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In humans, skin is a primary thermoregulatory organ, with vasodilation
leading to rapid body cooling, whereas in Rodentia the tail performs an
analogous function. Many thermodetection mechanisms are likely to be
involved including transient receptor potential vanilloid-type 4 (TRPV4), an
ion channel with thermosensitive properties. Previous studies have shown
that TRPV4 is a vasodilator by local action in blood vessels, so here, we inves-
tigatedwhether constitutive TRPV4 activity affectsMusmuscularis tail vascular
tone and thermoregulation. We measured tail blood flow by pressure plethys-
mography in lightly sedated M. muscularis (CD1 strain) at a range of ambient
temperatures, with and without intraperitoneal administration of the blood–
brain barrier crossing TRPV4 antagonist GSK2193874. We also measured
heart rate (HR) and blood pressure. As expected for a thermoregulatory
organ, we found that tail blood flow increased with temperature. However,
unexpectedly, we found that GSK2193874 increased tail blood flow at all temp-
eratures, and we observed changes in HR variability. Since local TRPV4
activation causes vasodilation that would increase tail blood flow, these data
suggest that increases in tail blood flow resulting from the TRPV4 antagonist
may arise from a site other than the blood vessels themselves, perhaps in
central cardiovascular control centres.
1. Introduction
Thermoregulation is one of the defining homeostatic processes common to
mammals; core body and brain temperatures are well maintained despite
challenges such as changing ambient temperature and exercise to the degree
that brain temperature rarely changes outside of a 3°C range [1–3]. Mammals
detect temperatures at both central andperipheral sites and responses to changing
temperatures can result both from local responses and central, hypothalamus-
coordinated autonomic responses [4–6]. Typical thermogenic effector mechan-
isms include liver thermogenesis and skeletal muscle shivering whereas cooling
mechanisms including behavioural changes and redistribution of blood
from core to peripheral vessels [4,5,7]. Rodents use basal metabolic rate and
non-shivering thermogenesis as their principle mechanisms for heat production,
mainly because of their small size [8]. In terms of heat loss, transfer of excess heat
to the environment is facilitated by so-called heat transfer zones, which are
usually found at the body extremities, for example, in humans, typically, acute
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heat loss is mediated by redistributing blood to cutaneous vas-
cular beds [5]. The location of critical heat transfer zones are
somewhat species specific, so for example, the ear for elephants
and rabbits [9,10], head vasculature in large dinosaurs [11,12]
and the feet [13] and tail for rodents [14–16]. The tail of rodents
is ideal as a heat transfer zone due to its glabrous nature [16].
It is thought that vasoconstriction rather than counter-current
heat exchange provides the major barrier to core-to-tail heat
flow [17].

In thiswork,we have investigated the role ofMusmuscularis
(mouse) transient receptor potential vanilloid-type 4 (TRPV4) in
this homeostatic system using a potent and selective TRPV4
inhibitor, GSK2193874. TRPV4 is one of several temperature-
sensitive ion channels and expressed in both the hypothalamus
and the vasculature, in both smooth muscle and endothelial
cells. Recently, there has been considerable interest in the
immune, neuromodulatory, cardiovascular and thermoregula-
tory potential of small molecule TRPV4 modulatory drugs,
such as GSK2193874 and HC-067047 [18–25].

TRPV4 is a relatively non-selective Ca2+ channel
(PCa/PNa 6-10) that was first characterized as mechanosen-
sory [26,27]; however, it is also activated by temperatures
greater than 30°C, and so, at physiological temperatures, it
would be expected to be constitutively active under basal
conditions [28–30]. Activation of TRPV4 leads to vasodilation
[31–34] and logically, therefore, transgenic elimination of
TRPV4 (TRPV4-/- knock out) would be expected to increase
blood pressure, but it does not [18,31].

The precise contribution of TRPV4 to thermosensing and
thermoregulation in vivo remains unclear. No changes in
escape latency from heat stimuli were observed in the hotplate
challenge [35,36]. However, post-subcutaneous injection of
capsaicin or carrageenan, TRPV4-/- mice showed longer
escape latencies from the hot surface compared to wild-type
[36]. In another study, it was shown that TRPV4 is required
for normal thermal responsiveness in vivo; on a thermal gradi-
ent, TRPV4-/- mice selected warmer floor temperatures. In
addition, TRPV4-/- mice also exhibited prolonged withdrawal
latencies during acute tail heating [37].

In terms of pharmacological manipulations, the activation
of TRPV4 with topological RN1747 decreased the core temp-
erature of Rattus norvegicus and increased tail vasodilatation
[38]. The effects of a TRPV4 inhibitor (HC067047), in the
same study, were mixed with increases of core body tempera-
ture with ambients of 26 and 30°C, but not 22 and 32°C.

In this study, we had aimed to investigate whether the
small molecule TRPV4 inhibitor, GSK2193874, would decrease
tail vasodilation response to elevated ambient temperatures. As
a surrogate for tail vasodilation, we used tail blood flow
measured by volume plethysmography [39]. We also investi-
gated frequency-domain heart rate variability (HRV). HRV is
a sensitive tool that assesses the time difference between con-
secutive heart beats to evaluate autonomic nervous system
modulation [40,41]. Accumulating data suggest that ultra-
short-range HRV can be successfully derived from as low
as 30 s of human ECG [42,43] and pulse rate variability
(estimation of variation in heart rate (HR) from photoplethysmo-
graphy) has recently been successfully measured from the rat
tail [44]. Potentially, measurement of HRV from tail-cuffs
would be a useful reduction, refinement or replacement (3Rs)
laboratory animal welfare advancement, since surgery is not
required. Therefore, we sought to, for the first time, (i) establish,
empirically, the length of HR record necessary for HRV in mice
and (ii) perform HRV from mouse tail volume plethysmogra-
phy using the CODA apparatus. HRV reflects homeostasis in
thermoregulation and blood pressure control and has been
shown to be modulated by thermal stimuli in humans [45].

Surprisingly, we found the TRPV4 inhibitor increased tail
blood flow when measured above mouse thermoneutrality,
and we saw inhibitor dependent changes in ultra-short-range
HRV raising the possibility that TRPV4 ion channels expressed
outside of the vasculature, for example in the central nervous
system, may also be involved with rodent thermoregulation.
2. Methods
Extended methods are included in the electronic supplementary
material, information, but briefly:

(a) Animals
Fourteen female adult CD1-mice (Charles River, UK) were used.
All experimental procedures were ethically approved by the
University’s Animal Welfare Committee and performed under
a UK Home Office Scientific Procedures licence (70/8746).

(b) Volume pressure plethysmography recording
We used the CODA tail volume pressure plethysmography (VPR)
system (Kent Scientific, Torrington, CT, USA) on control CD1-mice
and mice that had received the selective TRPV4 antagonist
GSK2193874. Full details of warming methodology and VPR
methods are included in the electronic supplementary material.
Note, all temperatures reported are ambient temperatures read
from the thermocouple.

(c) Statistical analyses
Blood pressure (MAP), HR and blood flow statistical comparisons
were made with the nlme package in R, which incorporates a
repeated-measures design. For HRV statistical comparisons, we
used MANOVA in Minitab (PA, USA). p≤ 0.05 was taken as
significant.

(d) Drugs
A sedative (midazolam 5 mg kg−1, i.p.) was supplied by our
animal service unit and administered prior to recording.
GSK2193874 (300 µg kg−1, i.p.) and DMSO were obtained from
Sigma-Aldrich. GSK2193874 was dissolved in DMSO at
20 mg ml−1 stock then diluted 1 : 100 before i.p. injection
(0.2 mg ml−1), following [23,34]. ‘Control’ includes 1% DMSO
and volume of injection was dependent upon animal weight.
3. Results
We measured MAP, HR and blood flow (Flow) in 14 animals
with and without GSK2193874 over the ambient temperature
range of 31°C to 36°C. These are plotted in two-factor
(treatment and temperature) format and analysed with a
repeated-measures, mixed effects design. There was a statisti-
cally significant effect of temperature on all parameters
measured, MAP (figure 1a: temperature F = 5.34, p≤ 0.05;
drug F = 0.38 p > 0.05, drug × temperature F = 0.17, p > 0.05),
HR (figure 1b: temperature F = 7.37, p≤ 0.05; drug F = 0.68
p > 0.05, drug × temperature F = 0.23, p > 0.05) and tail
blood flow (figure 1c: temperature F = 13.21, p≤ 0.005;
drug F = 5.57, p≤ 0.05, drug × temperature F = 14.00,
p≤ 0.0005). In the cases of HR and MAP, there was no
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Figure 1. Effects of pharmacological inhibition of TRPV4 on blood pressure,
HR and blood flow. (a) Mean arterial pressure at a range of ambient temp-
eratures in control and GSK2193874, there was a significant association with
temperature, but not drug. There was also no significant association between
temperature and drug (mixed effects model: see main text for details). (b)
Mean HR across a range of ambient temperature in control and
GSK2193874, overall there was a significant change of HR with temperature,
but no significant difference with drug and no significant association between
drug and temperature (mixed effects model: see main text for details). (c)
Tail blood flow across a range of ambient temperatures in control and
GSK2193874. Overall, there was a statistically significant increase of blood
flow with temperature and with GSK2193874 and a significant interaction
(mixed effects model: see main text for details). Overall, n = 14 animals
or for each temperature; 31°C n = (9,4) 32°C n = (10,4), 33°C n = (11,6),
34°C n = (10,7), 35°C n = (11,7) and 35°C n = (12,5). To investigate specific
temperature points that were different to the 31°C value, we treated temp-
erature as a factor and ran the estimated-marginal means method with the
R-package Emmeans. This consists of 66 pairwise comparisons and we used
Benjamini–Hochberg multiple comparison correction. In control, no individual
flow is significantly greater than that at 31°C; however, in GSK2193874, blood
flow at both 35°C and 36°C was significantly greater than at 31°C ( p < 0.05).
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significant effect of treatment with the TRPV4 antagonist
(GSK2193874). However, with tail blood flow, there was both
a significant increase with GSK2193874 treatment and a
very highly significant interaction between temperature and
GSK2193874 treatment.
Since we were able to derive beat-by-beat HR records for
several seconds (for example electronic supplementary
material, figure S1), we investigated whether HRV could be
captured over such short periods. To test whether this was
feasible, we simulated mouse HR interval records of decreas-
ing length using a modified version of McSharry et al. [46]
and then measured HRV spectral powers using the Lomb–
Scargle method [47,48] over 3000 simulations. Figure 2a
shows that just a few seconds of ECG are sufficient to
obtain a picture of the HRV in a mouse, in so far as, increas-
ing the simulation duration beyond this does not greatly
affect the HRV spectra. We therefore measured HRV power
in the 0.1 to 1.9 Hz bands in our samples of control and
GSK2193874 records (figure 2b,c) and compared these statisti-
cally with a MANOVA model, over a range of temperatures.
There was no overall statistical difference with temperature;
however, there was a statistically different set of spectra
between control and GSK2193874-treated spectra. Further-
more, with univariate analyses, there was a significant
difference between treatment and control at each individual
frequency except the 0.5 Hz banding.
4. Discussion
In this work, we investigate the role of TRPV4 in mouse
tail blood flow with a systemic inhibitor of TRPV4,
GSK2193874. Surprisingly, we find that tail blood flow is
increased by GSK2193874. There was also a detectable
effect of GSK2193874 on HRV, but no significant change in
blood pressure or HR.

(a) Blood flow, heart rate and blood pressure effects
GSK2193874 is a small lipid-soluble inhibitor of TRPV4 [19]
that crosses the blood–brain barrier well (brain : plasma
ratio = 0.6, personal communication with Dr David Behm of
GSK) and so there are several locations at which TRPV4
could potentially influence the control of blood flow in
response to elevated temperatures. A non-exhaustive list of
possible sites of action could include the vasculature or
cardiovascular control neurons.

TRPV4 is expressed in both vascular smooth muscle and
the endothelial cell lining [49]. Activation of these channels
leads to vasodilatation. It is difficult to assess the mechanism
of this vasodilatation without a full dose–response curve
(DRC, see Limitations). However, it is likely to involve both
endothelial and smooth muscle cells, potential release of
endothelial relaxation or hyperpolarization factors and,
ultimately, small local increases of Ca2+ activate potassium
channels which hyperpolarize the muscle cells and allow
relaxation/vasodilatation [31–33]. A TRPV4 inhibitor would
therefore be expected to cause vasodilation (or have no
effect if there was no constitutive TRPV4 activity) and so it
seems unlikely the increase in tail blood flow we report in
this study results from direct action on the vasculature.
Furthermore, if the effect of GSK2193874 were primarily on
blood vessels to cause dilation, we would have expected to
see an overall drop in MAP and possibly then a reflex
increase in HR since the baroreceptor loop features in estab-
lished mechanisms of cardiovascular control as well as,
specifically, thermoregulation [50,51]. We saw no change in
blood pressure or HR, although multivariate analysis detected
a small change in short-range HRV analysis. The potential for
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us to have missed such a baroreceptor-mediated effect due
Type II errors is discussed in the Limitations section below.

A second location of TRPV4 channels that may be of
relevance is the central nervous system, for example the
hypothalamus [52]. It is known that other transient receptor
potential channels influence the cardiovascular system via
changes in sympathetic activity [53,54]. Our previous work
shows that TRPV4 channels are located on pre-autonomic
neurons of the hypothalamic paraventricular nucleus (PVN)
and can influence cardiovascular control in response to osmo-
tic challenge [55,56], and this effect was abolished with a
TRPV4 inhibitor [55]. At the neuronal level, we have shown
that the action current frequency of parvocellular PVN neur-
ons is dramatically reduced when TRPV4 channels are
inhibited [56]. To date, there have been no studies that
have explored thermoregulatory roles for TRPV4 in central
cardiovascular control neurons.

(b) Heart rate variability effects
HRV analysis is an increasingly common method for cardio-
vascular assessment. In humans, for example, decreased
HRV (i.e. a very steady pulse) is an independent predictor of
cardiac mortality [57]. In animals too, it is proving increasingly
useful in a range of contexts including phenotyping transgenic
animals [58], investigating cardiovascular effects of drugs [59]
and predicting arrhythmias [60]. While there are many papers
analysing HRV in mice using radiotelemetry [61], we investi-
gated here whether it was possible to do this with VPR and
found that it was. It has previously been shown that relatively
long photoplethysmography recordings could be used for HRV
[44], with high accuracy, but the present study is the first to sys-
tematically analyse how long a recording needs to be. The
derivation of this short-range HRV from non-invasive appar-
atus may prove a useful advance in 3Rs. In the electronic
supplementary material, information, we compare (qualitat-
ively) data with our previous telemetric study [62]. Since the
average mouse HR is approximately eight times that of a
human, an 8 s segment would be equivalent to the standard
1 min of recording necessary to detect higher frequency com-
ponents of human ECG [41]. Here, simulation shows that
periodograms from very short segments of ECG are similar
to that of conventional 1 min records (figure 2a), and these
data themselves and this approach may be of field interest.
In terms of the response to temperature, we did not see an
overall effect on HRV, probably because temperature typically
affects the low-frequency powers, beyond the scope of
ultra-short-range recording [45]; however, GSK2193874 did
significantly alter overall frequency power curves.

(c) Limitations
We measured only ambient temperature and not core temp-
erature. We felt that the loss of this important information
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was necessary to avoid the disturbance of using a rectal ther-
mocouple on mice in the non-invasive recording equipment.
Also, we used sedation that could influence the whole animal
responses and only female mice, unlike many male only
studies [23,34]. Furthermore, to keep the study manageable,
we opted for a one antagonist dose study rather than a full
in vivo DRC, which would have been useful. It is difficult
to predict accurately the local concentration that an ion chan-
nel will ‘see’ when a drug given systemically will reach, but if
we assume that GSK2193874 has a typical volume of distri-
bution of between 1 and 10 l kg−1, our 300 µg kg−1 dose
would translate to approximately 40 to 400 nM, in the order
of the maximal dose for GSK2193874 on TRPV4 channels
[23]. Although GSK2193874 is highly selective for TRPV4
compared to the other 200 + proteins, it has been assayed
against [23], repeating our studies with TRPV4-/- lines [31]
would be the only way to confirm with certainty that the
true target was indeed TRPV4.

We encountered technical challenges too, e.g. recording
VPR data below 30°C (ambient) was unreliable, so we
report a relatively limited temperature range rather than
strictly hot versus cold. These limitations could be addressed
by a telemetric study, but large motivation for our current
approach was to use a non-invasive blood pressure design,
for 3Rs ethical reasons. Furthermore, as in many physio-
logical studies, statistical power was an issue. Our initial
design (see electronic supplementary material, information)
included a power analysis for HR and blood pressure,
which made a number of assumptions but passed 80%
power with around eight or nine animals. We then used 14,
however, we were not able to get all conditions for all animals
and so the final statistical power could be below 80%. We
have hypothesized that an increase of blood flow, by
TRPV4 antagonist in the absence of significant changes in
MAP/HR would be compatible with a central mechanism
of vasodilation. However, if we simply missed changes due
to a type II error, the vasodilation could result from
baroreflex-mediated mechanisms. This could be addressed
by either increasing animal numbers or by repeating similar
experiments with surgical or pharmacological block of the
baroreceptor reflex [63]. See electronic supplementary
material, information for further discussion.

In conclusion, this whole animal study shows that a
TRPV4 antagonist has a significant effect on tail blood flow
in the context of thermoregulation, but its site of action,
and the mechanism of such modulation remain to be deter-
mined. We also demonstrate non-invasive measurement of
frequency-domain HRV analysis from very short-range data
that may prove useful in future 3Rs friendly research.
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