis factor genes, 
CGI_10005109 (a), CGI_10005110 (b), and CGI_10006440 (c). (D–F) After stimulation with 100 ng mL−1 of LPS in vitro, protein from hemocytes were extracted 
and subjected to enzyme activity measurement of superoxide dismutase (D), catalase (e), and lysosome (F). Each bar represents N = 6 samples. All data are 
presented as mean ± SD. Asterisks indicate statistical significance comparing with the vehicle control.
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abundance of ACh/NE that modulated immune response against 
LPS stimulation. With the characterization of both synthesizing 
and degradating enzymes in the metabolism of ACh/NE, our 
results ascertained the sophisticated cellular machinery for de 
novo generation, release and inactivation of ACh/NE in oyster 
hemocytes.

Neurotransmitters are critical for the immune modulation 
by binding to their specific receptors on the surface of immune 
cells in vertebrates (46). For example, ACh can activate nAChR 
in macrophages of mammals to inhibit NF-κB signaling, thereby 
decreasing the production of proinflammatory cytokines, and 
finally causing severe inflammatory reaction and pathological 
responses (47). So far, receptors for many neurotransmitters 
including NE, ACh, ENK, 5-HT, and GABA have also been 
identified on the surface of bivalve hemocytes (27, 28, 48–50), 
and this represents the molecular basis for the autocrine immune 
regulation in mollusks. To investigate the mediation of trans-
membrane neurotransmitter receptors during autocrine immu-
nomodulation in mollusks, antagonists for ACh and NE receptors 
were employed to block their binding activities in vitro, and the 
fraction of phagocytizing oyster hemocytes were determined. As 
shown in our results, the phagocytic activities of oyster hemocytes 
increased significantly at 1 h after LPS stimulation in non-selective 

nAChRs antagonist and m5 mAChR antagonist groups. nAChRs 
and mAChRs are characterized as two subtypes of AChRs based 
on their affinities and sensitivities to different ligands (nicotine/
muscarine) (30, 51). Both nAChRs and mAChRs are critical for 
the immune modulation such as the production of cytokines and 
modification of antibody synthesis in humans (52). Low-dose 
nicotine causes inhibition of TNF-α, prostaglandin E2, and mac-
rophage inflammatory protein-1α production in LPS-activated 
monocytes, and these suppressive effects are mediated through 
α7nAChR (53). Activation of T  cells with phytohemagglutinin 
(PAH) and phorbol 12-myristate 13-acetate (PMA) upregulates 
the expression of ChAT and m5 mAChR genes via the protein 
kinase C (PKC) and mitogen-activated protein kinase pathways 
(54). In addition, it was found that ACh can inhibit phagocyte 
apoptosis and phagocytosis in oyster (34). Results in the current 
study suggest that hemocyte-derived ACh can trigger negative 
autocrine/paracrine immunomodulation in response to LPS 
stimulation via the mediation of nAChR and m5 mAChR. 
As for the neurotransmitter NE, there were two main groups 
of receptors, AARs and BARs. AARs include the subtypes α-1  
(a Gq-coupled receptor) and α-2 (a Gi-coupled receptor) (55). 
BARs include the subtypes β-1, β-2, and β-3, and all these three 
types are linked to Gs proteins (although β-2 also couples to 
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FigUre 4 | Immunomodulation mediated by hemocyte-derived cholinergic and adrenergic neurotransmitters. Oyster hemocytes should represent similar immune 
and neuroendocrine functions as their counterparts in vertebrates (e.g., macrophages) and play an indispensable role in autocrine/paracrine immunomodulation, 
demonstrating that they could serve as suitable model for the study of the origin and evolution of the immune cells.
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Gi) (56). In the present study, the phagocytic activity of oyster 
hemocytes was significantly increased after the block of AARs 
as compared with that in control group, while similar results 
were not observed when BARs were inhibited. It was reported 
that AARs were indispensable mediators in the innate immunity. 
In the rat thymus, A1AR was colocalized with the monocyte/
macrophage marker CD68. Functional A1ARs were identified 
on murine RAW264 macrophages when phenylephrine and other 
PKC activating agents were used to initiate cell spreading (57). 
The present results suggested that ACh and NE released from 
hemocytes could repress the cellular immune response of oyster 
via the mediation of nAChR, m5 mAChR, and AAR.

The production of immune/inflammatory mediators includ-
ing cytokines, chemokines, reactive oxygen species, and other 
immune effectors is modulated by activation of neurotransmitter 
receptors expressed on immune cells (58). For example, ARs 
can mediate the inhibition of TNF-α production caused by LPS 
stimulation in human monocytes (59). α7nAChRs have been 
shown to negatively regulate the synthesis and release of TNF-α 
in macrophages (60), and stimulation of A2ARs subtype by 
exogenous or endogenous NE induced the release of TNF-α by 
murine peritoneal macrophages stimulated with LPS (61). Our 

previous research found that neurotransmitters in mollusks could 
also modulate both cellular and humoral immunity, and immune 
effectors, such as TNF-α, SOD, CAT, and LYZ were produced 
during the response for neurotransmitter modulation (14, 62). 
In the present study, the immune regulatory functions of neuro-
transmitters released from hemocytes were investigated by in vitro 
experiments. LPS stimulation significantly upregulated the mRNA 
expressions of oyster TNF genes (CGI_10005109, CGI_10005110, 
and CGI_10006440), and the block of ARs with α  +  β ARs 
antagonists caused a significant increase in the mRNA expressions 
of CGI_10005109 and CGI_10006440, but not CGI_10005110. 
Inhibiting AChRs with antagonists could obviously increase the 
mRNA expression level of CGI_10006440. The activities of SOD 
and LYZ were severely increased after AChRs were blocked with 
antagonists. Our previous study found that the three TNF genes, 
especially CGI_10006440, were vital components of the signaling 
pathway for the neurotransmitter to modulate the endocrine sys-
tem of oyster (34). Our results demonstrated for the first time that 
the hemocyte-derived ACh and NE could exert similar cellular 
and humoral immunomodulation through autocrine/paracrine 
pathways in oyster. Interestingly, cytokine (such as TNF-α) pro-
duction was mainly modulated by NE via ARs, while the synthesis 
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