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The generation of excessive amounts of reactive oxygen species (ROS) leads to cellular oxidative stress
that underlies a variety of forms of hepatocyte injury and death including that from alcohol. Although
ROS can induce cell damage through direct effects on cellular macromolecules, the injurious effects of
ROS are mediated largely through changes in signal transduction pathways such as the mitogen-
activated protein kinase c-Jun N-terminal kinase (JNK). In response to alcohol, hepatocytes have
increased levels of the enzyme cytochrome P450 2E1 (CYP2E1) which generates an oxidant stress that
promotes the development of alcoholic steatosis and liver injury. These effects are mediated in large part
through overactivation of JNK that alters cell death pathways. Targeting the JNK pathway or its
downstream effectors may be a useful therapeutic approach to the oxidative stress generated by CYP2E1
in alcoholic liver disease.
& 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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Introduction

Under normal physiological conditions hepatocytes process
low levels of reactive oxygen species (ROS) that are constantly
generated as a by-product of mitochondrial respiration. Many
pathophysiological states of liver injury stimulate increased ROS
production, and hepatocytes undergo oxidative stress when
ROS generation exceeds the neutralizing capacity of cellular
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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nonenzymatic and enzymatic antioxidants. Potential sources of
excessive ROS are increases in the activity of ROS-generating
intracellular enzymes including cytochrome P450 2E1 (CYP2E1)
and other enzymes such as xanthine oxidase and NADPH oxidase.
During liver injury, hepatocytes are also exposed to exogenous
ROS produced by macrophages and neutrophils activated as part of
the accompanying inflammatory reaction. Oxidative stress is
thought to be a critical factor in the development of alcoholic
and nonalcoholic fatty liver injury, and CYP2E1 activation is an
important source of ROS in chronic alcoholic liver disease [1].
Defining the mechanisms of hepatocyte resistance and injury from
CYP2E1-generated ROS is therefore essential to determining the
pathophysiological events that underlie alcoholic liver injury.
Moreover, delineating the mechanisms by which oxidant stress
leads to hepatocyte injury and cell death is important to our
understanding of many other forms of liver injury as oxidant stress
is thought to be a central mechanism of hepatocyte injury and
death in a variety of etiologies of liver injury including that from
other toxins [2,3], bile acids [4,5], and ischemia/reperfusion [6].

Oxidative stress can cause hepatocyte injury through direct
interactions with critical cellular macromolecules such as DNA,
proteins and lipids that destroy their function or trigger their
degradation, ultimately leading to cell death. Recent investigations
have stressed the importance of oxidant effects on cell signaling
pathways which when altered can themselves initiate hepatocel-
lular injury and death [7,8]. Low levels of ROS produced in
response to physiological stimuli such as growth factors and
Fig. 1. Regulation and effects of JNK signaling in hepatocytes. Activation of JNK in hepa
triggered by extracellular stimuli including growth factors and cytokines, injurious m
associated molecular patterns (DAMPS) and nutritional and metabolic factors. This pho
and the downstream mitogen-activated protein kinase kinases MKK4 and MKK7. JNK pho
activity is also down regulated by phosphatases. JNK signaling effects are predominantl
but also by the direct effects of JNK to lead to biological effects such as cell proliferatio
hormones function as second messengers to activate cell signal
transduction pathways that mediate normal cellular responses to
these factors [9]. In contrast, excessive amounts of ROS as occur
with liver injury can oxidize the protein kinases and phosphatases
that regulate critical cell signals and distort the activation of
signaling pathways such as the mitogen-activated protein kinases
(MAPKs). Protein modification by oxidants can occur in many
ways, but the most important ones involve thiol groups on
cysteine residues. Common redox alterations to thiols include
oxidation to sulfinic and sulfonic acids, glutathionylation, nitrosy-
lation and the formation of disulfide bonds. These modifications
can alter the activity of cell kinases that regulate the process of
liver injury and cell death. The mechanisms by which the chronic
oxidative stress generated by alcohol-induced CYP2E1 overexpres-
sion affects signal transduction pathways and in particular c-Jun
N-terminal kinase (JNK) signaling in alcoholic liver disease is the
focus of this review.
JNK MAPK pathway

Critical regulators of cellular responses to oxidant stress are the
members of the MAPK family of serine/threonine kinases of which
the principal members are JNK, extracellular signal-regulated
kinase (ERK) 1/2 and p38 [10]. The MAPK signaling pathways
modulate cellular responses to a variety of extracellular and
intracellular stimuli including oxidant stresses that induce cellular
tocytes occurs through phosphorylation of tyrosine and threonine residues that is
ediators including pathogen-associated molecular patterns (PAMPs) and damage-
sphorylation involves a multi-step protein kinase signaling cascade with MAPKKKs
sphorylation is negatively regulated by signaling through ERK1/2, PKC and PKD. JNK
y mediated through transcriptional activation of the c-Jun/AP-1 signaling pathway,
n or death. Red lines show inhibitory pathways.
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injury and death. In the liver, overactivation of JNK signaling in
particular has been identified as a common mechanism underlying
hepatocyte death including that from oxidant stress, tumor ne-
crosis factor (TNF), ischemia reperfusion injury and fatty liver
disease [11–13].

There are multiple JNK isoforms that are encoded for by three
genes. Two of these genes, jnk1 and jnk2, are expressed in all
tissues including the liver whereas jnk3 expression is restricted to
heart, brain and testes [10]. An examination of jnk gene function
in vivo has been possible through studies of jnk1 and jnk2 knock-
out mice [10,14]. Loss of either one of the two jnk genes leads only
to mild phenotypic abnormalities in T cell apoptosis and immune
responses [15]. In contrast, the jnk1/jnk2 double knockout is an
embryonic lethal because of severe dysregulation of brain apop-
tosis [16,17]. These findings suggest that there are overlapping
functions of jnk1 and jnk2, but recent studies have emphasized
distinct cellular roles for the products of the two genes. Distin-
guishing the specific functions of each gene has been complicated
by the fact that both jnk genes undergo alternative splicing to
create multiple 46 and 54 kDa protein isoforms that differ by the
presence of a COOH-terminal extension [10]. Distinct functions for
the products of the two genes have now been established for many
cellular processes including that of hepatocyte injury from oxidant
stress. However, whether protein isoforms from the same gene
have specific functions remains unknown. It has been postulated
that the different isoforms may exist to allow interactions with
specific substrates but this possibility remains a speculation.

JNK activation results from the sequential activation of a kinase
cascade (Fig. 1). Initiating events remain unclear, but G-proteins
such as Rac and cdc-42, the TNF receptor associated factor group of
adaptor proteins, and death effector domain containing proteins
can modulate the activation of JNK [18]. Activation proceeds
through a three tier, protein kinase cascade that starts with the
activation of any of at least 14 MAPK kinase kinases (MAPKKKs)
(Fig. 1), a redundancy that may allow for responses to distinct
stimuli [19]. The MAPKKK converge to activate the MAPK kinases
(MAPKKs) MKK4 and MKK7, which preferentially phosphorylate
JNK on tyrosine 185 and threonine 183, respectively [14]. JNK
activation can also be potentiated by kinase interactions with JNK-
interacting proteins [20]. Differential activation of either MKK4 or
MKK7 can occur with certain stimuli, but dual phosphorylation is
required for full JNK activation. Phosphorylation-dependent acti-
vation of JNK is counterbalanced by kinase dephosphorylation by
phosphatases [21]. An important mechanism for the dysregulation
of phosphatases and altered JNK signaling is phosphatase inactiva-
tion by oxidant stress. For example, JNK activation is sustained in
response to TNF in the absence of NF-κB signaling through TNF-
generated ROS which inactive JNK phosphatases through oxidation
of a cysteine in the catalytic domain [22]. Whether CYP2E1-
generated ROS phosphatase inhibition contributes to JNK activa-
tion with alcohol has not been examined. Increased proteasomal
degradation of MAPK phosphatase 1 has been demonstrated with
ethanol treatment of hepatoma cells, suggesting an alternative
mechanism by which phosphatases may be involved in JNK over-
activation with alcohol [23]. Additional studies are needed to
examine whether alcohol affects the activity of this phosphatase,
or other MAPK phosphatases, in ethanol-treated primary hepato-
cytes or mouse liver and whether CYP2E1-induced oxidant stress
regulates phosphatase activity. The level of JNK activity under
pathophysiological states such as alcohol-induced liver disease
therefore represents a complex balance between the stimulatory
actions of upstream kinases and down regulation by phosphatases,
both of which may be altered by ROS derived from alcohol
metabolism.

The primary action of JNK has been thought to be its phos-
phorylation of c-Jun at serine-63 and �73 which increases the
transcriptional activity of this critical AP-1 subunit. However,
increasing numbers of JNK substrates have been described subse-
quently and now number over 50 [24]. Prominent among these
factors are other AP-1 transcription factors, Jun B, Jun D and ATF-2
[24]. However, additional substrates include other transcription
factors (c-Myc, p53 and nuclear hormone receptors), mediators of
protein degradation (E3 ligase Itch), mitochondrial proteins (SH3
homology associated BTK binding protein (Sab)), metabolic reg-
ulators (insulin receptor substrate 1), microtubule-associated pro-
teins (stathmin) and cell death pathway proteins (Bcl-2, Bcl-XL,
Bid, Bim, Bad and Bax) [24]. This wide array of JNK phosphoryla-
tion targets further broadens the possible effects of JNK on cell
physiology and pathophysiology.
Regulation of ROS-induced cell death by MAPK signaling

JNK signaling in menadione-induced oxidant stress

Investigations of the effects on cultured hepatocytes of an
oxidative stress from sources other than alcohol have demon-
strated the importance of MAPKs including JNK in regulating
hepatocyte death from ROS. Studies using the model of super-
oxide-induced oxidant stress generated by the redox recycler
menadione in a nontransformed rat hepatocyte cell line have
revealed that non-toxic concentrations of menadione induce
transient, low-level activation of JNK and ERK1/2, but fail to
activate p38 MAPK [25]. In contrast, treatment with higher, toxic
menadione concentrations leads to markedly increased and pro-
longed JNK and ERK1/2 activation [25]. JNK overactivation med-
iates hepatocyte death from menadione-induced oxidant stress as
adenoviral expression of a dominant negative c-Jun, the down-
stream substrate of JNK, blocks death from menadione [25]. These
findings are consistent with the emerging concept that the
mechanisms by which MAPK signaling can be induced by many
different stimuli, yet mediate very specific and even opposing
biological effects, include alterations in either the duration of
kinase activation or in the subcellular localization of the MAPK.
Prolonged hepatocyte JNK activation has emerged as an important
signal that mediates death not only from oxidant stress but also
from many other factors such as TNF [26]. Subsequent studies
revealed that the two jnk genes have opposing functions with jnk1
promoting menadione-induced cell death and jnk2 blocking cell
death [27]. The specific targets that mediate the death and survival
signals of jnk1 and jnk2 respectively, remain to be determined,
although studies in a nonalcoholic fatty liver disease (NAFLD)
model have identified that an important jnk2 protective function
in the liver is to down regulate the pro-apoptotic family member
Bim [28].

Activation of ERK1/2 MAPK functions in hepatocyte resistance
to cell death from menadione through crosstalk with JNK. ERK1/2
inhibition sensitizes hepatocytes to apoptosis from previously
nontoxic concentrations of menadione in association with pro-
longed JNK activation. That ERK1/2’s protective effect is mediated
by down regulation of JNK/AP-1 signaling was confirmed by the
finding that a c-Jun dominant negative blocked death from ERK1/2
inhibition and low-dose menadione, identical to findings that
c-Jun inhibition prevents death from high, toxic concentrations
of menadione [25]. Thus, the MAPKs JNK and ERK1/2 perform
opposing functions in the regulation of hepatocyte survival after
oxidant stress. ERK1/2 effectively curtails JNK activation at low
levels of oxidative stress, whereas with higher levels of oxidants,
JNK overactivation occurs despite ERK1/2 activity and cell death
ensues. ERK1/2 may function to induce phosphatases that effec-
tively inactivate JNK at low levels of oxidative stress. At higher
levels of oxidant stress these phosphatases may be inactivated by
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oxidant-induced protein modifications, leading to JNK overactiva-
tion despite ERK1/2 activity. The pro-death effect of JNK activation
and protective function of ERK1/2 signaling in menadione-induced
oxidative stress have been confirmed in similar studies performed
in primary rat hepatocytes [29]. Hepatic ERK1/2 activation occurs
in rodent alcohol models [30], but whether it alters JNK signaling
induced by alcohol has not been examined.

Given the critical importance of the regulation of JNK activity in
determining hepatocyte sensitivity to death from oxidant stress, a
more complex network of checks on JNK signaling is needed in
addition to the ERK1/2 pathway. One identified negative regulator
is menadione-induced activation of protein kinase C (PKC) which
when activated phosphorylates protein kinase D (PKD) causing its
nuclear translocation [31]. PKC inhibition leads to increased cell
death from menadione by the mechanism of JNK overactivation
and can be prevented by the expression of a constitutively active
PKD indicating that PKD is the downstream effector of PKC
signaling. Co-inhibition of ERK1/2 and PKC/PKD signaling results
in significant increases in levels of phosphorylated JNK/c-Jun and
cell death when compared to inhibition of either ERK1/2 or PKC
alone. These findings indicate that the ERK1/2 and PKC/PKD
signaling pathways act independently and in parallel to down
regulate JNK/c-Jun signaling and protect against hepatocyte death
from oxidative stress [31]. Factors other than kinase-dependent
signaling pathways are also likely involved in JNK regulation and
need to be more carefully examined for a role in JNK overactiva-
tion. For example, menadione has been shown to induce heme
oxygenase in hepatocytes, and the carbon monoxide produced by
the actions of this enzyme protects against menadione-induced
cell death [32]. This effect occurs in association with p54 JNK down
regulation [32], although decreased JNK has not been proven to
account for the protective effects of carbon monoxide.

MAPK signaling in hepatocyte death from hydrogen peroxide

Additional confirmation of the role of ERK1/2 signaling in
resistance to oxidant stress has come from studies of hydrogen
peroxide-treated primary rat hepatocytes. Although one study
indicated that MAPK signaling is not affected by hydrogen per-
oxide-induced oxidant stress [29], investigations by Rosseland
et al. [33], demonstrated that hydrogen peroxide induces ERK1/2
activation that mediates hepatocyte survival from hydrogen per-
oxide toxicity. In contrast to the proliferative stimulus of epithelial
growth factor receptor-dependent activation of ERK1/2 that in-
duces its nuclear translocation, hydrogen peroxide-induced acti-
vation is epithelial growth factor receptor independent and results
in ERK1/2 retention in the cytoplasm. This difference in subcellular
localization may determine whether hepatocyte ERK1/2 activation
triggers a proliferative or cytoprotective cellular response after an
oxidative stress. Whether the protective effects of ERK1/2 in
hydrogen peroxide-induced hepatocyte death are mediated
through JNK down regulation has not been determined and needs
to be examined.

MAPK involvement in acetaminophen-induced oxidant stress

Another well-studied model of hepatocyte injury that results
from acute CYP2E1-mediated oxidant stress is that induced by
acetaminophen (APAP). Hepatocellular injury from APAP results
from its CYP2E1-dependent metabolism to the electrophile
N-acetyl-p-benzoquinone imine which binds glutathione, and
APAP at sufficient concentrations depletes the cell of this critical
nonenzymatic antioxidant [34]. When glutathione depletion en-
sues, free electrophiles bind to other thiol-containing proteins and
this process or the resultant oxidative stress induces hepatocel-
lular injury and death. Similar to findings in the menadione and
hydrogen peroxide models of oxidant injury, liver injury from
APAP is not the result of direct oxidant damage but rather is
actively mediated by sustained JNK activation [35]. This conclusion
is derived from comprehensive studies by Kaplowitz and collea-
gues in which APAP injury was prevented when JNK function was
inhibited by a pharmacological agent, genetic knockout or anti-
sense oligonucleotides [35]. In contrast to findings in the mena-
dione model, the death effect of JNK is principally mediated by
JNK2 isoforms as inhibition of JNK2 but not JNK1 decreases liver
injury, although in the absence of JNK2 the loss of JNK1 promotes
additional resistance to toxicity. In response to APAP-generated
ROS from the mitochondria, activated JNK translocates to mito-
chondria and compromises mitochondrial bioenergetics by inhi-
biting mitochondrial respiration which leads to cell death [36].
Recruitment of JNK to the mitochondria is dependent on its
binding to the mitochondrial outer membrane protein Sab [37].
These studies further support the critical involvement of JNK
overactivation as a common mechanism of hepatocyte injury and
death from a variety of forms of oxidative stress, and suggest that
Sab may be an appropriate therapeutic target in any ROS-mediated
hepatic disease that leads to JNK overactivation, including that
induced by alcohol.
Effects of CYP2E1 on JNK signaling and cell death from chronic
oxidative stress

CYP2E1-induced JNK overactivation is a mechanism for the
development of alcohol-induced steatohepatitis

CYP2E1 belongs to a family of heme-containing proteins that
regulate the hepatic metabolism of a variety of endogenous and
exogenous compounds. Among the various CYP family members,
CYP2E1 is characterized by its broad spectrum of substrates and
generation of large amounts of ROS when enzymatically active
[38]. The role of CYP2E1 in alcoholic liver disease has been well
demonstrated through a series of studies in models of hepatoma
cell and hepatocyte and mouse CYP2E1 overexpression or phar-
macological or genetic inhibition largely by the studies of Ceder-
baum and coworkers (summarized in Table 1). Ethanol is a well-
known inducer of CYP2E1 [38], and increased hepatic CYP2E1
expression has been mechanistically linked to both the excessive
lipid accumulation and hepatocellular injury that underlie the
pathophysiology of alcoholic liver disease [39]. CYP2E1 knockout
mice exhibit significantly reduced hepatic steatosis and liver injury
from chronic ethanol exposure [40]. A possible mechanism by
which CYP2E1 increases liver injury is through the sensitization of
hepatocytes to injury from lipopolysaccharide-stimulated TNF
through activation of JNK signaling [41]. This injury is secondary
to oxidative stress as it can be inhibited by antioxidants such
as N-acetylcysteine and triggers apoptosis that can be blocked
by cyclosporine [42,43]. Restoration of redox equivalents using
a-den-o-syl-methionine also prevents injury in ethanol-treated
mice and apoptosis that is accompanied by mitochondrial dys-
function and swelling [44]. In all of these studies, oxidative stress
was found to over activate JNK which then promoted liver injury.
As with other types of hepatocyte injury-associated oxidative
stress, the JNK isoforms contribute differentially to alcohol-in-
duced liver injury. Deletion of jnk1, but not jnk2 reduces alcohol-
induced liver injury [45]. JNK1 has a comparable role in nonalco-
holic liver disease [46], clearly implicating JNK1 overactivation as a
central mechanism of liver injury in a fatty liver.

In vitro studies in a transgenic, CYP2E1-overexpressing hepa-
toma cell line have similarly demonstrated that CYP2E1 over-
expression sensitizes to injury from cofactors such as TNF [47].
That CYP2E1 alters the antioxidant capacities of hepatocytes was
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confirmed by studies of thioredoxin, a redox protein and cytosolic
sensor of oxidative stress. siRNA-induced knockdown of cytosolic
and mitochondrial thioredoxin in hepatoma cells augments
CYP2E1-induced activation of JNK signaling and the resultant
hepatocyte cell death [48].

CYP2E1-mediated JNK-dependent effects on autophagy in alcoholic
liver disease

Another possible mechanism by which CYP2E1-induced JNK
signaling may regulate the development of alcohol-induced liver
disease is through effects on the lysosomal degradative pathway
of macroautophagy [49]. Autophagy modulates both hepatocyte
lipid metabolism and cell death suggesting that the activity of
this pathway can be an important determinant of the develop-
ment and progression of fatty liver disease [49,50]. The effects of
alcohol on levels of autophagic function are controversial with
initial studies in rodent binge alcohol models demonstrating an
increase in autophagy with ethanol [51], whereas subsequently
the effects of chronic alcohol have been reported to decrease
autophagy [52]. Autophagy is critical for hepatocyte resistance to
death from menadione-induced oxidative stress [53], suggesting
that au-toph-a-gy may be protective against CYP2E1-generated
oxidant injury. Liver injury from alcohol is blocked by agents that
augment autophagy [51,54], indicating a protective function for
this degradative pathway in this disease.

Some evidence suggests that JNK may mediate the effects of
CYP2E1 on autophagy. CYP2E1 has been reported to decrease
autophagy in an acute in vivo alcohol model by a JNK-dependent
mechanism, however the studies did not include actual measures
of autophagic function [55]. This result runs counter to findings in
non-hepatic cell types in which JNK acts as an inducer of
autophagy [56]. In vitro inhibition of autophagy in CYP2E1-
expressing HepG2 cells increases levels of active JNK that promote
liver injury, suggesting that autophagy may also regulate the
effects of CYP2E1 on JNK activation [57]. With regards to the
regulation of lipid metabolism, acute alcohol exposure decreases
autophagic function with a resulting increase in lipogenic sterol
regulatory element-binding protein and subsequent hepatic stea-
tosis [55]. These findings were supported by both in vitro and
in vivo studies using cannabidiol, a cannabinoid receptor agonist.
Pretreatment of mice and hepatoma cells with cannabidiol de-
creased hepatic steatosis following acute ethanol exposure by
blocking autophagy [58]. The clinical applicability of these ob-
servations is limited by the nervous system side effects of
cannabinoids, but peripherally acting cannabinoid agonists are
being developed. Likewise, pharmacological inhibition of autop-
hagy in a short-term in vivo ethanol model worsens steatosis and
liver injury in CYP2E1-overexpressing mice but not in knockout
mice [59]. Thus, overall the data suggest that CYP2E1-dependent
JNK activation may impair autophagic function that is necessary to
limit alcohol-induced steatosis and injury thereby providing a
novel mechanism by which JNK activation promotes alcoholic liver
disease.

Alcohol-induced CYP2E1 expression in cells other than hepatocytes

This review has focused on the relationship between CYP2E1
overexpression and JNK signaling in hepatocytes. Recent studies
have documented that alcohol feeding increases CYP2E1 expres-
sion in cells other than hepatocytes including adipocytes, lym-
phocytes and monocytes. Adipocyte CYP2E1 overexpression pro-
motes adipose tissue inflammation and reduces adiponectin se-
cretion although these effects have not been linked to MAPKs
[60,61]. With acute or chronic ethanol exposure CYP2E1 is in-
creased in peripheral lymphocytes resulting in increased lipid
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peroxidation and activation of JNK and c-Jun in these cells [62].
This finding suggests that blood lymphocytes could serve as a
more readily available source to determine human CYP2E1 and
JNK activity and predict an individual’s likelihood to develop liver
injury. In vitro ethanol treatment increases CYP2E1 expression in
monocytes by a JNK-dependent mechanism [63]. In nonalcoholic
liver disease controversy exists over whether it is JNK overactiva-
tion in hepatocytes and/or inflammatory macrophages that med-
iates the development of steatosis and hepatic injury [13]. The
specific liver cell types that undergo JNK activation and mediate
the various manifestations of alcoholic liver disease have not been
established and require further study.

CYP2E1/JNK overexpression alters other forms of hepatocyte injury

Changes in cellular signaling pathways such as JNK MAPK that
occur in response to chronic oxidant stress generated by alcohol-
induced CYP2E1 expression can precondition the hepatocyte and
alter the outcome of injury from other sources of acute oxidative
stress. CYP2E1 overexpression in a non-transformed hepatocyte
cell line sensitizes to APAP injury but protects against hydrogen
peroxide- and superoxide-induced injury [64]. These findings
demonstrate that alcohol-induced increases in CYP2E1 may have
differential effects on cellular injury from other sources of oxida-
tive stress in the liver. Low levels of oxidative stress from CYP2E1
overexpression induce protective ERK1/2 MAPK overactivation
that decreases menadione-induced hepatocyte injury but sensi-
tizes to cell death from fatty acids and 4-hydroxynonenal [65,66].
Likewise, increased expression of CYP2E1 in vitro and in vivo
sensitizes hepatocytes to death from TNF [67,68], a central
mediator of many forms of liver injury other than that from
alcohol. In both studies the increase in injury was shown to be
JNK mediated, indicating that synergistic effects of oxidant stress
from CYP2E1 overexpression and other injurious stimuli on JNK
can potentiate liver injury.
ROS-JNK signaling as a therapeutic target in fatty liver disease

The presumed central involvement of oxidative stress in many
types of human pathophysiology has led to a number of clinical
trials of antioxidant therapies. In general these investigations have
shown no benefit, or even detrimental effects, on the disease
process being treated [69]. This failure may be the result of the fact
that low, physiological levels of ROS have critical beneficial effects
through the modulation of cell signaling pathways. In hepatocytes,
basal ROS production may mediate antioxidant responses that
precondition these cells to block subsequent injury from higher,
injurious levels of ROS [70]. The failure of antioxidant therapies
has suggested that what may be needed is more directed therapy
against downstream effectors of ROS-stimulated death pathways.
In alcoholic liver disease, JNK in particular may be one target since
JNK activation is central to the death effects of both CYP2E1 and
other injurious factors such as proinflammatory cytokines. With
excessive alcohol intake hepatic inflammation develops from
disruption of the intestinal barrier, and translocation of lipopoly-
saccharide into the hepatic circulation causes Kupffer cell JNK
activation and release of pro-inflammatory cytokines [71]. These
cytokines - among which TNF is most prominent - in turn cause
hepatocyte activation of JNK. Thus, JNK could serve as a more
specific and central target in alcohol-induced chronic liver disease.
However, despite the development of small molecule JNK inhibi-
tors with nanomolar potency, their use has been tempered by the
complexity of JNK’s biological effects including the ability of JNK
isoforms to have different protective and pro-death effects [27]. It
may therefore be necessary to target factors even more down-
stream of JNK such as Sab.

NAFLD bears many similarities to alcohol-induced fatty liver,
and oxidant stress has been implicated as a critical mechanism of
liver injury and inflammation in this disease as well [72]. Toxic
lipids are thought to promote mitochondrial dysfunction, endo-
plasmic reticulum stress and resultant ROS generation that are in
part responsible for disease progression to liver injury [73].
Interestingly CYP2E1 overexpression is seen in nonalcoholic fatty
liver disease. Increased CYP2E1 expression occurs in the nutri-
tional mouse models of NAFLD induced by a methionine- choline-
deficient or high fat diet [74,75]. CYP2E1 overexpression also
occurs in human NAFLD [76,77]. In high fat diet-induced murine
NAFLD, CYP2E1 promotes the development of fat accumulation,
oxidative stress, insulin resistance and liver injury as demon-
strated by a reduction in all of these events in CYP2E1 knockout
mice [74]. JNK overexpression is also mechanistically linked to
both hepatic steatosis and injury in nonalcoholic fatty liver injury
[28,46], but whether CYP2E1 overexpression contributes to JNK
activation in this disease is unknown. CYP2E1 null mice do have
decreased JNK activation in response to HFD-feeding, but it is has
not been determined whether this effect is a mechanism of the
decreased liver injury in these mice, or merely an effect secondary
to the prevention of liver damage.

Increased expression of CYP2E1 may also affect hepatocyte
insulin sensitivity in NAFLD. CYP2E1-induced oxidant stress de-
creases insulin-mediated reductions in hepatic gluconeogenesis
through increased inhibitory serine phosphorylation of insulin
receptor substrate 1 in hepatocytes [78]. The role of CYP2E1 in
insulin resistance is further supported by studies in which hepa-
tocyte-specific overexpression of human CYP2E1 in mice led to
increased insulin resistance with impaired insulin signaling and
decreased activation of the downstream transcription factor Fox-
O1a even on a standard diet with only 20% of calories derived from
fat [79]. Insulin itself decreases CYP2E1 expression by a regulatory
feedback loop dependent on phosphatidylinositol 3-kinase signal-
ing [80]. Conversely, ketone bodies, a catabolic product of meta-
bolism in the absence of insulin, elevate CYP2E1 protein levels by
posttranslational mechanisms to increase insulin resistance [81].
In human NAFLD other complex interactions may regulate CYP2E1
in the context of insulin resistance such as hypoxia from the
associated syndrome of obstructive sleep apnea [82]. In mice with
a hepatocyte knockout of the phosphatase and tensin homolog
deleted on chromosome 10 gene, hypoxia aggravated steatohepa-
titis in concert with increased expression of CYP2E1 [83].

Although antioxidant administration has not been shown to
have beneficial therapeutic effects in alcoholic liver disease in the
clinical trials conducted to date, a multicenter, placebo-controlled
trial has demonstrated beneficial effects of vitamin E in nonalco-
holic steatohepatitis [84]. In this trial inflammation, signs of
hepatocellular injury (ballooning) and hepatic steatosis, but not
hepatic fibrosis, improved in vitamin E-treated patients. Only 43%
of nonalcoholic steatohepatitis patients on vitamin E responded,
and subsequent analysis revealed that a positive response was
associated with decreased activation of the hedgehog signaling
pathway [85]. Responsiveness was dependent on genetic poly-
morphisms of the vitamin E metabolizing cytochrome CYP4F2
[86]. In alcoholic liver disease, vitamin E exerts antioxidant effects
in animal models of ethanol exposure [87], however these effects
have been not successfully transferred into the clinic. Further
studies that aim at identifying selective and targetable mediators
of the CYP2E1-ROS-JNK injury cascade may yield new therapies for
alcoholic liver disease, but may have to account for genetic
differences towards antioxidant treatment.
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Conclusions

Oxidant stress from excessive ROS generation regulates phy-
siological and pathophysiological processes in the liver and con-
tributes to a variety of liver diseases. The generation of ROS by
CYP2E1 is centrally involved in alcoholic, and perhaps nonalco-
holic liver disease as well, through the regulation of hepatic
steatosis, hepatocellular death and insulin sensitivity. Critical to
the ability of CYP2E1 overexpression to promote alcoholic liver
disease is the overactivation of JNK MAPK. The mechanisms by
which CYP2E1-induced JNK overactivation modulates alcoholic
liver injury remain to be determined but may be through additive
effects on JNK activation together with other injurious factors such
as the proinflammatory cytokine TNF. Alternatively CYP2E1-in-
duced JNK activation may alter cellular processes such as autop-
hagy. A better understanding of the downstream effects of the
CYP2E1-ROS-JNK cascade may lead to the development of more
targeted and therefore effective therapies for alcoholic liver
disease.
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