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A B S T R A C T

Non-proportional hazards have been observed in clinical trials. The log-rank test loses power and the standard
Cox model generally produces biased estimates under such conditions. Weighted log-rank tests have been uti-
lized to increase the test power; however, it is not intuitive how to interpret the test result in terms of the clinical
effect. We propose a Cox-model based time-varying treatment effect estimate to complement the weighted log-
rank test.

The score test from the proposed model is equivalent to the weighted log-rank test, and a time-profile of the
treatment effect can be obtained by fitting a time-varying covariate Cox model. Simulation results show that the
proposed model preserves type-I error and achieve higher power than log-rank tests under non-proportional
hazards scenarios. Whereas the standard Cox model produces biased effect estimates, the proposed model
produces unbiased estimates if the weight function is correctly specified. It also achieves a better model fit and
an enhanced flexibility to accommodate non-proportional hazards compared to the standard Cox model.

The proposed approach makes the assumptions of the weighted log-rank test explicit and the validity of
assumptions can be assessed based on prior knowledge or model goodness-of-fit. It also helps to translate the
weighted log-rank test results into quantitative estimates of the treatment effect with intuitive interpretation.
The proposed method can be routinely conducted to complement weighted log-rank tests, especially in the
setting where non-proportional hazards are expected.

1. Introduction

The log-rank test has been the most commonly used method for
analyzing survival endpoints and is the most powerful under propor-
tional hazards. The weighted log-rank test is its generalized form, which
allows different weight assignment to time points and therefore is able
to emphasize certain potion of the survival curves [1–3].

The weighted log-rank test has been utilized in studies with non-
proportional hazards in order to increase power. For example, when a
substantial portion of patients discontinue study treatments prema-
turely, the estimated treatment effect can be diluted and the power can
be reduced since those patients may no longer derive benefit. By allo-
cating higher weights to earlier time points, the test will focus on the
earlier time period where there was limited treatment discontinuation
and reflect the treatment benefit more accurately [4,5]. Similarly, some
treatments may have a delayed period before exhibiting its full effect. In
this case, lower weights can be allocated to earlier time points and thus
focus the testing on the later time period [6–9].

Schoenfeld has shown that the most powerful weighted log-rank test
is to assign the weights proportionally to the magnitude of log hazard
ratio [10]. Type-I error is preserved if weights are pre-specified. The

choice of weights can be based on prior knowledge, such as the char-
acteristics of the treatment (e.g., delayed treatment effect, or long-term
effect even after treatment discontinuation), the anticipated study de-
sign and conduct (e.g., cross-over, patient compliance, rate of early
treatment discontinuation), and the general clinical context (e.g., long
survival after treatment discontinuation, availability of non-protocol
therapies or subsequent therapies).

Even though weighted log-rank tests have been in use, it is not in-
tuitive how to examine the appropriateness of the weight function from
the clinical perspective and how to interpret the test results in terms of
treatment benefit.

We proposed a Cox-model based time-varying treatment effect es-
timate to complement the weighted log-rank test. This approach makes
the assumptions of the weight function explicit in the form of relative
magnitudes of treatment benefit over time, which can be examined and
verified in the relevant clinical context. The score test of the proposed
model is equivalent to the weighted log-rank test, and the estimate
derived from the model provides a time-profile of the treatment effect.
Prior to analyzing the data, the assumptions of the model (i.e., weight
function or the relative magnitude of treatment effect over time) can be
reviewed and examined based on prior knowledge. After model fitting,
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the assumptions can be assessed based on model fit (e.g., through
evaluating the patterns of residuals [11]). The estimated treatment ef-
fect (as a time-profile) can help clinical interpretation of the treatment
benefit and facilitate the assessment on whether the benefit is clinically
meaningful and economically valuable.

2. Method

2.1. Weighted log-rank test and cox model

Suppose n patients are randomized into the treatment arm or the
control arm in a clinical trial with a time-to-event endpoint. Let this
treatment assignment be denoted by …X X X, , n1 2 , Xi = 1 if the i-th pa-
tient is assigned to the treatment arm and Xi = 0 otherwise. Let

…T T T, , , n1 2 denote the event or censoring times and …δ δ δ, , , n1 2 denote
the status (δi = 1 for an event and δi = 0 if censored). Let

≤ ≤ …≤T T T J(1) (2) ( ) denote the J ordered event times. The weighted log-
rank test statistics is
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where Oj and Ej denote the observed and expected (under null hy-
pothesis) number of events in the treatment arm at time T(j), Vj is the
variance of Ej, and w (.) is a weight function of time with non-negative
value. Note that Z stays the same if the weight function is multiplied or
normalized by a constant scaler k.

For a Cox proportional hazards model, let the hazard function of the
i-th patient be

=t X t eλ( ; ) λ ( )i
w t βX

0
( ) i

where λ0(t) is the baseline hazard function and β is the coefficient of the
treatment. It can be shown that the score test of this Cox model is
equivalent to the weighted log-rank test above (Appendix). Note that
the weighted estimates proposed by Lin [12] and Sasieni [13] in-
corporate weights in the score function rather than in the hazard
function. The score statistics derived from this proposed model is
identical to their model, but the effect estimate β̂ is different due to the
different forms of the score function. Our approach provides an alter-
native method for estimating and interpreting the treatment effect
under the weighted log-rank framework.

2.2. Effect adjustment factor

Given a weight function w(t) in a weighted log-rank test, the effect
adjustment factor A(t) in the proposed model is defined as

=A t w t
w t

( ) ( )
max( ( ))

so that A(t) is non-negative and has the maximal value 1 at some time
point(s).

The hazard function in the Cox model above can then be expressed
as

=t X eλ( ; ) λ A t βX
0

( )

Note that scaling by w tmax( ( )) does not change the weighted log-
rank statistics Z, and the score test of this model is still equivalent to the
weighted log-rank test with weight function w(t). The hazard function
can also be viewed as a constant coefficient with a time-varying cov-
ariate X*(t) = A(t)X, which represents the treatment assignment
weighted by the adjustment factor. The coefficient β can be easily es-
timated in the following Cox model once X*(t) is derived.

= ∗t X eλ( ; ) λ βX t
0

( )

The β̂ estimated from models with time-varying covariates have
been shown to be unbiased [14]. Because A(t) is smaller than or equal

to 1, β represents the maximal effect in the time course, and the time
points where the patients experience this maximal effect (i.e., at time t
with A(t) = 1) are assigned with the highest weights (i.e., at time t with

=w t w t( ) max( ( ))) in the corresponding weighted log-rank test. If the
model is correct, this weighted log-rank test (and equivalently, the
score test from this model) is optimal and will have the highest power
based on Schoenfeld's proof [10].

The hazard ratio between the two arms tHR( ) can then be derived as
a function of time

= = =
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where = eHRF β represents the full effect (i.e., maximal effect). The
model incorporates the time-varying effect as the treatment coefficient
β weighted by the effect adjustment factor A(t). Note that even though

tHR( ) seems to be a time-varying coefficient, the shape of this function
is determined by A(t) and only the magnitude β is to be estimated from
this Cox model. The score statistics (or equivalently, the weighted log-
rank statistics) is testing whether the full effect HRF is zero or not.

2.3. Examples of weight function and the corresponding effect adjustment
factor

Various weight functions have been proposed for weighted log-rank
tests. For example, the weight at time point t can be assigned based on
survival at t (the Prentice-Wilcoxon or Peto-Peto test [1]), based on the
number of patients at risk at t (the Gehan-Breslow test [2,15]), or based
on the proportions of patients who have discontinued study treatment
at t [4]. The Gρ,γ family proposed by Fleming and Harrington [3] is able
to represent a variety of function shapes based on observed survival

= −w t S t S t( ) ( ) (1 ( ))ρ γ

where S(t) is the survival function of the pooled population; ρ and γ are
parameters determining the shape of the weight function. The weighted
log-rank test becomes the standard log-rank test when ρ = γ = 0 and
becomes the Prentice-Wilcoxon test when ρ = 1 and γ = 0. The test
allocates more weight at later time points when ρ = 0 and γ = 1 and
more weight at the middle time points than the two ends when ρ = 1
and γ = 1.

Examples of these weight functions w(t), the corresponding effect
adjustment factors A(t), and the time-varying hazard ratio tHR( ) are
presented in Fig. 1. An arbitrary survival curve S(t) is generated for
reference (represented by the dotted gray curves on the weight function
panels).

In the standard log-rank test where the weight function is constant,
the treatment is assumed to have the same level of effect (i.e., the full
effect HRF) throughout the time course (i.e., A(t) = 1) whereas in the
Prentice-Wilcoxon weight function, the treatment is assumed to have its
full effect initially and then decreased monotonically in proportion to
the observed survival rate (i.e., =tHR( ) [HR ]F S t( )). In the Fleming-
Harrington G1,1 weight function, treatment effect is assumed to have no
effect prior to the first event and increase over time to reach its full
effect around median survival time and then decrease over time (i.e.,

= −tHR( ) [HR ]F S t S t( )(1 ( )). In the weight function proposed by Lagakos
and Bowden [4,5], treatment has the full effect initially and starts to
decrease once patients start to discontinue study treatments (the “De-
creasing Tail” scenario). In a hypothetical scenario where the treatment
has delayed benefit, one can assume the treatment has minimal effect
initially and then reaches its full effect after a certain delay period,
illustrated in the right-most column.

2.4. Simulation studies

Three models and testing approaches were evaluated: (1) the stan-
dard Cox model with log-rank test, (2) our proposed model with
weighted log-rank test, and (3) the short-term and long-term effect
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model with adaptive weighted log-rank test by Yang and Prentice
[16,17]. Two main settings were considered: (1) treatment has delayed
effect and (2) the long-term treatment effect is reduced due to sub-
stantial treatment discontinuation. In each setting, several scenarios
were simulated with 10,000 runs for each scenario to characterize the
power, hazard ratio estimate, standard error, coverage of 95% con-
fidence interval, and type-I error.

In the first setting, the treatment is assumed to have minimal effect
( =HR 0.9) initially and will exhibit its full effect ( =HR 0.68F ) after a
specific period of delay τD. The study enrolls 400 patients and the
analysis is triggered when 280 events have been observed, which pro-
vides about 90% power to detect the treatment's full effect (i.e., HR of
0.68) at a one-sided alpha level of 2.5%. The survival of the control arm
follows an exponential distribution with a median of 6 months, and the
survival of the treatment arm follows piece-wise exponential distribu-
tion with the piece-wise constant hazard determined by the hazard
ratios above. The hazard for drop-out is assumed to be the same in the
two arms and follow exponential distribution with an annual drop-out
rate around 5%. The duration of the effect delay τD varies from 0 (no
delay) to 6 months.

In the base case scenario (where the alternative hypothesis is as-
sumed to be true), the effect adjustment factor is assumed to correctly
reflect the true effect and be proportional to the log of the effect size:

= ∕ =A t( ) log(0.9) log(0.68) 0.27 for <t τD and A(t) = 1 for ≥t τD. This
assignment corresponds to the weighted log-rank test that will give the
highest power [10]. The same A(t) function is used for type-I error
evaluation under the null hypothesis. Additional sensitivity scenarios
were also simulated to evaluate the effect if A(t) is misspecified, if τD is
misspecified, or if both τD and A(t) are misspecified.

In the second setting, the treatment has its full effect HRF initially
and gradually decreases when more patients have discontinued from
the treatment. The effect will eventually diminish after all the patients
have discontinued their treatments. Let the proportion of patients who

are still on treatment by time t be γ(t), then proportion of patients who
discontinued treatment will be 1 − γ(t). If patients lose treatment effect
completely immediately after treatment discontinuation, the hazard
ratio at time t will be = + −t γ t γ tHR( ) HR ( ) (1 ( ))F [4]. However, the
treatment may have a prolonged effect: that is, patients may still benefit
from the treatment for a certain duration after their treatment
discontinuation. Let the duration of this prolonged effect be τP, then
HR(t) = HRFγ(t − τP) + (1 − γ(t − τP)), for any ≥t τP; and
HR(t) = HRF for any time <t τP.

In the simulation, the study enrolls 720 patients with 510 events,
which provides about 90% power to detect the treatment's full effect
(HRF = 0.75) at a one-sided alpha level of 2.5%, assuming proportional
hazards. The distribution for survival in the control arm and the drop-
out in both arms are the same as the first setting, except that the median
survival in the control is 12 months. The treatment discontinuation is
assumed to follow exponential distribution with a 6-month median, and
the prolonged effect τP is assumed to range from 0 to 24 months.

The effect adjustment factor A(t) is assumed to be 1 for <t τP and
× − + − − ∕log γ t τ γ t τ log[0.75 ( ) (1 ( ))] (0.75)P P for ≥t τP in the base

case (alternative hypothesis) and in the null scenario. Sensitivity ana-
lyses evaluate model performance when τP is misspecified.

3. Results

3.1. Setting 1: delayed treatment effect

In the setting with delayed treatment effect, the power of the
standard log-rank test (i.e., the score test of the standard Cox model),
the weighted log-rank tests (i.e., the score test of the proposed model),
and the Yang-Prentice tests all decrease as τD increases. However, the
weighted log-rank test has consistently higher power than the other two
tests when the weight function is correctly specified; the Yang-Prentice
model is slightly more powerful than log-rank test but is not as powerful
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Fig. 1. Examples of weight functions, the corresponding effect adjustment factor A(t), and the hazard ratio tHR( ). The survival curve is represented by the dotted gray curves on the
weight function panels.

R.S. Lin, L.F. León Contemporary Clinical Trials Communications 8 (2017) 147–155

149



as the weight log-rank test when τD increases (Table 1.).
In terms of hazard ratio estimates, the standard Cox model under-

estimates the effect and as τD increases, the bias increases and the
conference interval coverage becomes incorrect. In contrast, the pro-
posed model provides unbiased estimate and correct coverage across all
scenarios. The standard error, however, is higher in the proposed
model, especially when τD is longer (i.e., when a low weight is assigned
for a longer time period). The empirical standard error is identical to
the model's estimate for both models (not shown in the table).

The Yang-Prentice model provides estimates for the short-term and
the long-term effects respectively. The treatment effect in this setting is
captured by the short-term effect when τD is small (e.g., 0 month) and
by the long-term effect when τD is large (e.g., 3 months or above). The
estimates have bias in general, especially when τD is around 1–2
months. Since the two effects are estimated jointly, it may not be easy
for the model to separate out the short-term versus the long-term effect
when τD is not 0 but very small. The empirical standard errors of both
estimates are substantially higher compared to the other two models.

Under the null hypothesis (HR = 1), both the standard and the
proposed approaches preserve the type-I error and provide unbiased
estimate of the treatment effect. The Yang-Prentice model in general
preserves the type-I error yet the two estimates are slightly biased to-
ward opposite directions. This could also be due to the joint estimation
of the two effects and the model may pick up random patterns in the
simulated data sets.

Note that when there is no delay, the weight function is a constant
and thus A(t) = 1. The proposed approach becomes the standard log-
rank test and the standard Cox model, and the two approaches have
identical results.

Testing for non-proportionality [11] shows that the proportional
hazards assumption is more likely to be violated in the standard Cox
model (at 5% of alpha), especially when the delay is longer. In contrast,
the proposed Cox model is able to mitigate the violation by in-
corporating the time-varying covariate based on A(t).

Sensitivity analysis (Fig. 2) shows that weighted log-rank test has
lower power (the left panel) when τD is misspecified (true τD is 3
months). However, its power is still higher than the standard Cox model
(i.e., 63%). In the proposed model, the treatment effect (the middle
panel) is underestimated when the model assumes a shorter delay than
the actual τD (3 months). This is similar to the standard Cox model

(which assumes no delay) because it tries to average the effect over the
delay period where the effect is lower, which biases the overall effect
estimate toward null. On the other hand, the effect is overestimated
when the assumed delay is longer than 3 months: the model tries to
average out the effect over the assumed delay period (which actually
includes some period with full effect), resulting in bias away from null.

The hazard ratio plot (the right panel) shows the time-profile of the
treatment effect: the true profile is represented by the blue curve (τD is 3
months); the red curve represents the standard Cox model (assuming τD
is 0 and constant hazard ratio); the purple curve represent the model
assuming τD is 6 months. The overestimated HR 0.65 in the purple curve
lasted for a longer period (6 months) before the treatment exhibits its
full effect; in other words, the patients have limited benefit for a long
period based on this model (longer than actual). This time-profile re-
flects the model assumptions explicitly. Therefore, even though the full
effect size is overestimated, a relatively balanced assessment of the
overall benefit across the whole time course can be examined by the
time-profile plot. Whether this benefit profile is clinically meaningful
and economically justifiable can then be assessed under this clear and
explicit framework.

When τD is correctly specified (i.e., 3 months) yet the adjustment
factor A(t) is misspecified during the first 3 months (Fig. 3), the power
and point estimate appear to be similar to the correct model (i.e.,
A(t) = 0.27) when A(t) is not much different from the correct model.
The higher A(t) is (i.e., assuming strong effect during the delay period),
the worse the model performance is: the extreme case with A(t) = 1 is
equivalent to the standard Cox model and has the lowest power and
greatest bias.

Fig. 4 shows the results when both τD and A(t) are misspecified: the
true τD is 1.5 months, and the A(t) is 0.27 during the first 1.5 months
and is 1 afterwards; yet the model assumes τD = 3, with A(t) during the
delay period ranging from 0 to 1. Because τD is short, hazards are
proportional most of the time and hence Cox model is able to achieve
77% power. The proposed model in general achieve comparable or
higher power than the Cox model; however, when it puts too little
weight during the delay period (e.g., ≤A t( ) 0.2), its power could be
even slightly lower than Cox model. This demonstrates again that
power decreases due to the higher standard error when a low weight is
assigned for a long period. The hazard ratio estimate from the Cox
model still has higher bias than the proposed model, even when the

Table 1
Setting 1 (Delayed treatment effect): characteristics of the log-rank test and the standard Cox model vs. the weighted log-rank test and the proposed model vs. the Yang-Prentice model
(10,000 simulations per scenario).

τD Log-Rank and Standard Cox Model Weighted Log-Rank and Proposed Model Yang-Prentice Modela

Power HRˆ se β( ˆ)b 95% CI coverage Non-PHc Power HRˆ se β( ˆ)b 95% CI coverage Non-PHc Power ̂HR1 ̂se β( )1
b ̂HR2 ̂se β( )2

b

HA
d

0 0.90 0.68 0.12 0.95 0.05 0.90 0.68 0.12 0.95 0.05 0.91 0.71 0.49 1.06 1.33
1 0.82 0.71 0.12 0.94 0.08 0.85 0.68 0.13 0.95 0.02 0.83 0.82 0.47 0.85 1.18
2 0.73 0.73 0.12 0.90 0.13 0.79 0.68 0.14 0.95 0.01 0.74 0.91 0.48 0.78 1.13
3 0.62 0.76 0.12 0.84 0.16 0.73 0.68 0.15 0.95 0.01 0.66 0.96 0.46 0.75 1.04
4 0.54 0.78 0.12 0.78 0.16 0.65 0.68 0.17 0.95 0.00 0.57 0.99 0.46 0.75 0.99
5 0.45 0.80 0.12 0.71 0.16 0.58 0.68 0.18 0.95 0.00 0.48 0.99 0.43 0.76 0.90
6 0.37 0.82 0.12 0.64 0.14 0.49 0.68 0.20 0.95 0.01 0.40 1.00 0.45 0.80 0.88
H0

0 0.05 1.00 0.12 0.95 0.05 0.05 1.00 0.12 0.95 0.05 0.06 0.98 0.26 1.23 0.74
1 0.05 1.00 0.12 0.95 0.05 0.05 1.00 0.13 0.95 0.02 0.06 0.98 0.29 1.21 0.73
2 0.05 1.00 0.12 0.95 0.05 0.05 1.00 0.14 0.95 0.01 0.06 0.97 0.26 1.23 0.74
3 0.05 1.00 0.12 0.95 0.05 0.05 1.00 0.15 0.95 0.00 0.06 0.97 0.27 1.22 0.72
4 0.05 1.00 0.12 0.95 0.05 0.05 1.00 0.17 0.95 0.00 0.06 0.97 0.27 1.23 0.74
5 0.05 1.00 0.12 0.95 0.05 0.05 1.00 0.18 0.95 0.00 0.05 0.98 0.25 1.22 0.72
6 0.05 1.00 0.12 0.95 0.05 0.05 1.00 0.20 0.95 0.01 0.06 0.98 0.26 1.23 0.76

a HR1 and HR2 represent the short-term and the long-term effects in the Yang-Prentice model.
b Empirical standard error of HRlog( )
c Proportion of rejecting proportional hazards assumption at 5%.
d Alternative hypothesis: treatment hazard ratio is 0.9 during the delay period τD and is 0.68 thereafter.
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model is misspecified. Furthermore, the estimate from the proposed
model is relatively stable across various A(t) values, and thus the model
misspecification seems to have limited impact on the hazard ratio es-
timate.

3.2. Setting 2: reduced long-term treatment effect

In the second setting with a reduced treatment effect in the long-
term (Table 2), the powers of both the log-rank and weighted log-rank
tests decrease when τP is shorter. Similar to Setting 1, the weighted log-
rank test has consistently higher power than the log-rank test.

The hazard ratio estimated from Cox model is biased toward null
and it is more likely to violate the proportional hazards assumption,
especially with shorter τP, because the proportional hazards assumption
implicitly assumes τP is infinity (i.e., the effect is constant and pro-
longed throughout the study regardless of treatment discontinuation).
In contrast, the proposed model provides an unbiased estimate and
correct coverage across all scenarios and have lower incidence of vio-
lating proportional hazards assumption. Standard error estimated by
the model (not shown in the table) are the same as the empirical data,
and the proposed approach has higher standard error when the model
assumes a shorter τP (i.e., more time points are assigned with lower
weights).

When τP is very long (e.g., 24 months), treatment effect is almost
constant (proportional hazards) throughout the study. Therefore,
treatment discontinuation has minimal impact on power, and the two
approaches show almost identical results because most of the time
points are assigned with a weight of 1. As in Setting 1, both approaches
preserve the type-I error.

In the Yang-Prentice model, the short-term effect captures the
treatment effect in Setting 2. Its power is between the proposed model
and the Cox model, similar trend as in Setting 1. The hazard ratio

estimate fluctuates across scenarios around the truth (i.e., 0.75) with
high standard error. Under the null hypothesis, the model preserves
type-I error and has slightly biased estimates.

When the weight function is misspecified (Fig. 5, true τP is 8
months), the power is reduced but is relatively stable and is higher than
the standard Cox model (66%). The treatment effect is underestimated
when the model assumed a longer τP than the truth (8 months) and
overestimated when the assumed a shorter τP. The hazard ratio time-
profile shows the true profile (τP = 8 months) in light blue; the stan-
dard Cox model in red. When the model assumes τP = 0, the hazard
ratio is biased (0.68); however the overestimated effect (hazard ratio
<0.75) lasts for only a short period of time (during the first 3 months)
and effect size is in fact biased toward null for all the time points after 3
months.

4. Discussion

The log-rank test has been widely used in survival analysis and is
generally the gold-standard approach. It implicitly assumes a constant
treatment effect over time and is the most powerful when such a con-
dition is met. Consequently, the corresponding Cox model (i.e., the
model with the score test equivalent to the log-rank test) explicitly
assumes constant treatment effect (or proportional hazards) and
therefore the effect estimate derived from the model is constant over
time. However, when the proportional hazards assumption is violated,
the log-rank test has reduced power even though it is still a valid test in
this setting; on the other hand, the Cox model is no longer (strictly)
valid and thus the effect estimated from the model is biased (depending
on the nature of non-proportionality).

Non-proportional hazards have been observed in clinical trials, and
the simulations conducted in this research were designed to reflect
some of such cases: one example of the delayed treatment effect is in

Fig. 2. Characteristics of the weighted log-rank test and proposed model when the prolonged effect τD is misspecified. The true τD is 3 months, and the true hazard ratio is 0.68. † Power
and hazard ratio estimate from the Cox model are shown by the red squares on the left and the middle panels.

Fig. 3. Characteristics of the weighted log-rank test and proposed model when the adjustment factor A(t) during the delay period (i.e., the first 3 months) is misspecified. The true hazard
ratio is 0.9 during the first 3 months and 0.68 afterwards. The correct A(t) is thus 0.27 and 1 respectively. † Power and hazard ratio estimate from the Cox model are shown by the red
squares on the left and the middle panels. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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vaccine or immunotherapy, where a certain period is needed for the
immune system to react and respond to the treatment; therefore limited
effect is observed initially and the full effect will be observed once the
immune system is fully activated [7,9]. The scenario of the reduced
long-term effect is also commonly observed in oncology studies with
overall survival as the primary endpoint. Patients in the studies usually
discontinue the assigned treatment once they experienced disease
progression. They may then receive any non-protocol treatments post
disease progression, which will confound the overall survival. For ex-
ample, patients assigned to the control arm may receive the study
treatment or similar treatments as standard care, through cross-over,
off-label use, or participation of other clinical trials. This may still result
in diluted treatment effect even if patients discontinued from the
treatment arm are actually experiencing prolonged treatment benefit.

The Weighted log-rank test is a generalized method of the log-rank.
Correspondingly, the proposed approach is a generalized method of the
standard Cox model. The Weighted log-rank test and the proposed Cox
model relax the assumption of a constant effect (or proportional ha-
zards): it allows the treatment effect to vary over time and assumes
relative magnitudes of the effect as a function of time via the adjust-
ment factor A(t). By the pre-specified weight function w(t) in the

weighted log-rank test, the proposed model assumes a specific shape of
the treatment effect over time and the magnitude of the full effect is
then estimated based on such assumption. Allowing time-varying ef-
fects can address non-proportional hazards in Cox model and provide a
more unbiased effect estimate.

From the perspective of weighted log-rank test, the standard log-
rank is a special case where equal weights are allocated to all time
points. Its corresponding Cox model assumes the effect is a horizontal
line over time (i.e., constant effect) and then estimates the effect
magnitude based on this straight-line assumption. Intuitively, the Cox
model is estimating the treatment effect averaged over all time points,
and the corresponding log-rank test is testing whether such averaged
effect is statistically significant or not.

When there are non-proportional hazards, the weight function can
be introduced to the weighted log-rank to mitigate power loss, and si-
milarly, the corresponding time-varying effect can be incorporated into
Cox model to improve model fit and provide less biased estimate [14].
The effect estimate from the proposed Cox model is essentially derived
from: (1) the average effect magnitude estimated from the time points
with the highest weight (i.e., the time points with A(t) = 1) and (2) the
adjusted effect magnitdude estimated from each of other time point j

Fig. 4. Characteristics of the weighted log-rank test and proposed model when both τD and A(t) are misspecified. The true τD is 1.5 months, and the correct A(t) is 0.27 during the first 1.5
months and is 1 afterwards (represented in gray dashed line). The model assumes τD is 3 months, with A(t) ranging from 0 to 1. † Power and hazard ratio estimate from the Cox model are
shown by the red squares on the left and the middle panels.

Table 2
Setting 2 (Reduced long-term treatment effect): characteristics of the log-rank test and the standard Cox model vs. the weighted log-rank test and the proposed model vs. the Yang-
Prentice model.

τP Log-Rank and Standard Cox Model Weighted Log-Rank and Proposed Model Yang-Prentice Modela

Power HRˆ se β( ˆ)b 95% CI coverage Non-PHc Power HRˆ se β( ˆ)b 95% CI coverage Non-PHc Power ̂HR1 ̂se β( )1
b ̂HR2 ̂se β( )2

b

HA
d

0 0.29 0.88 0.09 0.55 0.14 0.38 0.75 0.17 0.95 0.00 0.33 0.77 0.21 1.28 0.58
2 0.38 0.86 0.09 0.64 0.17 0.50 0.75 0.15 0.95 0.00 0.44 0.74 0.22 1.34 0.67
4 0.49 0.84 0.09 0.74 0.18 0.60 0.75 0.13 0.95 0.00 0.53 0.72 0.29 1.39 0.78
6 0.58 0.83 0.09 0.81 0.18 0.68 0.75 0.12 0.95 0.00 0.63 0.72 0.30 1.42 0.92
8 0.66 0.81 0.09 0.85 0.15 0.73 0.75 0.11 0.95 0.01 0.69 0.72 0.34 1.44 1.02
10 0.71 0.80 0.09 0.89 0.13 0.77 0.75 0.11 0.95 0.01 0.75 0.74 0.41 1.44 1.14
12 0.77 0.79 0.09 0.91 0.11 0.81 0.75 0.10 0.95 0.01 0.79 0.74 0.40 1.38 1.16
24 0.89 0.75 0.09 0.95 0.05 0.89 0.75 0.09 0.94 0.05 0.91 0.78 0.43 1.01 1.06
H0

0 0.05 1.00 0.09 0.95 0.05 0.05 1.00 0.17 0.95 0.00 0.05 0.99 0.19 1.08 0.37
2 0.05 1.00 0.09 0.95 0.05 0.05 1.00 0.14 0.95 0.00 0.05 0.99 0.18 1.07 0.35
4 0.05 1.00 0.09 0.95 0.05 0.05 1.00 0.12 0.95 0.00 0.05 0.98 0.18 1.07 0.34
6 0.05 1.00 0.09 0.95 0.05 0.05 1.00 0.11 0.95 0.00 0.05 0.99 0.19 1.07 0.34
8 0.05 1.00 0.09 0.95 0.05 0.05 1.00 0.11 0.95 0.01 0.05 0.98 0.18 1.07 0.35
10 0.05 1.00 0.09 0.95 0.05 0.05 1.00 0.10 0.95 0.02 0.05 0.98 0.18 1.07 0.34
12 0.05 1.00 0.09 0.95 0.05 0.05 1.00 0.10 0.95 0.02 0.06 0.98 0.18 1.07 0.35
24 0.05 1.00 0.09 0.95 0.05 0.05 1.00 0.09 0.95 0.05 0.05 0.98 0.18 1.07 0.35

a HR1 and HR2 represent the short-term and the long-term effects in the Yang-Prentice model.
b Empirical standard error of HRlog( )
c Proportion of rejecting proportional hazards assumption at 5%.
d Alternative hypothesis: treatment hazard ratio is 0.75 initially and the effect reduced in proportion to treatment discontinuation proportion, after a duration of prolonged effect τP.
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(where <A j( ) 1) based on discounting the true effect by A(j). This
adjustment allows the model to reflect non-proportional hazards and to
capture and estimate the time-varying treatment effect.

The standard error of the effect estimate is in general higher than
the standard Cox model, consistent with the findings from Lin's and
Sasieni's approach [12,13]; however, the proposed model still achieves
relatively higher power because its estimate is unbiased if the weight
function is correctly specified. Even if the weight function is mis-
specified, the proposed model will lose power yet still has higher power
and produces less biased estimate than the standard Cox model in the
simulated scenarios.

One possible way to reduce the standard error is to assign high
weights (A(t) close to 1) for a long period. A low weight (A(t) close 0)
implies that all the observations at the corresponding time points are
almost treated as censored [13]. This pseudo censoring increases the
standard error and reduces power substantially, especially when the
low weights are assigned for a substantially long time period. Assigning
the highest weight for a longer period will not only reduce the pseudo
censoring but will also average out the full effect across more time
points (where A(t) = 1) and improve the precision of the effect esti-
mate. However, the trade-off is that it may not reflect the nuance of the
non-proportional hazards at certain time periods and will introduce
bias. The standard Cox model is the extreme case where it assigns the
same weight to all time points and achieves the lowest standard error
yet suffers from potential bias. The choice of weight function is essen-
tially a trade-off between bias and variance, and this could be guided by
prior knowledge.

A wide range of other methods have been proposed to test survival
curves and to estimate treatment effects in the presence of non-pro-
portional hazards. These methods estimate additional model para-
meters from the data and model the time-varying effect via various
model structures and estimation approaches, such as the Yang-Prentice
model used in our simulations, which has a short-term and a long-term
effect [16,17], or using a cubic spline [18], penalized partial likelihood
[19], kernel-weighted partial likelihood [20,21], adaptive group lasso
[22], and via piece-wise constant hazard ratio models with change-
point detection [23–25]. These models enable flexible structures that
can be tailored to the data.

These models are summarized as a spectrum in Table 3. The stan-
dard Cox model and log-rank test assume the shape of the hazard ratio

time-profile (i.e., a straight line over time) and then estimate and test
the magnitude of the effect. The proposed model and the weighted log-
rank generalize the assumption by allowing the effect time-profile to
take different shapes through the specification of w(t) or A(t) and then
estimate and test the full effect HRF. Other flexible methods take an
even more generalized approach by estimating both the magnitude and
the shape of the effect based on data. Whereas these flexible approaches
are able to describe the data more accurately and achieve better model
fit, they might be fitting to random data patterns that occurred only in
this dataset and are not consistent with prior knowledge nor can be
reproduced in future studies. This is consistent with our finding that the
Yang-Prentice model tends to have substantially higher standard error
for the hazard ratio estimates and may sometimes have slight bias. Type
I error may also be inflated due to the data-driven nature of these
models [26]. On the other end of the spectrum, the log-rank test and
standard Cox model are robust to such random noise and preserve type-
I error, but they are subject to bias if the proportional hazards as-
sumption is not met.

The proposed model is a balance between the two ends: it is not as
data-driven as the flexible models, yet it allows incorporation of prior
knowledge to mitigate non-proportional hazards via pre-specified ad-
justment factor A(t). Because A(t) is pre-specified, the type-I error is
preserved, as demonstrated in the simulations. The proposed approach
makes w(t) in weighted log-rank test explicit so that both w(t) and A(t)
can be reviewed and examined prior to model fitting based on whether
it is biologically reasonable and whether it can reflect the character-
istics of the treatment, the study design and conduct, and the general
clinical context including treatment landscape and clinical practice. The
simulations also suggest that the hazard ratio estimate and power are
relatively robust if the model (change-point) is misspecified.

After model fitting, the assumption can be verified by model fitness
(e.g., through assessing the patterns of residuals [11]). The effect time-
profile HR(t) reflects the assumption explicitly and can help to assess
whether the effect is substantial and meaningful from the clinical per-
spective and is valuable and justifiable from the health economics'
perspective. For example, in the scenario with delayed treatment ben-
efit, it may not be effective to treat patients who are not likely to sur-
vive beyond the delay period. Similarly, in the scenario with reduced
long-term effect, the payers may not plan to reimburse the treatment
beyond the time point when the treatment effect is expected to di-
minish.

This is an alternative approach to the log-rank and the standard Cox
model that can potentially describe the treatment effect in a more ac-
curate manner. As suggested by Sasieni [13], weighted log-rank can be
routinely performed in addition to the standard methods. However, the
weighted log-rank test only examines whether the full effect HRF is sig-
nificant, and it is also important to know when the treatment starts to
reach its full effect, how long it lasts, and when and how much it de-
creases or changes over time. The proposed time-profile approach helps
to translate the weighted log-rank tests to quantitative effect estimates,

Fig. 5. Characteristics of the weighted log-rank test and proposed model when the prolonged effect τP is misspecified. The true τP is 8 months, and the true hazard ratio is 0.75.

Table 3
Spectrum of models for effect estimation.

Model Magnitude of the
effect

Shape of the effect (relative
magnitude over time)

Standard Cox
model

data pre-specified as a straight line
(constant effect)

Proposed model data pre-specified (time-varying effect)
Flexible models data data (time-varying effect)
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which facilitates the assessment of treatment effect in terms of its clinical
meaningfulness and economical values. The proposed method can be
routinely conducted to complement weighted log-rank test, especially in
the setting where non-proportional hazards are expected.
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A. Appendix

For a clinical trial with n patients randomized into a treatment arm or a control arm, let the treatment assignment be denoted by …X X X, , n1 2 , Xi =
1 if the i-th patient is assigned to the treatment arm and Xi = 0 otherwise. Let …T T T, , , n1 2 denote the event or censoring times and …δ δ δ, , n1 2 denote
the status (δi = 1 for an event and δi = 0 if censored). Let ≤ ≤ …≤T T T J(1) (2) ( ) denote the J ordered event times and …X X X, , , J(1) (2) ( ) denote the
corresponding treatment assignment.

The weighted log-rank test statistics is
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where Oj and Ej denote the observed and expected (under null hypothesis) number of events in the treatment arm at time T(j), Vj is the variance of Ej,
and w (.) is weight function of time with non-negative value.

We propose a Cox proportional hazards model with the hazard function of the i-th patient:
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where λ0(t) is the baseline hazard function and β is the coefficient of the treatment.
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where Rj is the set of patients at risk at time T(j).
The log partial likelihood l(β), the score function U(β), the information matrix I(β), and the score statistics ∕U I(0) (0) are as following:
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which is the weighted log-rank statistic Z.
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