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Abstract

Thedynamicsofcellmorphology ineukaryotes is largely controlledbysmallGTPasesof theRhofamily.RhoGTPasesareactivatedby

guanine nucleotide exchange factors (RhoGEFs), of which diffuse B-cell lymphoma (Dbl)-like members form the largest family.

Here, we surveyed Dbl-like sequences from 175 eukaryotic genomes and illuminate how the Dbl family evolved in all eukaryotic

supergroups. By combining probabilistic phylogenetic approaches and functional domain analysis, we show that the human Dbl-

like family is made of 71 members, structured into 20 subfamilies. The 71 members were already present in ancestral jawed

vertebrates, but several membersweresubsequently lost in specific clades,up to 12% inbirds. The jawedvertebrate repertoirewas

establishedfromtworoundsofduplications thatoccurredbetweentunicates, cyclostomes,and jawedvertebrates.Duplicatedmembers

showeddistinct tissuedistributions,conservedat least inAmniotes.All20subfamilieshavemembers inDeuterostomesandProtostomes.

Nineteen subfamilies are present in Porifera, the first phylum that diverged in Metazoa, 14 in Choanoflagellida and Filasterea, single-

celled organisms closely related to Metazoa and three in Fungi, the sister clade to Metazoa. Other eukaryotic supergroups show an

extraordinary variability of Dbl-like repertoires as a result of repeated and independent gain and loss events. Last, we observed that in

Metazoa, the number of Dbl-like RhoGEFs varies in proportion of cell signaling complexity. Overall, our analysis supports the conclusion

that Dbl-like RhoGEFs were present at the origin of eukaryotes and evolved as highly adaptive cell signaling mediators.
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Introduction

The Ras-like superfamily is made of 167 proteins in human,

which are distributed into five major families (Arf/Sar, Rab,

Ran, Ras, Rho) and are highly conserved across evolution.

Orthologs generally share 65–85% amino-acid sequence sim-

ilarity, even between distantly related clades (Rojas et al.

2012). The extreme conservation is in keeping with their roles

in basic cellular functions such as endo/exocytosis, F-actin dy-

namics, vesicular and nucleo-cytoplasmic trafficking. Ras-like

proteins biochemically act as binary signaling switches that

rely on structural changes between their GDP-bound and

GTP-bound conformations (Bosco et al. 2009; Raimondi

et al. 2011). Ras-like GTPases undergo activation and inacti-

vation steps. Activation is promoted by guanine nucleotide

exchange factors (GEFs), which reduce affinity of the

GTPase for nucleotides thereby allowing entry of GTP, which

is more abundant than GDP in the cytosol. When bound to

GTP, Ras-like proteins activate a set of downstream effector

proteins that mediate their cellular effects. Inactivation of

Ras-like GTPases is controlled by GTPase activating proteins

(GAPs), which stimulate intrinsic GTPase activity and thus fa-

vor the inactive GDP-bound form.

Members of the Rho family control F-actin dependent re-

organization of the cell membrane and associated intracellular

macromolecular scaffolds. Consequently, they play major

roles in cell adhesion, polarity and locomotion processes.

The human genome encodes 20 Rho GTPases, including the

well-studied Rac1, Cdc42, and RhoA (Boureux et al. 2007), as

well as 82 RhoGEFs. The RhoGEFs can be divided into two

families. There are 11 DOCK (Dedicator Of CytoKinesis)-

related proteins (Meller et al. 2005) and the remaining 71

form the Dbl-like family, due to their similarity to the Dbl

(diffuse B-cell lymphoma) protein, which is an oncogenic pro-

tein that activates the Cdc42 Rho GTPase (Eva and Aaronson

1985; Hart et al. 1991). Dbl-like RhoGEFs all share a 170–190

amino acid Dbl Homology (DH) domain, which is responsible

for the guanine nucleotide exchange activity on Rho GTPases

(Jaiswal et al. 2013; Rossman et al. 2005). Humans also have
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�70 RhoGAPs (Amin et al. 2016; Tcherkezian and Lamarche-

Vane 2007) and over 70 effectors (Bustelo et al. 2007). The

Rho signaling module is thus a complex regulatory network

that includes over 240 proteins.

Only a few Dbl-like members have been functionally stud-

ied in model organisms like Drosophila (Sone et al. 1997),

Caenorhabditis elegans (Steven et al. 2005), yeast (Hart

et al. 1991) and Dictyostelium discoideum (Vlahou and

Rivero 2006) since the late 1990s. Most Dbl-like RhoGEFs

have a high diversity of functional domains, in contrast with

DOCK RhoGEFs that have a conserved core organization,

made of DHR1/C2 and DHR2 domains, either alone or asso-

ciated with single SH3 or PH domains (Meller et al. 2005). In

addition to the DH domain, Dbl RhoGEFs contain domains

that either mediate interaction with membranes, proteins or

phosphorylated amino acids (e.g., C1, SH2, SH3, PDZ, PH

domains) or that have diverse enzymatic activities (e.g., ki-

nases, phosphatases, GEF or GAP).

The physiological importance of cell adhesion and locomo-

tion, combined with the complexity of the Rho signaling net-

work, raise the issue of when this network emerged and how

it evolved in eukaryotic taxa, in particular in relation with

multi-cellularity. We previously reported that the Rho

GTPase family was already present as Rac-like proteins in

the Last Eukaryotic Common Ancestor (LECA; Boureux et al.

2007), that is, 1.7–2.3 billion years ago (Hedges et al. 2004;

Parfrey et al. 2011). The complexity of the Rho family re-

mained at a low level in unicellular eukaryotes, fungi and an-

cestral metazoa, which have a minimal Rho family repertoire,

comprising just Rac, Cdc42, and RhoA. The Rho family ex-

panded in Metazoa (i.e., around 700 million years ago [Ma]),

as a consequence of duplications and lateral gene transfers

(LGTs). In contrast, little is known about the evolutionary his-

tory of the Dbl-like RhoGEF family, in particular how members

are related to each other within and between eukaryotic

clades and how the family evolved in terms of diversity,

gain/loss events, and domain organization.

Here we performed a comprehensive analysis of Dbl-like

RhoGEF sequences from all eukaryotic supergroups. In most

eukaryotic clades, several species were examined, thus reduc-

ing the impact of incomplete assemblies on RhoGEF identifi-

cation. Using annotation and phylogenetic tools, we trace the

history of Dbl-like RhoGEF proteins back from extant species

to the LECA and reveal a much higher plasticity of Dbl-like

repertoires compared with Rho families.

Materials and Methods

Genomes and Annotated Sequences

Most sequences were retrieved from the NCBI annotated

databases (nr and EST, http://www.ncbi.nlm.nih.gov), using

NCBI PHI-BLAST as well as BLAST and Annotation search tools

available in the Geneious 9.1.6 software package (Biomatters,

http://www.geneious.com/). For specific searches, additional

genome browsers were used (see supplementary table S6,

Supplementary Material online). Protein sequences derived

from genomes lacking annotations were annotated by

searching Pfam, CDD or SMART domain databases using

the InterProScan tool, integrated in the Geneious software.

The InterProScan tool is freely available on the InterPro re-

source (http://www.ebi.ac.uk/interpro/).

Sequence Alignments

Amino acid sequences were aligned using MAFFT v7.017,

available in the Geneious 9.1.6 package (Katoh et al. 2002).

For human Dbl RhoGEFs, alignments were confirmed by using

MUSCLE (Edgar 2004) and Promals3D (Pei et al. 2008), (http://

prodata.swmed.edu/promals3d/promals3d.php), using the

ARHGEF7 (PDB: 1by1) and ARHGEF3 (PDB:2z0q) X-ray 3D

structures as guides. MSAs were manually edited for minor

corrections and processed by BMGE (Block Mapping and

Gathering with Entropy, Criscuolo and Gribaldo 2010) with

a 0.6 cut-off value.

Phylogenetic Analyses

Phylogenetic trees were estimated by two probabilistic meth-

ods, that is, ML PhyML (Guindon and Gascuel 2003) and

Bayesian analysis MrBayes (Ronquist et al. 2012), as imple-

mented in Geneious. ML returns the topology that maximizes

the likelihood function and estimates node support (i.e., ro-

bustness of the topology) by nonparametric bootstrapping.

MrBayes samples trees according to their PP and directly mea-

sures node support. Models for amino acid substitution were

chosen using ProtTest (Abascal et al. 2005). In most analyses,

the best-fitting model was LGþ IþG. PhyML was set-up using

the gamma shape and proportion of invariable site parame-

ters produced by ProtTest. ML trees were optimized for topol-

ogy, length and rate and were generated using the best of

nearest-neighbor interchange and subtree-pruning-regrafting

tree search algorithms, with 100 bootstrap replicates.

MrBayes consensus trees were generated after two inde-

pendent runs of four Markov chains for 1,100,000 genera-

tions sampled every 200 generations, with sampled trees

from the first 100,000 generations discarded as “burn-

in”. At the end of each run, average standard deviations

of split frequencies were below 0.01 and the estimated

sample sizes (ESS) were above 200 for all sampled param-

eters. Minimum ESS values were 787.01 (fig. 1A), 247.52

(fig. 3A), 313.87 (fig. 3B), 298.59 (fig. 3C), 347.39 (fig. 3D),

428.16 (fig. 6C left panel), and 591.28 (fig. 6C right panel).

For each analysis, 50% majority-rule consensus trees and

associated clade PPs were computed from sample trees.

Trees were visualized and exported as PDF files with

FigTree (v1.4.2, http://tree.bio.ed.ac.uk/software/figtree/)

then assembled in Adobe Illustrator. PP values below 0.95

are considered unreliable for topological reconstruction
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(Erixon et al. 2003). Divergence times between taxa were

collected from the TimeTree database (Hedges et al. 2006)

(http://www.timetree.org/).

Species and Tissue-Wise Gene Expression Analysis

We used mRNA-seq data sets, generated from tissues of

various species, as described in (Brawand et al. 2011) and

(Barbosa-Morais et al. 2012). As comparison of gene ex-

pression levels between species relied on orthology relation-

ships, we established a RhoGEF orthology table (see

supplementary table S5, Supplementary Material online)

by using Ensembl orthologous gene data (Flicek et al.

2014), which we further refined by phylogenetic analysis.

For each species, RhoGEF data were retrieved from global

mRNA-seq data and expressed as Reads Per Kilobase of

transcript per Million reads mapped (RPKM). RhoGEF

mRNA-seq data were then clustered using Cluster 3.0

(http://bonsai.hgc.jp/�mdehoon/software/cluster/; de Hoon

et al. 2004). Mean centered log10 (RPKM) values were nor-

malized and hierarchically clustered (Euclidian distance,

complete method). Cluster heatmaps were created with

Java Treeview 1.1.6r4 (Saldanha 2004). For analysis of

tissue-specificity RhoGEF expression across species, the

Spearman correlation was applied to log2 (RPKM) in the

nine species studied. Correlation heatmaps were drawn

with Excel 14.0.0.

Results

The Human Dbl RhoGEF Repertoire Was Already Set Up at
the Onset of Vertebrates

We mined the available Dbl-like RhoGEF sequences in the

human genome and found the whole family includes 71
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FIG. 1.—The 71 human Dbl-like RhoGEFs cluster into 20 structurally related subfamilies. (A) Phylogenetic cladogram of DH domains. The tree was

deduced from multiple sequence alignment and processed by PhyML and MrBayes analysis. RhoGEFs subfamilies were delineated from node supports (PP:

Posterior probability, BS: Bootstrap proportion). Only highly supported nodes (PP>0.95 and BS>75) are indicated (red circle). Numbers indicate subfamilies.

(B) Subfamilies cluster members with similar functional domain organization. For each subfamily, the structural domains associated with the catalytic DH

domain are indicated. All proteins are drawn at the same scale, except OBSCN. Domains typical of subfamilies are in red. BAR: Bin, Amphiphysin, Rvs; SH3:

Src homology 3; CH: Calponin homology; PH: Pleckstrin homology; C1: N-terminal region of PKC; SH2: Src homology 2; UBQ: Ubiquitin; DEP: Dishevelled,

Egl10, Pleckstrin; SPEC: Spectrin homology; IG: Immunoglobulin-like; FN: Fibronectin-like; EH: Eps15 homology; C2: Ca2þ binding domain of PKC; PDZ:

PSD95, Dlg1, Zo-1; RGS: Regulator of G protein Signaling; FYVE: Fab1, YOTB, ZK632.12, Vac1, EEA1; FERM: Four-point-one, Ezrin, Radixin, Moesin; FA:

FERM Adjacent; BRCT: BRCA1 C-Terminus; RCC1: Regulator of Chromosome Condensation 1; MORN: Membrane Occupation and Recognition Nexus.
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members (see supplementary table S1, Supplementary

Material online). This represents 73 DH domains, since Trio

and Kalirin each have two domains arranged in tandem. The

amino acid sequences of the 73 DH domains are significantly

divergent, sharing only 25 6 8% identity, suggesting an an-

cient origin and/or a rapid evolution rate. To gain further in-

sight into Dbl-like RhoGEF ontogeny, we deduced

phylogenies by combining MrBayes and maximum-

likelihood, two site-based phylogenetic approaches, on a mul-

tiple sequence alignment (MSA) of the 73 DH domains. The

resulting tree topology has internal branches that are strongly

supported by both analytic methods (fig. 1A). Globally, DH

domains appear structured into 20 clusters or subfamilies,

with just two isolated members (ARHGEF33 and

ARHGEF39). Most of the shallow branches (close to the pe-

riphery of the tree) contain two members, as a likely result of

the whole genome duplication that occurred at the onset of

vertebrate radiation. Deeper branches connect more than

two RhoGEFs (ten for TRIO, seven for ARHGEF28, six for

NGEF and FGD), indicating that these groups resulted from

more ancient duplications. The clustering based on DH do-

main sequence is further supported by the similar functional

domain organization shared by members of each cluster

(fig. 1B). Ontogeny of the TRIO cluster is complex, because

OBSCN, TRIO and KALRN have gained kinases and immuno-

globulin (IG)/fibronectin (FN) domains by recombination (see

supplementary fig. S1, Supplementary Material online).

Except ARHGEF33 and members of clusters 1 and 17, all

Dbl-like RhoGEFs have a PH domain adjacent to the DH do-

main, suggesting that the two domains represent the ances-

tral architecture. In support of this, tree topology deduced

from phylogenetic analysis of DH/PH domains (see supple-

mentary fig. S2A, Supplementary Material online) and DH

domain (fig. 1A) are highly similar and identify same clusters.

PH domains appear less conserved, because PH-only based

topology, although similar, has lower internal nodes supports

for clusters 8, 14–15, and 9–12, and does not group cluster

13 with clusters 9–12 (see supplementary fig. S2B,

Supplementary Material online). Note also that ECT2 and

ECT2-like, which form a DH-based cluster with low support,

failed to group when PH sequences are included in the

analysis.

To gain insight in the timing of duplications detected by

phylogenetic analyses, we looked for orthologs of human

Dbl-like RhoGEFs across Vertebrates (fig. 2). Orthology was

calculated by reciprocal BLAST analysis and comparison of

structural domains. In all cases, orthologous members had

unambiguous BLAST E-values, making it unnecessary to per-

form phylogenetic analysis. In Primates and Glires (Rodents

and Lagomorpha) we identified the full set of 71 human

orthologs (fig. 2 and see supplementary table S1,

Supplementary Material online). However, all rodent species

examined lacked PLEKHG4B and several rodent species like

mice lacked MCF2L2 and PLEKHG7 (see supplementary table

S2, Supplementary Material online). Very little is known about

the physiological functions associated with these genes, ex-

cept a moderate association of PLEKHG4B and MCF2L2 poly-

morphisms with type 2 diabetes and associated comorbidity

(Raffield et al. 2015; Zheng et al. 2009).

The mammalian Laurasiatheria and Afrotheria share the

same RhoGEF repertoire as Primates and Glires (fig. 2, see

supplementary table S1, Supplementary Material online).

Analysis of two Xenarthra genomes (armadillo and sloth) re-

vealed a nearly complete set of RhoGEFs, missing only

PLEKHG4B. Finally, merging analyses of the gray short-tailed

opossum and Tasmanian devil genomes (Marsupials) recapit-

ulated the 71 RhoGEF set, whereas the platypus genome

(Monotremata) only lacks ALS2CL. We also identified a

RhoGEF that is closely related to the drosophila GEF64C in

marsupials (Bashaw et al. 2001; see supplementary table S1,

Supplementary Material online). This RhoGEF was not found

in other mammals or in platypus.

The RhoGEF repertoire has thus remained stable from the

onset of Mammals, that is, 160–290 Ma (dos Reis et al. 2012).

Such long-term stability is indicative of strong positive selec-

tion of all members. Of the 71 widely shared RhoGEFS, three

were lost in several rodent species of the Murinae sub-family,

suggesting they became neutral in this clade. Note that

Murinae have gained a competitive advantage during middle

Miocene and currently constitutes the largest extant mamma-

lian subfamily (Tiphaine et al. 2013).

In nonmammalian Amniotes, there have been greater

RhoGEF losses. The chicken genome (Sauria/Archelosauria/

Dinosauria) lacked nine RhoGEFs (i.e., 12% of the repertoire;

see supplementary table S2, Supplementary Material online).

All nine were absent in all the 48 bird genomes available.

Three of the missing RhoGEFs (ARHGEF15, PLEKHG6, and

FGD1) were also missing in Crocodylia, the sister taxon of

birds, while turtles (Testudines) only lacked PLEKHG6. As

bony fishes and coelacanth have 72 RhoGEFs (the canonical

71 RhoGEFs plus GEF64C), losses detected in Sauria are spe-

cific to this clade and have occurred sequentially (see supple-

mentary table S2, Supplementary Material online). Amphibia

lack FGD3 and PLEKHG6 and cartilaginous fishes lack

ARHGEF40 and ARHGEF11 (fig. 2, see supplementary table

S2, Supplementary Material online). The absence of GEF64C

in placentals can be considered as a specific loss as it is present

in other vertebrate clades.

We next analyzed the Dbl-like RhoGEF repertoire in two

jawless fish genomes (Lampreys, Agnatha). Merging member

lists from the two genomes produced a set of 31 RhoGEF

proteins. These 31 RhoGEFs include members of all the 20

mammalian RhoGEF subfamilies except ITSN (figs. 2 and 3A).

Our phylogenetic analysis identified 21 vertebrate orthologs

and 10 cases in which lamprey sequences branched at the

roots of vertebrate clusters (orange dots in fig. 3A). This indi-

cates that duplications took place between Agnatha and

Gnathostomata, increasing the copy number from 10 to 25.
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FIG. 2.—Conservation of the human Dbl-like RhoGEF repertoire across Metazoa. Human RhoGEF orthologs were searched in genomes of species

covering the major Metazoa clades, as indicated on the top. In most clades, three or more species were examined and orthology was deduced from

reciprocal BLAST scores (“Vertebrates”, from mammals to bony fish) and by phylogenetic analysis (shark, lampreys, Ambulacraria, Cnidaria, Porifera, and

nonmetazoan Filozoa). Members that were not found are indicated by an x box. Vertical bars show duplications that were deduced from phylogenetic

analyses. Dashed vertical bars indicate duplications that cannot be precisely dated. The color code for Dbl-like subfamilies is the same as in figure 1A.
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FIG. 3.—Phylogenetic analyses of Dbl-like RhoGEFs in Metazoa. (A) Clustering of human and early vertebrate RhoGEFs. Hs: Homo sapiens; Cartilaginous

fishes: Cm: Callorhinchus milii; Le: Leucoraja erinacea; Rt: Rhincodon typus; Lamprey: Pm: Petromyzon marinus. Lamprey members (names in orange and

colored branches) at the roots of subfamilies or clusters are figured by an orange dot. No ortholog to ECT2L (blue dot) was found in Cm, Le, Rt or Pm

genomes. (B) Clustering of human and prochordate RhoGEFs. Tunicates (names in green, blue branches): Ci: Ciona intestinalis; Hr: Halocynthia roretzi; Pm:

Phallusia mammillata; Cephalochordate (names in orange, red branches) Bf: Branchiostoma floridae. (C) Clustering of human and early metazoan RhoGEFs.

Cnidaria (green): Hv: Hydra vulgaris; Nv: Nematostella vectensis. Porifera (orange): Lc: Leucosolenia complicata. (D) Clustering of human and nonmetazoan

Filozoa RhoGEFs. Choanoflagellida (green): Mb: Monosiga brevicollis; Sr: Salpingoeca rosetta. Filasterea (orange): Co: Capsaspora owczarzaki. DH domain

amino acid sequences were aligned and analyzed by PhyML and MrBayes methods. Highly supported nodes are figured by a red circle. Names and accessions

are listed in supplementary tables S1 and S3, Supplementary Material online. Color codes for RhoGEF subfamilies are as in figure 1A.
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The 31 RhoGEFs in extant Agnatha thus covers homologs to

46 vertebrate RhoGEFs. Since the Vertebrate repertoire is 72,

including GEF64C, at most 26 RhoGEFs can be considered as

missing or lost in lamprey genomes. This implies that ancestral

Agnatha might have had at most 57 Dbl-like members.

We extended Dbl-like RhoGEF analysis to Tunicates, the

sister clade to Vertebrates, and to Cephalochordates (lance-

let). Tunicates and Cephalochordates (Prochordates) have a

bilateral body plan, a notochord, a dorsal neural tube, pha-

ryngeal slits, a postanal tail and an endostyle (Holland 2005).

By combining four tunicate species, we identified 25

RhoGEFs, including members of most of the 20 mammalian

subfamilies (figs. 2 and 3B, see supplementary table S1,

Supplementary Material online). All species lacked ALS2,

ARHGEF33, ARHGEF39, OBSCN, and RASGRF. Phylogenetic

analysis showed that the vast majority of Tunicate and

Cephalochordate DH domains branched at the roots of mam-

malian shallow clusters (fig. 3B). This indicates that wide-

spread RhoGEF duplications took place between Tunicates

and Vertebrates as a result of whole genome duplications

that occurred between Tunicates and Agnatha (Smith et al.

2013). The timing of duplications cannot be precisely deter-

mined for members of the ARHGEF4, ITSN, ARHGEF1, FGD,

and ARHGEF17 subfamilies, since they are absent in the two

jawless fish genomes (dotted lines, fig. 2).

Thus, the ancestral vertebrate repertoire was established

from two rounds of duplications: One that occurred between

Tunicates and Agnatha, that is> 547 Ma, which produced 57

RhoGEFs, the second, between Agnatha and bony fishes, that

is, 485 Ma, produced 15 additional RhoGEFs.

Inferring Subfunctionalization from Tissue Distribution

We next examined how tissue distribution of Dbl-like RhoGEF

expression correlates with their ontogeny. We analyzed

RhoGEF expression in high-throughput RNA sequencing

(RNA-Seq) data, from brain, cerebellum, heart, kidney, liver

and testes, of man, chimp, gorilla, orangutan, macaque,

mouse, opossum, platypus, and chicken (Barbosa-Morais

et al. 2012; Brawand et al. 2011). Hierarchical clustering of

expression values shows that most RhoGEFs are differentially

expressed (fig. 4). RhoGEFs grouped into a small number of

well-supported coregulated clusters, based on their distribu-

tion across tissues and species. The three brainþ cerebellum

(BþC) sub-clusters have Pearson correlations ranging from

0.72 to 0.89. In the brain cluster (B), brain-specific expression

of NGEF, KALRN and RASGRF2 is highly correlated (Pearson’s

r¼ 0.7) and conserved from primates to chicken.

The tree topology of hierarchical clustering did not corre-

late with that of the phylogenetic analysis. This argues in favor

of subfunctionalization (i.e., differential expression of the two

copies), a process that promotes conservation of functional

duplicate gene copies (Krakauer and Nowak 1999). Indeed,

most coregulated clusters include RhoGEFs from different

subfamilies, as shown in figure 4A. This is illustrated by

KALRN and RASGRF2, which are mostly expressed in the

brain, whereas their respective paralogs TRIO and RASGRF1

are highly expressed in the cerebellum. Conservation of

RhoGEF expression across species and tissues was further es-

timated by Pearson correlation analysis from gene expression

profiles (fig. 4B). In all species, correlation values were highly

significant (>0.6), even for chicken, despite its higher diver-

gence time (’ 310 Myr). These data indicate that the last

round of duplications within RhoGEF subfamilies was rapidly

followed by subfunctionalization events and that tissue ex-

pression profiles of RhoGEFs were likely set up around 630

million years ago in early vertebrates.

Overall, this study shows that the ancestral vertebrate rep-

ertoire was established from two rounds of duplications that

occurred between Tunicates and bony fishes, and since then,

it has remained mostly unchanged. Since duplications were

followed rapidly by subfunctionalization events, it is, there-

fore, implicit that major tissue-specific and Rho-controlled

regulatory pathways were already set up in early

Vertebrates. The Dbl-like repertoire is nearly conserved be-

tween mammals and fishes, two clades with widely different

physiology. One may thus infer that the Dbl-like members

have been strongly selected for their roles in basic

vertebrate-specific functions. This may be more complex, as

evolution of several vertebrate clades has been associated

with Dbl-like RhoGEF losses: GEF64C was lost in placental

mammals; PLEKHG4B and MCF2L2, two members of the

TRIO subfamily, and PLEKHG7 were lost in Rodents; Nine

Dbl-like RhoGEF members were lost in Birds. The losses of

members that are otherwise highly conserved across

Vertebrates indicate that the selective pressure exerted on

tissue-specificity or expression of Rho-controlled pathways

may considerably change during clade specialization.

Early Metazoans Had Most Vertebrate Dbl-like RhoGEF
Sub Families

We next examined the RhoGEF repertoires in Ambulacraria

(Echinoderms and Hemichordates) and Protostomia (fig. 2,

see supplementary table S3, Supplementary Material online).

Ambulacraria have 30 RhoGEFs (30 in Hemichordates, 28 in

Echinoderms), including members of all the 20 vertebrate

subfamilies except the PREX branch. Protostomes also have

members of the 20 vertebrate subfamilies, but all lack the

PREX and NGEF branches of the ARHGEF4 and NGEF subfa-

milies, respectively (fig. 2). However, Dbl-like repertoires

greatly differ within Protostome clades. In Lophochotrozoa,

Mollusks have the complete Protostome repertoire whereas

Platyhelminthes (flatworms) lack six subfamilies (fig. 2, see

supplementary table S3, Supplementary Material online). In

Ecdysozoa, Crustaceans, and Hymenoptera (Insecta) lack

ECT2L (fig. 2, see supplementary tables S2 and S3,

Supplementary Material online). All other Insecta clades
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examined lack additional RhoGEFs; all lack DNMBP and NET1,

while Diptera and Lepidoptera (Mecopterida) have also lost

ITSN. According to holometabola phylogeny (Peters et al.

2014), DNMBP and NET1 were lost in Aparglossata

(Coleoptera, Lepidoptera, and Diptera), then ITSN in

Mecopterida (Lepitoptera and Diptera; see supplementary ta-

ble S2, Supplementary Material online). The absence of

DNMBP and NET1 in Hemiptera can be considered as inde-

pendent losses. Last, Nematodes lack five Dbl-like proteins as

compared with other Ecdysozoa: NET1, BCR, GEF64C,

RasGRF, and ARHGEF10 (see supplementary table S2,

Supplementary Material online).

Thus, the Dbl-like RhoGEF repertoire of ancestral

Protostomia is very similar to that of Ambulacraria. However,

with the exception of Mollusks, several RhoGEF subfamilies

were lost in other Protostomia clades (up to five in

Lepidoptera and Nematodes). In addition to vertebrate ortho-

logs, three specific RhoGEFs were found in most Protostomia

clades: PsGEF (Higuchi et al. 2009) and Tag-52, specific to

Protostomia, and RhoGEF64C, conserved in Protostomia and

Deuterostomia Vertebrates then lost in placentals (see supple-

mentary tables S1 and S2, Supplementary Material online).

In non bilateria metazoans, we identified 28, 22, and 26

RhoGEF members in Cnidaria, Placozoa and Porifera ge-

nomes, respectively. Phylogenetic analyses placed Cnidaria

and Porifera DH amino acid sequences at the roots of most

vertebrate subfamilies. Only orthologs to PREX and

ARHGEF28 were missing in Cnidaria and Porifera, respectively

(fig. 3C). Since Porifera is a monophyletic group that diverged

first in Metazoa, this suggests that ancestral Metazoa had at

least 19 of the 20 vertebrate subfamilies (fig. 3C, see supple-

mentary table S3, Supplementary Material online). This would

imply that the metabolic pathways controlled by RhoGEFs

subfamilies were already set up at the onset of Metazoa.

Evolution from single-celled ancestors to metazoa is hy-

pothesized to have involved a colony-forming transition stage,

formed by cells that were similar to the extant

Choanoflagellates (Monosiga brevicollis, Salpingoeca rosetta;

Nielsen 2008). Furthermore, Choanoflagellates and the

Filasterea amoeba Capsaspora owczarzaki are closely related

to metazoans (King et al. 2008; Suga et al. 2013). Together

with Metazoans, these single-celled lineages formed the

Filozoa group (Torruella et al. 2012). We identified

13 Dbl-like RhoGEFs in M. brevicollis and S. rosetta, and 12
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FIG. 4.—Conservation of tissue specific expression of Dbl-like RhoGEFs in vertebrates. (A) Heatmap of RhoGEF mRNA expression in six tissues

across nine vertebrate species. Orthologous RhoGEF values were extracted from global RNA-seq data. Mean centered log10(RPKM) values were

normalized and hierarchically clustered (Euclidian distance, complete method). Colors of RhoGEF names and sub-families correspond to those

delineated in figure 1A. Red and green frames illustrate closely related members expressed in same or distinct tissues, respectively. Red and green

dots indicate clusters with Pearson correlations of>0.7 and>0.5, respectively. B: Brain; C: Cerebellum; K: Kidney. Hsap: Homo sapiens; Ptro: Pan

troglodytes; Ggor: Gorilla gorilla; Mmul: Macaca mulatta; Pabe: Pongo abelii; Mmus: Mus musculus; Mdom: Monodelphis domesticus; Oana:

Ornithorhynchus anatinus; Ggal: Gallus gallus. (B) Symmetrical heat map of Pearson correlations from RhoGEF gene mRNA expression (log RPKM

values) for the six tissues and nine species examined.
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in C. owczarzaki (fig. 2, see supplementary table S3,

Supplementary Material online). Phylogenetic analyses of

DH amino acid sequences showed that Choanoflagellates

and Filasterea RhoGEFs clustered with Vertebrate subfamilies

(fig. 3D). The clustering is further supported by the striking

conservation of functional domains associated to the DH do-

mains (see supplementary fig. S3, Supplementary Material

online). Only six subfamilies have no homolog: TRIO, FARP,

ALS2, RasGRF, BCR, and ARHGEF10. We also deduced that

two ancestral duplications took place between

Choanoflagellida and Porifera, which produced two branches

in the ARHGEF1 and FGD subgroups in Porifera (fig. 2).

Concerning the ARHGEF1/ARHGEF2 duplication, the ances-

tral architecture was likely (PDZ)/RGS/C1/DH/PH, as observed

in C. owczarzaki. After duplication, one copy lost the N-ter-

minal PDZ/RGS, likely by truncation (see supplementary fig.

S3, Supplementary Material online).

Thus, a large fraction of the vertebrate RhoGEF repertoire is

present in extant unicellular organisms that are closely related

to metazoans, strongly suggesting it was also the case of the

last common ancestor of Filozoa >1,000 Ma (Hedges et al.

2004; Parfrey et al. 2011). The transition to multi-cellularity

has thus been associated with emergence of a restricted num-

ber of novel RhoGEFs with new functional domains, such as

the SEC14 and spectrin domains in TRIO or the Ras guanine

nucleotide exchange domain in RasGRF. The repertoire of

RhoGEFs then remained fairly stable in metazoans until the

vertebrate transition, at which time whole genome duplica-

tions generated a 2–3-fold increase in RhoGEF members and

further sub functionalization.

The many expansion and loss events observed across and

within Metazoan clades suggest that sizes of Dbl-like reper-

toires reflect the diversity of external stimuli cells respond to.

We tested this hypothesis by considering the number of cell

types in an organism as a proxy of its cell signaling complexity

(Carroll 2001; McCarthy and Enquist 2005; Valentine et al.

1994; Hedges et al. 2004). The number of RhoGEFs varies

linearly with the number of cell types, with a steep slope

(0.38 60.05, P< 10�4; fig. 5). In contrast, the number of

Rho GTPases activated by Dbl-like RhoGEFs varied with a

much lower slope (0.035 6 0.007, P¼ 8.10�4). This supports

the notion that Dbl-like RhoGEF and not Rho repertoires vary

in proportion of cell signaling complexity.

Multiple Independent Dbl-like Expansion and Reduction
Events in Amorphea/Unikonta

The observation that 14 Dbl-like RhoGEF Vertebrate subfami-

lies were already present at the root of Metazoa prompted us

to look at sister clades of Metazoa (fig. 6). Metazoa and Fungi

form the monophyletic eukaryotic supergroup known as

Opisthokonta (Baldauf and Palmer 1993), and they diverged

around 1,300 Ma (Hedges et al. 2006; Parfrey et al. 2011).

Opisthokonta, Breviatea, and Apusomonads form the

supergroup Obazoa (Brown et al. 2013). Obazoa and its sister

group Amoebozoa form the Amorphea supergroup (previ-

ously known as Unikonta; Adl et al. 2012), and they diverged

1,480 Ma (Hedges et al. 2006; Parfrey et al. 2011). A common

feature of Amorphea is the presence of a single cilium or

flagellum associated with a unique centriole, whereas the

species of other eukaryotic clades have two centrioles and

two flagella/cilia, that is, the ancestral state of all eukaryotes

(Roger and Simpson 2009).

In Fungi, the number of extant species surpasses 100,000

and metagenomic data suggest there may actually be several

million (O’Brien et al. 2005). Fungi are structured into a few

phyla, among which Chytridiomycota, Mucoromycotina, and

Glomeromycota diverged between 812 and 1,300 Ma

whereas the Ascomycota and Basidiomycota (the two main

phyla of Dikarya) diverged later (662–772 Ma; Floudas et al.

2012; Parfrey et al. 2011). We examined 37 fungal genomes

from various clades and found a high variability in the number

of Dbl-like members, ranging from 35 to 39 in

Mucoromycotina, 11 to 21 in Chytridiomycota,

Glomeromycota, and Basidiomycota, to only 5 to 8 in

Ascomycota (fig. 7A, see supplementary table S4,

Supplementary Material online). The Ascomycota

Pezizomycetes morels and truffles (PP in fig. 7A), which de-

velop fruiting bodies, have the same Dbl-like repertoire as

yeasts (SS in fig. 7A), which do not. Thus, the higher Dbl-

like content in Basidiomycota as compared with

Ascomycota is probably not associated with the ability of

Basidiomycota to develop fruiting bodies.
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FIG. 5.—Sizes of Dbl-like families in Metazoa correlate with numbers

of cell types. Dot plot showing the relationship between the numbers of

cell types in different metazoan species (Schad et al. 2011; Hedges et al.

2004; Valentine et al. 1994) and the numbers of RhoGEFs (circles) and

their target Rho GTPases (squares) (calculated from Metazoa data in sup-

plementary tables S1 and S3, Supplementary Material online). Data from

the following species were used: Primates: H. sapiens; Squamates: A.

carolinensis; Amphibia: X. tropicalis; Fishes: Danio rerio; Agnatha: P. mar-

inus; Tunicates: C. intestinalis; Arthropods: D. melanogaster, A. gambiae;

Cnidaria: H. magnipapillata; Porifera: A. queenslandica; Choanoflagellida:

M. brevocollis. S indicates the slopes of regression lines, whose confidence

intervals are indicated by dashed lines.
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In most fungal phyla and species examined, we identified

eight types of Dbl-like proteins. Seven display specific struc-

tural domains associated with the DH (fig. 7B). These are

Cdc24 (CH and PB1), Rom (DEP and CNH), DNMBP (BAR),

Tus1 (CNH), FGD (FYVE), ITSN (EH, SH3), and LRR (Leucine

Rich Repeats). Rom and Cdc24 are present in all examined

phyla, DNMBP is only missing in Saccharomycotina (true

yeasts) and FGD, ITSN, and LRR are missing in Ascomycota.

In addition to these multi-domain Dbl-like proteins, all exam-

ined genomes encoded RhoGEFs with DH/PH or DH domains

only, like Fusl in Agaricus bisporus and Fus2p in

Saccharomyces cerevisiae. Phylogenetic DH analysis clustered

fungal Dbl-like proteins from multiple clades together and

members of each cluster have the same functional domains

(fig. 7C). Note that Mucoromycotina and Ascomycota have

Dbl-like families with similar levels of diversity, although the

former taxon encodes 6–8-fold more members than the latter

(fig. 7A). This is consistent with multiploidy, which is sus-

pected to have occurred in Mucoromycotina (Albertin and

Marullo 2012).

Phylogenetic analysis of DH domains identified three clus-

ters grouping fungal and metazoan RhoGEFs (FGD, ITSN, and

DNMBP, fig. 7C, red frames), all of which are active on Cdc42

in mammals. The clustering is in agreement with the presence

of the FYVE, BAR, EH, and SH3 domains (fig. 7B). All three

groups are well supported by posterior probabilities (PPs)

(>0.95) but have only moderate to low maximum likelihood

(ML) bootstrap values, suggesting that fungal and vertebrate

DH sequences have reached too high a proportion of satu-

rated sites to be clustered with confident support.
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In summary, Dbl-like repertoires in Fungi are highly hetero-

geneous, ranging from 5 to 39 in number, and this complexity

appears unrelated to the ability to form fruiting bodies. Only

three fungal Dbl-like RhoGEFs have metazoan orthologs

(FGD, ITSN, and DNMBP), as supported both by the phyloge-

netic clustering of their DH domains and by the similar orga-

nization of structural domains. Nothing is known about the

cellular roles of these RhoGEFs, due to their absence in yeast

biological models.

Apusomonads are heterotrophic flagellate protozoa that

live in soils, freshwater and marine habitats and which have

an organic shell over the dorsal cell surface, called a theca. We

identified 24 Dbl-like RhoGEFs in the genome of Thecamonas

trahens, of which 10 contain only DH or DH/PH domains (see

supplementary fig. S4A and table S4, Supplementary Material

online). Other T. trahens RhoGEFs have DH/PH domains asso-

ciated with additional domains, only two of which are classi-

cally found in Metazoa or Fungi (SH3 and MORN). The others

domains were not observed in Fungi: The enzymatic Ras-like

and ArfGAP, and the protein interacting motifs IQ (calmodu-

lin-binding), LIM (Lin-11, Isl1, and Mec-3), SAM (Sterile Alpha

Motif), ARM (Armadillo), and ANK (Ankyrin). Note also that

the domains of the three RhoGEFs that are common to all

Opisthokonts, (i.e., BAR for DNMBP, FYVE for FGD and EH for

ITSN) are absent from T. trahens Dbl-like RhoGEFs (see sup-

plementary fig. S4, Supplementary Material online).

Amoebozoa is the major protist phylum that regroups

amoeba. Amoebozoa are defined as unicellular eukaryotes

that move with highly dynamic pseudopodia. Amoebozoa

are sub-divided into Conosa, which have a complex microtu-

bule network at flagellate stages, and Lobosa, which do not

(Cavalier-Smith et al. 2015). Among Conosa, the Mycetozoa

class contains the true slime-molds, which are social amoebae

that develop a multicellular fruiting body upon starvation.

Previous work reported the presence of 45 genes for Dbl-

like RhoGEFs in the slime mold D. discoideum (Mycetozoa/

Conosa; Vlahou and Rivero 2006). To get a more robust view

of Dbl-like repertoires in Mycetozoa, we examined four addi-

tional Conosa species, namely Dictyostelium purpureum,

Dictyostelium fasciculatum, Acytostelium subglobosum and

Polysphondylium pallidum, which encoded respectively 45,

44, 64, and 44 Dbl-like RhoGEFs (see supplementary

A B

C

FIG. 7.—The Dbl-like RhoGEF family in Fungi. (A) RhoGEFs were searched in genomes of species (in italics) distributed in the various Fungi phyla (in bold).

RhoGEFs were classified according to their family (Dbl-like or DOCK) and their structural domain organization (see B). Ascomycota: Pezizomycotina: PE:

Eurotiomycetes; PL: Leotiomycetes; PO: Orbiliomycetes; PP: Pezizomycetes; PS: Sordariomycetes. Ascomycota Saccharomycetales: SD: Debaryomycetaceae;

SS: Saccharomycetaceae. T: Taphrinomycotina. Basisiomycota A: Agaricomycotina Agaricales; C: Agaricomycotina Corticiales; M: Pucciniomycotina

Microbotryomycetes; P: Pucciniomycotina Pucciniomycetes; U: Ustilaginomycotina. (B) Eight types of RhoGEFs were identified in Fungi, based on the

presence of functional domains. CH: Calponin homology, PB1: Phox/Bem1, DEP: Dishevelled/Egl10/Pleckstrin, CNH: Citron/Nik1 homology, BAR: Bin/

Amphiphysin/Rvs, FYVE: Fab1/YOTB/ZK632.12/Vac1/EEA1, EH: Eps15 homology, SH3: Src homology 3, LRR: Leucine Rich Repeats. Three fungal

RhoGEFs (DNMBP, FGD, ITSN) share similar functional domain organization with human RhoGEFs. (C) PhyML and MrBayes phylogenetic analysis of DH

domains from Fungi of different clades, as indicated by the color code on the top left, excluding (left tree) or including (right tree) human DH sequences (in

black). Nodes supported by posterior probabilities above 0.95 are indicated by red and yellow circles, with bootstrap BS values>60 or>40, respectively. The

domain organization of each cluster is shown.

Evolution of Dbl-Like RhoGEFs in Eukaryotes GBE

Genome Biol. Evol. 1471–1486 doi:10.1093/gbe/evx100 Advance Access publication May 25, 2017 1481

Deleted Text: <italic>ictyostelium</italic>
Deleted Text: ) (
Deleted Text: Vlahou &amp; Rivero 2006
Deleted Text: <italic>D.</italic>
Deleted Text: <italic>D.</italic>


table S4, Supplementary Material online). Phylogenetic anal-

ysis of their DH domains identified 44 robust clusters from

each species (see supplementary fig. S5A, Supplementary

Material online). This indicates that the Dbl-like repertoire in

Mycetozoa has remained stable for the last 600 Myr (Fiz-

Palacios et al. 2013). All Dbl-like RhoGEFs that regrouped in

clusters had same functional domains associated. Several of

these domains were also found in Opisthokont RhoGEFs, like

the BAR and CH domains (DNMBP, VAV, and ARHGEF6, fig.

1B) or LRR in Fungi (fig. 7B). Several domains that are not

found in Opisthokonts, like ANK, ARM, ArfGAP and IQ, are

present in T. trahens RhoGEFs (see supplementary fig. S4,

Supplementary Material online). Note that all D. discoideum

DH domains are equally distantly related to metazoan DH,

which did not allow to detect any specific orthology.

We next identified the Dbl-like members in four

Entamoeba species (E. histolytica, E. invadens, E. dispar, and

E. nuttalli). Entamoeba also belong to Conosa and diverged

from Mycetozoa around 1,500 Ma (Parfrey et al. 2011). The

Entamoeba genus is made of amitochondriate and morpho-

logically similar species, most of which are intestinal parasites

(Stensvold et al. 2011). We identified 62 Dbl-like proteins in E.

his, 95 in E. inv, 63 in E. dis and 60 in E. nut (see supplemen-

tary table S4, Supplementary Material online). Interestingly,

although the numbers of Dbl-like members were higher in

Entamoeba than in Mycetozoa, the structural diversity asso-

ciated with their DH domains was much lower: Entamoeba

Dbl-like RhoGEFs lack the ARM, BAR, and IQ domains (see

supplementary fig. S4, Supplementary Material online).

Phylogenetic analysis of the DH domains distributed them

into 26 clusters, in which proteins have a similar domain or-

ganization (see supplementary fig. S5B, Supplementary

Material online). It is probable that multiple Dbl-like members

were lost in ancestral Entamoeba after the split with

Mycetozoa, reducing their repertoire from 45 down to 26.

This was followed by duplications leading to over 60 mem-

bers. The four species examined diverged after the

duplications.

Finally we examined the genome of Acanthamoeba castel-

lanii, which belongs to Lobosa (Clarke et al. 2013), and iden-

tified 108 Dbl-like RhoGEFs (see supplementary fig. S4A,

Supplementary Material online). Phylogenetic analysis

showed that the 108 DH domains distributed into 22 clusters

and 33 single sequences (see supplementary fig. S5C,

Supplementary Material online). Although analysis of addi-

tional species is needed to get a more comprehensive view

of the Dbl-like family in Lobosa, this nevertheless suggests

that the number of independent members is of the same

order in Lobosa and Mycetozoa. This implies that the number

of Dbl-like members in ancestral Amoebozoa were in the

same range. 74 of the 108 A. castellanii Dbl-like RhoGEFs

have only DH or DH/PH domains (see supplementary fig.

S4A, Supplementary Material online). Among the domains

associated with DH/PH in the 34 other RhoGEFs, most are

classically found in Metazoan RhoGEFs (CH, BAR, FYVE,

RhoGAP, SH3, C1, C2, F-BOX, or MORN). However, A. cas-

tellanii Dbl-like members do not contain any of the kinase,

RasGAP, LRR, and Myosin domains, found in Mycetozoa.

Neither do they contain either the ArfGAP or RasGEF do-

mains, which are found in of Entamoeba and Mycetozoa

(see supplementary fig. S4, Supplementary Material online).

Thus, the repertoires of Dbl-like RhoGEFs in Amorphea

clades are highly variable. Their numbers range from 15 to

72 in Metazoa, 5 to 35 in Fungi and from 46 to 108 in

Amoebozoa. In the three clades, we observed multiple and

independent loss and expansion events (fig. 6), which may be

directly linked to complexity of cell signaling. In addition, their

DH-associated domains are mostly different. The only do-

mains common to Amorphea clades are CH and SH3, two

protein–protein interaction domains, FYVE/PHD, which tar-

gets cell membranes, and RhoGAP, a negative regulator of

Rho signaling. This suggests that they were likely present in

ancestral Amorphea and have prominent roles in basal Rho

signaling.

Contrasting Evolutionary Repertoires of RhoGEF Families in
Bikonta

We next examined the presence of Dbl RhoGEFs in Bikonta

eukaryotes (fig. 6). Bikonta are clustered into three major su-

pergroups whose relative positions are still debated (Derelle

et al. 2015; Adl et al. 2012; He et al. 2014). The Bikonta are

divided into Archaeplastida, SAR and Excavates. The

Archaeplastida are further divided into two supergroups,

the Viridiplantae (land plants and green algae) and

Rhodophyta (red algae). The SAR supergroup is divided into

Stramenopiles (e.g., Phytophtora infestans, that causes the

potato blight), Alveolates (e.g., the apicomplex Plasmodium

falciparum or the ciliate Paramecium tetraurelia), and Rhizaria

(e.g., the amoeba-like Reticulomyxa filosa, a model system for

motility and organelle transport analysis, Ashkin et al. 1990).

The Excavates supergroup is divided into Euglens (e.g., the

parasites Trypanosoma or Leishmania), Diplomonads (e.g.,

the intestinal parasite Giardia intestinalis), Heterolobosea

(Lee 2010), and Parabasalids (e.g., the sexually transmitted

infection Trichomonas vaginalis). Haptophyta and

Cryptophta are phylogenetically incertae sedis groups, al-

though they have been proposed to be related to SAR and

Rhodophyceae (Parfrey et al. 2011; Reeb et al. 2009). To gain

a deeper insight in the Bikonta, we also looked, in each spe-

cies, at the presence of Rho and DOCK proteins, as well as

RopGEF, exchange factors that are active on Rac-like proteins

in plants and characterized by a PRONE domain (Berken et al.

2005).

We identified Dbl RhoGEFs in all Bikonta supergroups (see

supplementary fig. S6 and table S4, Supplementary Material

online). However, the presence of Dbl-like proteins is variable

within each supergroup and between phyla. Two clades have
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no Rho or RhoGEFs at all (i.e., Chlamydomonadales in

Chlorophyta or Apicomplexa in Alveolates). The absence of

Rho signaling may be associated with the fact that

Chlamydomonadales and Apicomplexa use gliding as a par-

ticular mode of locomotion, which depends on actin and my-

osin class XIV but does not require membrane dynamics like

amoeboid motion does (Heintzelman 2006). In

Archaeplastida, Viridiplantae do not encode Dbl-like proteins,

although the exchange domain of SWAP70 orthologs has

been proposed to be structurally related to DH (Yamaguchi

et al. 2012). Viridiplantae encode Rac-like GTPases (Valster

et al. 2000) and GEFs of the DOCK and RopGEF families

(see supplementary fig. S6, Supplementary Material online).

In Rhodophyta, the sister clade of Viridiplantae, the

Florideaphyceae Chondrus crispus (Irish moss, a multicellular

red alga living in North Atlantic) encodes a Rho signaling set

similar to other Viridiplantae. In contrast, the Cyanidiophyceae

Galdieria sulphuraria and Cyanidioschyzon merolae, unicellu-

lar and extremophilic red algae living in acidic hot sulfur

springs (Rothschild and Mancinelli 2001), encode Dbl-like pro-

teins but no DOCKs. These two unicellular red algae species

thus express both Dbl-RhoGEFs and RopGEFs. This is also the

case of the Haptophyta Emiliania huxleyi, a phytoplanktonic

coccolithophore that has two Rac GTPases, four Dbl-like

members and one RopGEF but has no DOCK protein. In the

current phylogenetic view, Dbl-like genes were lost twice in

Archaeplastida, once in the Rhodophyta clades (but not in

Cyanidiophyceae, the first clade that diverged from

Archaeplastida, Verbruggen et al. 2010) and once at the on-

set of Viridiplantae. Alternately, a single Dbl-like loss may be

invoked if Cyanidiophyceae had gained Dbl-like genes by LGT,

which they are prone to (Qiu et al. 2013).

In the Excavates and SAR supergroups, the presence of

genes for Dbl-like RhoGEFs is heterogeneous. A high copy

number of Dbl, DOCK and Rho GTPases are found in

Heterolobosea (Naegleria gruberi), Parabasalia (T. vaginalis)

and Rhizaria (R. filosa and Plasmodiophora brassicae). These

protists are not Amoebozoa yet they adopt a dynamic

amoeba-like morphology, suggesting that independent am-

plification of Rho components has enabled the acquisition of

the amoeboid phenotype.

In contrast to these amoeboid protists, Euglenozoa and

Diplomonadida do not encode Dbl-like proteins but they do

encode unique DOCK proteins. Unexpectedly, we even de-

tected a DOCK protein in ten species that do not encode Rac

proteins (boxed in supplementary fig. S6, Supplementary

Material online). DOCK proteins of the ten species have a

canonical domain structure (N-terminal lipid binding C2 and

C-terminal catalytic DHR2 domains, see supplementary fig.

S7A, Supplementary Material online) and are highly con-

served at the amino acid level (70% overall similarity between

Trypanosoma and Leishmania, 53% between Bonodidae and

Trypanosomatidae). DOCK protein catalytic DHR2 domains

are 40–45% similar between human and euglenozoan

sequences, irrespective to the presence or absence of Rac

proteins (see supplementary fig. S7B, Supplementary

Material online). Although some cellular functions of DOCK

do not require its RacGEF activity (Ogawa et al. 2014), the

presence of an apparently normal DHR2 domain in organisms

that do not encode any Rac protein suggests that DHR2 do-

mains may have additional activities in addition to regulating

Rac.

In summary, most Bikonta clades encode RhoGEFs of the

Dbl and DOCK families, indicating that, together with Rac,

they were part of the basic Rho signaling module in LECA.

However, this module experienced independent loss or ex-

pansion events between and within taxa, varying from a total

loss in Apicomplexa to acquisition of over 30 Dbl-like and Rac

members in amoeba-like protists.

Discussion

By examining the genomes of 175 species covering all eukary-

otic supergroups and spanning over 1.7 billion years of evo-

lution, we show here that the Dbl RhoGEF family is present in

all eukaryotic supergroups, implying it was already present in

the LECA. However, this family has experienced many inde-

pendent expansion or loss episodes in branches of the same

clades (fig. 6). This plasticity suggests that most of RhoGEF

diversity is not related to basic cellular metabolism but may

rather reflect the diversity of external stimuli cells respond to.

This hypothesis is supported by the tissue-specificity of

RhoGEF mRNA expression in Vertebrates (fig. 4) and by the

steepness of the linear relationship between the numbers of

RhoGEFs and cell types in Metazoa (fig. 5). This is not the case

for Rho GTPases activated by Dbl RhoGEFs (Jaiswal et al.

2013), as their expression is ubiquitous in human tissues

(Boureux et al. 2007) and their numbers vary in proportion

to cell types in Metazoa with a much lower slope than

RhoGEFs (fig. 5). On the one hand, the remarkable conserva-

tion of 14 of the 20 vertebrate Dbl subfamilies as far away as

in Choanoflagellida/Filasterea unicellular animals might thus

have enabled the early emergence of the basic repertoire of

receptors and signaling in eukaryotes. On the other hand, the

many RhoGEF loss events observed in subclades may reflect a

decreased diversity of signaling after their adaptation to spe-

cific ecological niches. For example, birds lost 12% of the

vertebrate Dbl-like repertoire and this may be directly or indi-

rectly associated with establishment of particular features,

such as exceptionally enlarged and diversified muscles or atyp-

ical thermogenesis. Such features are thought to be driven by

gene loss rather than gain (Newman et al. 2013). The loss of

ARHGEF19 and ARHGEF25 in birds may have been instru-

mental, as these genes control myogenesis and adipogenesis

in mice (Horii et al. 2009; Bryan et al. 2005). The loss of

PLEKHG2 might also have been instrumental in the evolution

of bird-specific features, since PLEKHG2 is involved in insulin-

stimulated GLUT4-mediated glucose uptake in L6 rat
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myoblasts (Sato et al. 2014), and this process no longer occurs

in birds (Seki et al. 2003). Establishment of particular features

due to Dbl-like RhoGEF losses may concern other Metazoan

sub-clades, like mice in mammals, nematodes and flies in

Ecdyzsozoa or yeasts in Fungi, which all had faster evolution

rates. The finding that these organisms lost several RhoGEFs

implies that their respective physiology might be adapted to a

reduced signaling diversity. This must be taken into account

when addressing functional roles of RhoGEFs in these organ-

isms, widely used as biological models.

Decreased signaling diversity is also consistent with the

Dbl-like repertoire being smaller in Entamoeba than in

Mycetozoa, since, as parasites of the intestines, Entamoeba

inhabit a more constant environment than the free-living

Mycetozoa. Besides, high numbers of Dbl-like RhoGEFs are

observed in species of distinct clades but sharing all the amoe-

boid phenotype, that is, Amoebozoa, Heterolobosea,

Parabasalia, and Rhizaria (see supplementary figs. S4 and

S6, Supplementary Material online). Independent Dbl-like ex-

pansion events thus occurred at least four times in amoeboid

protists, which supports the notion that Dbl-like RhoGEFs are

functionally involved in acquisition of the amoeboid pheno-

type. Amoebae produce different types of pseudopodia,

which they use to move and to feed on bacteria. Amoebae

express different suites of genes when they encounter differ-

ent bacterial species (Nasser et al. 2013), suggesting that dis-

tinct types of membrane receptors are involved and such

receptor diversity in amoebae may have been enabled by

the high number of Dbl-like proteins. Thus, despite their an-

cient origin in Eukaryotes and their overall conservation in

Metazoa, Dbl RhoGEFs appear as a dynamic family, which

can adapt its size to the level of cell signaling diversity.

We also show here that Dbl-like and DOCK RhoGEF fam-

ilies were both present in the LECA. This implies that these

two families, which are both active on the same Rac-like pro-

teins, have distinct properties. One straightforward difference

is that DOCKs have additional functions as well as just acti-

vating Rac GTPases (Ogawa et al. 2014). This may explain the

unexpected finding that several Euglenozoa and

Stramenopiles species encode DOCK proteins but no

GTPase of the Rho family. However, another striking differ-

ence between the Dbl-like and DOCK RhoGEFs concerns the

high diversity of domains associated with the tandem DH/PH

in Dbl-like RhoGEFs; DOCK proteins contain a C2 calcium-

binding domain and a DHR2 catalytic domain, either alone

or associated with single SH3 or PH domains (Meller et al.

2005). In this respect, Dbl-like RhoGEFs have a much higher

capacity to evolve, by reshuffling various functional domains

with the catalytic DH domain. Although a few domain com-

binations appeared conserved in the various clades studied

(e.g., FGD, DNMBP or ITSN in Amorphea), the general trend

is a high heterogeneity between eukaryotic clades, and even

within clades. Domain reshuffling is also supported by phylo-

genetic analyses, in which Dbl-like RhoGEFs with similar DH

domains have different auxiliary domains, like AKAP13,

ARHGEF1, ITSN, PLEKHG5, or NGEF. Domain reshuffling has

also occurred in the TRIO family, in which OBSCN, TRIO, and

KALRN have gained kinase and IG/FN domains from SPEG

kinases and Titin. Proteins with same domain organization

as RhoGEFs but lacking the DH domains also add an indirect

support to reshuffling.

In conclusion, this study establishes that the family of Dbl-

like RhoGEFs had a highly complex pattern of evolution and

underwent repeated expansion and reduction events. Given

that Dbl-like family complexity reflects the diversity of cell

signaling, this family of Rho regulators constitutes an adaptive

toolbox whose requirement in eukaryotic cell physiology has

greatly varied depending on species biology.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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