
Identification of Diphtheria Toxin Receptor 
and a Nonproteinous Diphtheria Toxin-binding Molecule 
in Vero Cell Membrane 
Eisuke Mekada, Yoshio Okada, and Tsuyoshi Uchida 
Institute for Molecular and Cellular Biology, Osaka University, Suita, Osaka 565, Japan 

Abstract. Two substances possessing the ability to 
bind to diphtheria toxin (DT) were found to be present 
in a membrane fraction from DT-sensitive Vero cells. 
One of these substances was found on the basis of its 
ability to bind DT and inhibit its cytotoxic effect. This 
inhibitory substance competitively inhibited the bind- 
ing of DT to Veto cells. However this inhibitor could 
not bind to CRM197, the product of a missense muta- 
tion in the DT gene, and did not inhibit the binding of 
CRM197 to Vero cells. Moreover, similar levels of the 
inhibitory activity were observed in membrane frac- 
tions from DT-insensitive mouse cells, suggesting the 
inhibitor is not the DT receptor which is specifically 
present in DT-sensitive cells. The second DT-binding 
substance was found in the same Vero cell membrane 

preparation by assaying the binding of ~25I-labeled 
CRM197. Such DT-binding activity could not be ob- 
served in membrane preparation from mouse L cells. 
From competition studies using labeled DT and CRM 
proteins, we conclude that this binding activity is due 
to the surface receptor for DT. Treatment of these sub- 
stances with several enzymes revealed that the inhibi- 
tor was sensitive to certain RNases but resistant to 
proteases, whereas the DT receptor was resistant to 
RNase but sensitive to proteases. The receptor was 
solubilized and partially purified by chromatography 
on CM-Sepharose column. Immunoprecipitation and 
Western blotting analysis of the partially purified 
receptor revealed that a 14.5-kD protein is the DT 
receptor, or at least a component of it. 

D 
PHTHERIA toxin (DT) ~ is a cytotoxic protein which 
inhibits cellular protein synthesis (4, 40) in eukary- 
otes by catalyzing the ADP-ribosylation of EF-2, 

which results in its inactivation (9, 12). The first step of in- 
toxication by DT is binding of the toxin to a susceptible cell. 
A specific receptor for DT is believed to be involved in this 
step (13, 43). Cells from a number of mammals including hu- 
mans and monkeys are sensitive to DT, but mouse and rat 
cells are insensitive (29). Several lines of evidence show that 
the difference in sensitivity to DT between species is primar- 
ily determined by the presence or absence of a cell surface 
receptor (18, 28, 31, 48). However, this receptor has not been 
isolated. The toxins bound to cell surface are then internal- 
ized by endocytosis (33), and the toxins, or at least their A 
fragments, enter the cytoplasm to exert its effects. Like in the 
case of Semliki Forest virus (SFV) (11), intravesicular low 
pH is required for the penetration of the toxin into cytoplasm 
(6, 17, 20, 27, 36). 

Some information has been obtained on the biochemical 
properties of DT receptor. The treatment of DT-sensitive 
cells with some proteases or phospholipase C reduces the 
sensitivity to DT (32), whereas treatment with neuramini- 
dase increases the sensitivity (26). Although these studies 

1. Abbreviations used in this paper: CRMs, cross reacting materials related 
to diphtheria toxin; DT, diphtheria toxin. 

give a clue to the chemical nature of DT receptor, the possi- 
bility that extensive alteration of cell surface affecting the 
sensitivity of cells can not be neglected. Some of the most 
specific information on the DT receptor was obtained from 
immunoprecipitation studies, after surface iodination of DT- 
sensitive cells and addition of DT and anti-DT antibody to 
the cell lysates. A glycoprotein of 160 kD was shown to be 
associated with DT binding upon SDS-PAGE (35). However, 
this protein has not been isolated in biologically active form, 
thus it has been uncertain whether it has a function in the 
binding of DT to cells and/or its internalization. 

A strategy to isolate the DT receptor has been to explore 
its binding activity for DT in isolated membrane or using 
solubilized membrane fractions. It has been shown that there 
is a correlation between the amount of the association of la- 
beled toxin and the sensitivity of the cells to the toxin (28, 
31). However, the specific binding of labeled DT to isolated 
membrane has not been observed as yet. When binding 
studies were performed with labeled toxin and an isolated 
membrane fraction (2) or with intact cells at relative high 
toxin concentrations (16), a significant association of toxin 
with DT-insensitive cells was observed, and the amount of 
toxin associated with cells was similar for DT-insensitive and 
DT-sensitive cells. These results have led to the interpretation 
that DT-insensitive cells also bear DT receptors. 

In this paper we describe two DT-binding molecules that 
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are present in isolated Vero cell membranes.  One of these 
substances is referred to as inhibitor, because it inhibited the 
cytotoxic effects of DT and it is found on both DT-sensitive 
cells and DT-insensitive cells. The other substance, which is 
the DT receptor, was found to bind to both DT and CRM197 
with high affinity and is present only on DT-sensitive cells. 
Using the CRM197 it was possible to identify the DT recep- 
tor as a single protein band after SDS-PAGE. 

Materials and Methods 

Enzymes 

RNase A from bovine pancreas, RNase T1 from Aspergillus, DNase I from 
bovine pancreas, DNase II from bovine spleen and ¢t-chymotrypsin from 
bovine pancreas were purchased from Sigma Chemical Co. (St. Louis, 
MO). Nuclease PI from Penicillium citrinum was obtained from Yamasa 
Shoyu Co. (Choshi, Japan). RNase T2 from Aspergillus orizae and RNase 
U2 from Ustilego sphaerogem were obtained from Sankyo Co. (Tokyo, Ja- 
pan). Trypsin (TPCK-treated) was from Worthington Biochemical Corp. 
(Freehold, NJ). 

Buffers 
PBS (150 mM NaCl, 2.7 mM KCI, 10 mM phosphate buffer, pH 7.2); Buffer 
A (130 mM NaC1, 50 mM Hepes, 10 mM KC1, 0.5 mM CaCI2, 1 mM 
NAN3, 1 mg/ml BSA, pH 7.0); Buffer B (10 mM phosphate buffer, 30 mM 
13-D-octylglucoside, pH 7.2); Buffer C (150 mM NaCI, 10 mM phosphate 
buffer, 20 I.tg/ml antipain, 20 lag/ml leupeptin, 10 I.tg/ml chymostatin, pH 
7 . 2 ) ;  B u f f e r  D (130 mM NaCl, 50 mM MES [2-(N-morpholino)ethane- 
sulfonic acid] 10 mM KC1, 0.5 mM CaCl2, 1 mM NAN3, 1 mg/ml BSA, 
pH 6.1). 

Assays of Protein Content and RNA Content 

The protein contents of membranes were determined by microbiuret method 
(14) with BSA as standard. The protein contents of samples containing oc- 
tylglucoside were measured by the method described previously (38). The 
RNA contents of membranes were determined by orcinol reaction (24) as 
described previously (39). The RNA content of samples containing octyl- 
glucoside was determined after removing the detergent by ethanol precipi- 
tation. 

DT and Related Proteins 

DT, CRM45, CRM176, CRM197, and CRM228 were produced as described 
previously (44). The nicked form of CRM197 was prepared by treatment 
with trypsin (7). Fragment A of diphtheria toxin was purified from the cul- 
ture fluid of the C7(15-22) strain (45). 

Preparation of Membranes from Cultured Cells 
Veto cells and other cultured cells were grown on plastic dishes (150-mm 
wide), collected with rubber policemen, and stored at -80°C  until use. 
Ehrlich ascites tumor cells were grown in and harvested from mouse abdo- 
men. The membrane fractions were obtained by an alkali-extraction method 
essentially as described by Thom (42). In our study, cells were extracted 
with 20 mM borate buffer, pH 10.2, 2 mM EDTA, 1 mM phenylmethylsul- 
fonyl fluoride (PMSF). The plasma membrane-rich pellet were resuspended 
and repelleted twice in Buffer C. 

Inhibition of the Cytotoxicity of DT 
Cytotoxicity of DT was measured by assaying the rate of protein synthesis 
in cultured cells as described previously (27). The inhibitory activity, [I], 
was calculated by the following formula, 

(Ci - Ct) × 100, 
[1] - ( C o  - Ct) 

where Co is the radioactivity incorporated by cells without toxin without 
the inhibitor, Ct is the count incorporated by cells with toxin without the 
inhibitor, and Ci is the count incorporated by cells with both toxin and the 
inhibitor. We defined one unit of inhibitory activity as the amount which 

gives an inhibitory activity of 50 under the assay conditions described 
above. The inhibitory activity of samples containing octylglucoside was 
measured after removing the detergent by dialysis. 

Effect of the Inhibitor on the Binding of DT 
or CRMs to Vero Cells 

Indirect assay of binding of DT or CRMs was carried out using ~25I-labeled 
anti-DT monoclonal antibody as described previously (25). 

Solubilization of the Inhibitor from Vero Cell 
Membrane and Chromatography on DEAE-Cellulose 

Veto cell membrane suspended in buffer C (15 ml containing 60 mg protein) 
was mixed with 15 ml of 10 mM phosphate buffer, pH 7.2, and with 1.2 
ml of 1 M octylglucoside, then the mixture was put on ice for 30 min, fol- 
lowed by centrifugation at 80,000 g for 60 min. The supernatant was applied 
to a DE52 (Whatman Inc., Clifton, NJ) column. The column was washed 
with Buffer B containing 0.2 M NaCI, and then eluted with a linear gradient 
of NaCI (0.2-0.7 M) in Buffer B. The inhibitory activity of each fraction 
was assayed after dialysis. 

Treatment of the Inhibitor with Enzymes 

For treatment with nucleases, the inhibitor purified by DE52 chromatogra- 
phy (10 U of the inhibitory activity) was dialyzed against PBS, then incu- 
bated at 37°C for 1 h with each enzyme in the presence of 1 mg/ml BSA. 
For treatment with RNase U2 and DNase II, the enzyme reaction was car- 
ried out in the presence of 50 mM acetate buffer, pH 5.0. For treatment with 
protease, the dialyzed inhibitor and each enzyme were incubated at 37°C 
for 60 rain, and the reaction was stopped by addition of 1 mM PMSE 50 
U/ml aprotinin and 2 mg/ml BSA. 

Binding of p25I]CRM197 to Isolated Membranes 

Nicked CRM197 was labeled with NaL25I using Enzymobeads (Bio-Rad 
Laboratories, Richmond, CA) as described (25). Membrane fractions were 
prepared from Vero cells or L cells by the alkali-extraction method. Mem- 
branes were washed twice and resuspended with Buffer D by repeated 
aspiration through a 26-gauge needle. The binding reaction was carried 
out in a 200 ~tl reaction volume (0.5-1 mg of protein) with 2-20 ng of 
[r25I]CRMI97 at 24°C for 4 h unless otherwise stated, with gentle shak- 
ing. Then the mixture was rapidly filtered on Millipore GVWP filters, and 
each filter was washed with 10 ml of cold Buffer D. The amount of radioac- 
tivity retained on each filter was counted in a "/-counter. Nonspecific binding 
was assessed in the presence of a 1,000-fold excess of unlabeled CRMI97. 

Solubilization of CRMl97-binding Activity from 
Isolated Membrane and a Column Assay 

Vero cell membranes were suspended with Buffer A at a protein concentra- 
tion of 10 mg/ml, and solubilized by addition of 1 M octylglucoside to a 
final concentration of 60 mM. The mixture was incubated for 30 rain on 
ice and then centrifuged at 80,000 g for 30 rain to remove insoluble material. 
The supernatant (100 ~1) was incubated with 3 Ixl of [~25I]CRM197 (15 ng, 
1.5-2 × 107 cpm/~tg) at 4°C for 6-14 h. An aliquot (70 ltl) of the mixture 
was applied to a Sephadex G-150 column (190 × 7 ram), eluted with Buffer 
A containing 15 mM octylglucoside, and ll0-p_l fractions were collected. 
The radioactivity in 50 ~tl of each fraction was determined with a `/-counter. 
The amount of nonspecific binding was determined by the addition of 1,300- 
fold excess unlabeled CRM197. To determine total binding and nonspeciflc 
binding under the same conditions, we carried out the experiments at the 
same time using two columns of the same size. 

Dot Blot Assay of CRM197-binding Activity 

Each fraction of solubilized Veto cell membrane eluted from CM-Sepharose 
was diluted to 10% with buffer containing 0.1 M Tris and 0.19 M glycine, 
pH 9.0, and blotted onto nitrocellulose filters. Two identical blot sets were 
set. The filters were soaked in blocking solution (0.15 M NaCI, 10 mM 
phosphate buffer, l0 mg/ml BSA, 4.5 mg/ml fish gelatin, 5 mg/ml lyso- 
zyme, pH 7.2) at room temperature overnight, and then in Buffer D contain- 
ing 0.05% Tween-20 at 37°C for 1 h. One of the filters was treated with 
100 ng/ml of [~25I]CRM197 in Buffer D containing 0.5% Tween-20, while 
the other filter was treated with the same amount of [~25I]CRM197 and 
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Figure 1. Inhibition of DT-cy- 
totoxicity by membrane frac- 
tions of DT-sensitive and DT- 
insensitive cells. FL cells were 
incubated for 2 h at 37°C with 
DT (40 ng/ml) and various 
amounts of membrane frac- 
tions from cultured cells. Then 
the cells were labeled with 
[3H]leucine for 1 h at 37°C, 
and the rate of protein synthe- 
sis was measured. The inhibi- 

tory activity was calculated as described in Materials and Methods. 
The control values of protein synthesis with DT and without DT 
were 1,200 and 12,500 cpm, respectively. The membrane fractions 
with 1 mg protein from Vero cells, L cells, HeLa cells and Ehrlich's 
ascites tumor cells contained 16.6 ~tg, 12.0 I.tg, 29.0 p.g and 10.6 Ixg 
of RNA, respectively. (e) Vero cell membrane; (t2) HeLa cell 
membrane; (r,) L cell membrane; (m) Ehrlich's ascites tumor cell 
membrane. 

100 I.tg/ml of unlabeled CRM197 in the same buffer. After incubation at 
24°C for 5 h, the filters were washed five times with buffer containing 
0.3 M NaCI, 10 mM MES, 0.05% Tween-20, pH 6.2. The filters were dried 
and autoradiographed using Fuji X-ray film. 

Radioiodination and lmmunoprecipitation 
of DT Receptor 

A fraction (200 lal) of DT receptor eluted from CM-Sepharose was radioio- 
dinated by 0.5 mCi Bolton-Hunter reagent with 50 mM borate buffer, pH 
9.1. The labeled sample (1.1 x l0 ~ cpm) was incubated at 4°C for 14 h 
with DT or one of the CRM proteins at the concentration indicated dissolved 
in immunoprecipitation buffer (0.3 M NaCl, 50 mM MES, 10 mM KCI, 
0.5 mM CaCI2, l mg/ml BSA, l mg/ml ovalbumin, l mg/ml lysozyme, 30 
mM octylglucoside, 0.01% SDS, 0.5 mM PMSE pH 6.1). Followed by the 
addition of horse anti-DT antibody conjugated with CNBr-activated 
Sepharose beads (20 I.tl). The mixture was incubated at 24°C for 5 h with 
gentle shaking. The Sepharose beads were pelleted, washed with buffer: 
0.3 M NaCl, lO mM phosphate buffer, 30 mM octylglucoside, 0.01% SDS, 
pH 6.1. The radioactivity of the pellet was counted by a ),-counter. For analy- 
sis by SDS-PAGE, the pellet was suspended with 50 ktl of SDS gel sample 
buffer, boiled for 5 min. The supernatant wassubjected by SDS-PAGE un- 
der reducing or nonreducing condition as described (19). After electropho- 
resis the gels were fixed, dried and autoradiographed. 

Western Blot Analysis of DT Receptor 

The DT receptor fraction from CM-Sepharose was concentrated "~10 times 
of the original volume and the buffer was replaced to SDS-gel sample buffer 
using a Molcut concentrator (Millipore, Bedford, MA). After incubation 
at 37°C for 3 h, two sets of protein samples were run on 15% SDS-PAGE 
and then transferred to Durapore filters (type GVHP, Millipore) using a 
electroblotting equipment. After treatment with the blocking solution, one 
of the filters was treated with l~25I]CRM197 and the other with []~51]CRM- 
197 plus 1,000 times excess unlabeled CRM197 according to the same con- 
ditions as described in dot blot assay. The filters were washed, dried, and 
autoradiographed. 

Results 

Cell Membranes Contain an Inhibitor 
of DT Cytotoxicity 

The Vero cell line is highly sensitive to DT (29). We found 
that a membrane fraction isolated from Vero cells inhibited 
the cytotoxicity of DT. Addition of DT at 40 ng/ml to FL cell 
cultures reduced protein synthesis to '~10% of the value in 
control cultures. When the membrane fraction was added 
with DT to FL cell cultures, the rate of cellular protein syn- 

thesis was increased in a dose-dependent manner, indicating 
that the cytotoxicity of DT was blocked (Fig. 1). The mem- 
brane fraction per se had no effect on cellular protein synthe- 
sis. The inhibitory activity of the membrane was also ob- 
served when Vero cells were used in cytotoxicity assay, but 
~twofold higher amounts of membrane were required for a 
similar inhibitory effect. Thus, we used FL cells in the cyto- 
toxicity assay of DT in the following studies. 

We next tested whether membrane fractions isolated from 
other cell lines with different sensitivities to DT show inhibi- 
tion of the cytotoxicity. HeLa cells are ,~100 times and mouse 
L cells ~105 times less sensitive than Vero cells (28). Ehr- 
lich ascites tumor cells are more resistant than L cells (15). 
Fig. 1 shows that membrane fractions from all these cell lines 
inhibited the cytotoxicity of DT, indicating the inhibitor was 
present both in DT-sensitive and in DT-insensitive cell lines. 

Release of the Inhibitor from Isolated Membrane and 
Chromatography on a DEAE-Ion Exchange Column 

The membrane fraction of Vero cells was treated with various 
concentrations of octylglucoside, and the inhibitory activity 
recovered in the supernatant after centrifugation was deter- 
mined. The inhibitory activity was partially released with 
octylglucoside at a concentration 15 mM, and maximal re- 
lease was found at concentrations greater than 30 mM. 

The solubilized inhibitor was chromatographed on a 
DEAE-cellulose ionexchange column in the presence of 30 
mM octylglucoside. Inhibitory activity was observed in the 
fractions with NaC1 concentrations between 300 and 500 
mM. The fractions with inhibitory activity were mixed and 
used for further characterization. This inhibitor fraction 
with one unit of inhibitory activity contained 0.38 lag protein 
and 1.84 lag RNA. 

DT Inhibitor Binds to DT but not to CRM197 

We examined whether the inhibitor could bind to DT. The 
inhibitor was incubated with Sepharose beads conjugated 
with DT or BSA. The gels were washed and the inhibitor 
bound to gels was eluted with 4 M KSCN. When the inhibi- 
tor was incubated with DT-beads, '~95 % of the initial inhibi- 
tory activity was bound to the beads. With BSA-beads only 
a trace amount was adsorbed to the beads (Table I). 

Next we determined the region of DT responsible for the 
binding of the inhibitor. To do this, we used DT fragment A 
and CRMs. CRM45 is a premature termination protein of 
DT containing enzymatically active fragment A and about 
half of the B fragment (43). As shown in Table I, the inhibitor 
was not bound to beads conjugated with fragment A or with 
CRM45, indicating that at least the COOH-terminal 15-kd 
region of DT is required for binding of the inhibitor. 
CRM197 is a product ofa  missense mutation in the DT gene 
(44) and differs from wild type toxin only in one amino acid 
residue in fragment A (8). CRM197 is known to bind to DT- 
sensitive cells with an affinity similar to or higher than that 
of native toxin (25). Interestingly, the inhibitor was not ad- 
sorbed with CRM197-beads. Therefore, not only fragment B 
but also fragment A is required for the binding of the in- 
hibitor. 

Effect of the Inhibitor on the Binding of DT and CRMs 
to Vero Cells 

The effects of the inhibitor on the b!nding of DT and CRM 
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Table L Adsorption of the Inhibitor onto Sepharose beads Conjugated with DT or Related Proteins 

Protein 
conjugated 
to beads Not retained by gel 

Percentage of total inhibitory activity recovered 

Retained by gel 

DT 4.9 95.1 
BSA 99.5 0.5 

DT 1.0 99.0 
CRM45 96.8 3.2 
Fragment  A 96.4 3.6 

DT 11.6 88.4 
CRM 197 90.1 9.9 

DT inhibitor purified using a DEAE-cellulose column (1 ml, 20 U of the inhibitory activity) was incubated with Sepharose beads conjugated with DT or the 
related pro~ins for 2.5 h at 37"C. After washing with Buffer B containing 0.3 M NaCI, the inhibitor bound to gels was eluted with 4 M KSCN. After dialysis, 
samples of Sepharose-unbound fraction and Sepharose-bound fraction were serially diluted, and the inhibitory activity in each diluted sample was determined. 

proteins to Vero cells were examined by an indirect binding 
assay using a ~25I-labeled monoclonal antibody against DT 
(25). This antibody, referred to as No. 2, binds to DT but 
does not inhibit the binding of DT to cells (10). As shown 
in Fig. 2, the inhibitor blocked the binding of DT to Vero cells 
but not the binding of CRM197. This was also confirmed by 
a direct binding assay using [~25I]DT or [t25I]CRM197 (data 
not shown). Moreover, the indirect binding assay showed 
that the inhibitor blocked the binding of CRM176 and 
CRM228 to the cells (Fig. 2). It is known that several nucleo- 
tides containing ATP bind to DT (1, 5, 21) and inhibit the 
binding of DT to cells (31, 34). However, ATP does not bind 
to CRM45 or CRM197 (22). We have shown (25) that ATP 
inhibited the binding of CRM176 and CRM228 to Vero cells, 
but not the binding of CRM197. The effects of the inhibitor 
on binding of DT and CRMs to Vero cells are very similar 
to those of ATP. 

Inhibitory Activity Is Destroyed by RNase 

To investigate the chemical properties of the inhibitor, we 
treated the inhibitor with various enzymes, and measured the 
remaining inhibitory activity. The similarity between the 
effects of the inhibitor and those of ATP or other nucleotides 
on the binding of DT and CRMs suggested that the inhibitor 
might have a nucleotide-like structure. Therefore, we treated 
the inhibitor with several RNases and the remaining inhibi- 
tory activity was measured. As no suitable inhibitor for 
RNase was available, we also carried out control experi- 
ments for each enzyme in which the same amount of enzyme 

IOC, • 
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0 10 

inhibitor (Ulml) 

Figure 2. Effect of DT inhibi- 
tor on the binding of DT or 
CRMs to Vero cells measured 
by an indirect binding assay 
using t25I-anti-DT antibody. 
~25I-Antibody was incubated 
with DT or CRMs. The mix- 
ture and various amounts of 
DT inhibitor were added to 
Vero cells, and the cells were 
incubated for 90 min at 37°C. 
Then specific cell-associated 
radioactivity was measured. 
(e) DT; (A) CRM197; (,,) 
CRMI76; (r3) CRM228. 

alone was added to FL cell cultures in the DT cytotoxicity 
assay. The results are shown in Table II. The inhibitory activ- 
ity was not affected by RNase T1, but was inactivated by 
RNase T2, RNase U2 or nuclease P1. RNase A was slightly 
effective. DNase I, II and Escherichia coli alkaline phospha- 
tase had no effect (data not shown). None of these enzymes 
alone influenced either cellular protein synthesis per se or 
the sensitivity of FL cells to DT. These results indicate that 
the inhibitor contains a poly-ribonucleotide structure that 
is required for inhibitory activity. The inhibitor was also 
treated with trypsin or chymotrypsin, but these enzymes did 
not affect the inhibitory activity (Table II). 

As shown in Fig. 2, addition of the inhibitor at 0.3 U/ml 
(containing RNA at 0.55 Ixg/ml) shows 50 % inhibition on the 
binding ofDT. ATP was required at ,'~165 lxg/ml for the same 
effect (25). Therefore, although the effects of the inhibitor 
and those of ATP on the binding of DT and CRMs are very 
similar, the inhibitor described here is much more effective 
than ATP. 

p25I]CRM197 Binds to Vero Cell Membrane but not to 
L Cell Membrane 

The inhibitor was present even in the membrane fractions of 
toxin-insensitive cells• Moreover, although CRM197 binds 
to Vero cells with an affinity similar to, or greater than that 
of DT (25), the inhibitor did not bind to CRM197 and did 
not inhibit the binding of CRM197 to Vero cells• These facts 
suggest that the inhibitor is not the receptor responsible for 
the difference in sensitivity to DT between species, and that 
another DT-binding substance would be present in the mem- 
brane of DT-sensitive cells. If  the membrane fraction from 
Vero cells contains two DT-binding substances, the inhibitor 
and the receptor, the inhibitor could prevent the binding of 
DT to DT receptor when the binding assay is performed 
using the membrane fraction. CRM197 did not bind the in- 
hibitor, so the effect of the inhibitor on the binding of 
CRM197 to the DT receptor would be minimal. Thus, we 
used CRM197 to look for a DT receptor in Vero cell mem- 
brane preparations. 

Vero cell membrane was incubated with [t25I]CRM197 
and then the radioactivity associated with the membrane was 
measured as described under Materials and Methods. As 
shown in Fig. 3, saturable specific binding of [~25I]CRM197 
was observed. Specific binding was increased with time and 
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Table II. Effects of Treatment of Inhibitor with Various Enzymes 

Protein synthesis, percentage of control 

- Toxin + Toxin + Toxin 
Experiment Enzyme Concentration -inhibitor - inhibitor + inhibitor 

1 No enzyme 100 11.9 89.1 
RNase T1 19 U/ml 104 10.6 82.1 
RNase A 30 p.g/ml 111 16.2 63.4 
RNA T2 5 U/ml 114 10.2 19.9 

Nuclease P1 20 lxg/ml 108 8.5 23.6 

2 No enzyme 100 19.4 78.9 
RNase T2 0.1 U/ml ND ND 50.0 

1 U/ml ND ND 28.1 
10 U/ml ND 19.4 16.1 

3 No enzyme 100 9.6 66.0 
RNase U2 82 U/ml ND 10.0 12.8 

4 No enzyme 100 15.6 84.6 
Trypsin 100 ~tg/ml ND 16.1 79.8 

chymotrypsin 100 I.tg/ml ND 16.3 71.6 

DT inhibitor purified by DEAE-cellulose column was dialyzed against PBS. The detergent-free inhibitor (100 lal, 10 units of the inhibitory activity) was incubated 
with each of the enzymes at the concentration indicated for 1 h at 37"C. Remaining inhibitory activity was determined by the addition of 30 Ixl of enzyme-treated 
sample and DT to FL cell cultures. To measure the effect of the enzymes alone on cellular protein synthesis and sensitivity to DT, the equivalent concentration 
of the enzyme was added in the absence of the inhibitor. ND, not done. 

reached a maximum in 4 h. Analysis by Scatchard plots (37) 
indicates a single class of binding sites with a Ka value of 
2.1 x 109 liter/mol (Fig. 3 B). This value is consistent with 
the value determined by us in intact Vero cells (25). 

We also examined the binding of [~25I]CRM197 to mouse 
L cell membrane. Over the range of CRM197 concentration 
used for Vero cells, no specific binding was observed (data 
not shown). Thus, the sites specific for CRM197 binding are 
either not present on DT-insensitive L cells, or exist in very 
low density to be detected in our binding assay. These results 
clearly show that the molecule which binds CRM197 differs 
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Figure 3. Binding of various 
concentrations of [I~I]CRM197 
to Vero cell membrane. (A) 
Vero cell membrane (200 lal 
containing 125 I.tg protein) 
was incubated at 24°C for 4 h 
with various concentrations of 
[IZsI]CRMI97 (2.5 × 107 cpm/ 
gtg). Then 150 gl of the mix- 
ture was removed and the ra- 
dioactivity associated with the 
membranes determined. (e)  
[125I]CRM197; (It) [~25I]CRM- 
197 + unlabeled CRM197; 
(0) difference between • and 
m. (B) Scatchard plot of the 
specific binding of [125I]CRM- 
197 to Vero cell membrane. 
The lines were fitted by re- 
gression analysis. 

from the inhibitor, because the inhibitor exists on L cell 
membrane in densities similar to those on Vero cell mem- 
brane. 

To examine whether the observed binding of [tz~I]CRM- 
197 to Vero cell membrane is truly specific for DT, we per- 
formed a competition assay using unlabeled DT or CRMs. 
As shown in Fig. 4, the binding of [~25I]CRM197 was most 
strongly inhibited by nicked CRM197. Native DT was about 
three times less potent and CRM228 was "~200 times less 
potent than nicked CRM197. CRM45 did not inhibit the 
binding of labeled CRM197 (data not shown). These results 
strongly suggest that the binding sites for CRM197 observed 
in membrane fractions were DT receptors. 

Binding of p25I]CRMI97 to Solubilized Cell 
Membrane Components 
We next examined the binding of [~25I]CRM197 to solubi- 
lized membrane components using a gel filtration method. 
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Figure 4. Competition for bind- 
ing of [t25I]CRM197 to Vero 
cell membranes by unlabeled 
DT or unlabeled CRMs. Vero 
cell membranes (200 lal con- 
raining 100 lag protein) was 
incubated at 24°C for 4 h with 
[J25I]CRM197 at 30 ng/ml 
(2.5 x 107 cpm/Ixg) and vari- 
ous concentrations of one of 
the unlabeled protein. The 
specific radioactivity associ- 

ated with Vero cell membranes was measured. The data are ex- 
pressed as a percentage of the inhibition of the specific binding, 
which was 6,000 cpm. ( - )  Nicked CRMI97; (e)  nicked DT; (D) 
CRM228. 
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Figure 5. Column assay for 
the binding of [t25I]CRM197 
to solubilized membrane com- 
ponents. [t25I]CRM197 was 
incubated with solubilized ma- 
terial from Vero cell mem- 
brane (A) or L cell membrane 
(B) for 6 h at 4°C. The mix- 
ture was applied to a Sephadex 
G-150 column. The radioac- 
tivity of each fraction was de- 
termined. The broken line is 
the radioactivity obtained by 
incubation with [~25I]CRM197 
and excess unlabeled CRM197. 

Solubilized material from Vero cell membrane treated with 
60 mM octylglucoside was incubated with [z25I]CRM197. 
The mixture was applied to a Sephadex G-150 column in the 
presence of detergent, and the radioactivity of each fraction 
was counted. The results are shown in Fig. 5 a. Two radioac- 
tive peaks were observed: the first at fraction No. 23 and the 
second at fraction No. 39. When excess unlabeled CRM197 
was added with [125IICRM197, the first peak did not appear 
(Fig. 5, broken line). When [125IICRM197 was applied to 
the column in the absence of membrane components, the first 
peak did not appear (data not shown). We carried out the 
same experiment on solubilized material from L cell mem- 
branes. Although a tiny peak appeared around fraction No. 
25, significant differences were not observed when the mem- 
brane material was incubated with ['25I]CRM197 only or 
with [~2-~I]CRM197 and excess unlabeled CRMI97 (Fig. 5 
b). Therefore, we concluded that the first peak seen in the 
Vero cell experiments was [~25I]CRM197 bound to the re- 
ceptor and the second was unbound CRM19Z When Vero 
cell membranes were treated with 30 mM octylglucoside, the 
receptor activity in soluble fraction was less. This is addi- 
tional evidence that the inhibitor and the receptor are differ- 
ent substances because the inhibitor was released fully by 
treatment of membranes with 30 mM octylglucoside. This 
observation also indicates that the DT receptor can bind to 
CRM197 in the presence of detergent. 

Treatment of the Receptor with Trypsin or RNase T2 

As shown above, the inhibitory activity was destroyed by 
some RNases, but norby protease. To compare the CRM197- 
binding substance, that is the receptor, with the inhibitor, we 
tested the effects of trypsin and RNase T2 on the CRM197- 
binding activity using the column assay. The results showed 
that trypsin destroyed the CRM197 binding activity, but 
RNase T2 had no effect. This is a striking difference from 
the case of the inhibitor, and shows that the DT receptor has 
a proteinaceous structure. 

Partial Purification of  DT Receptor 

The solubilized Vero cell membrane material was chro- 
matographed on a ion-exchange column. When the mem- 
brane material was applied on a DEAE-cellulose column un- 
der conditions similar to that for the purification of DT 
inhibitor, CRM197-binding activity was detected in the flow- 
through fraction. On a CM-Sepharose column, CRM197- 

Figure 6. Dot-blot analysis of CRM197-bind- 
ing activity in CM-Sepharose fractions. The 
solubilized Vero cell membrane materials (300 
mg protein) were applied to CM-Sepharose 
column (1.1 x 8 cm). The proteins were eluted 
with a linear gradient of NaCI (0.2-1 M) in 
10 mM phosphate buffer, pH 7.0, containing 
0.5 mM CaCI2, 30 mM octylglucoside. Each 
fraction was spotted on nitrocellulose filters. 
The filter was probed with 100 ng/ml [~25I]- 
CRMI97 (A), or 100 ng/ml [125I]CRM197 
plus 100 lag/ml unlabeled CRMI97 (B). The 
specific CRM197-binding activity was seen in 
fractions 6 to 9. 

binding activity was retained on the column and found to be 
eluted with 0,4-0.6 M NaCI (Fig. 6). For this sample dot-blot 
assay was performed for the measurement of CRM197-bind- 
ing activity. The specific CRM197-binding activity was seen 
in fractions 6-9, corresponding to eluates with 0.4-0.6 M 
NaCI. These fractions were mixed and used for further 
studies. 

Protection of  DT Cytotoxicity by DT Receptor 

The protective effect of soluble DT receptor was tested by ad- 
dition of the excess amounts of receptor to a cell and DT mix- 
ture. We tested this using the CM-Sepharose fraction of DT 
receptor, because this fraction did not contain the inhibitor. 
As shown in Table III, DT receptor fraction protected the tox- 
icity of DT. 

Identification of DT Receptor 

The CM-Sepharose fraction containing DT receptor was 
radioiodinated and immunoprecipitated using either DT or 
other CRM proteins and immobilized anti-DT antibody. 
When the iodinated material was incubated with CRM197 

Table IlL Protection of DT Cytotoxicity by DT Receptor 

The rate of protein synthesis 
(Percentage of control) 

Receptor sample added 

Experiments 0 100 p.I 250 Ixl 

1 9.5 28 49 
2 38 63 83 

Partially purified DT receptor by CM-Sepharose was mixed with 1 mg/ml BSA 
and the mixture was dialyzed against leucine-diminished MEM. 500 ttl of 
MEM containing 10% leucine and I mg/ml BSA and the indicated volume of 
dialyzed receptor fraction was incubated with DT (1 ng/ml) at 37°C for 30 
min. The mixtures were added to Vero cell cultures and incubated at 37°C for 
2 h, followed by incubation with 2 ~tCi/ml [3H]leucine at 37°C for I h. The 
radioactivity incorporated in proteins was determined and the rate of protein 
synthesis was expressed as a percentage of that in cultures containing same 
amounts of the receptor without DT. 
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Figure 7. IYl'-specific precipi- 
tation of radioiodinated mem- 
brane proteins. The radioiodi- 
nated material containing DT 
receptor was incubated with 
DT or one of the CRM pro- 
teins at the concentrations in- 
dicated, and then further incu- 
bated with anti-IYr antibody 
conjugated with Sepharose 
gels. In some samples, ATP (2 
mM) or the inhibitor isolated 
here (15 U/ml) was added with 
DT and CRM197. The radio- 

activity associated to gels was counted. The results are expressed 
as a percentage of total radioactivity added. The symbols indicate: 
CRMI97 (zx); DT (o): CRM45 (~z); fragment A (n): CRM197 
with ATP (-);  DT with ATP (e); CRMI97 with the inhibitor (v) 
and DT with the inhibitor (-). 

and anti-DT antibody, the radioactive material was precipi- 
tated by CRM197 in a dose-dependent manner (Fig. 7). A 
similar result was obtained using DT and anti-DT antibody, 
but the precipitate of  the radioactive materials was lower than 
that in the case of CRM197. With CRM45 or with fragment 
A of DT no significant precipitation was observed even at a 
concentration of 500 ng/ml. To test whether the immunopre- 
cipitation is properly specific for DT receptor, we used ATP 
or DT inhibitor. The addition of DT inhibitor (15 U/ml) 
strongly decrease the specific precipitation by DT, while the 
precipitation by CRM197 was slightly affected with the in- 
hibitor. ATP also showed a similar result. These findings 
strongly suggest that the precipitation is DT receptor specific. 

The immunoprecipitated materials were analyzed by 
SDS-PAGE. In the samples precipitated with DT or 

CRM197 and anti-DT antibody, three major bands with mo- 
lecular masses of  14.5, 47, and 62 kD and several minor 
bands are seen in a reducing condition (Fig. 8 A, lanes 2 and 
4, respectively). When neither DT nor CRM197 was added 
(lane 1), or DT and a nonspecific antibody was added (lane 
6), such major three bands were not seen. By the addition 
of ATP in the precipitation procedure with DT, the three ma- 
jor  bands and some of the minor bands were greatly dimin- 
ished (lane 3). However, ATP did not affect the precipitation 
with CRM197 (lane 5). Similar results were obtained in the 
case of  DT inhibitor. Under nonreducing conditions, a band 
with more than 100 kD appeared, the density of the 47-kD 
and the 62-kD bands was diminished. The mobility of 14.5- 
kD protein did not change under nonreducing conditions. 

Although the results of immunoprecipitation study suggest 
that the three major proteins seen on SDS-PAGE are related 
to DT receptor, there is the possibility that the receptor co- 
precipitated with contaminating cellular materials. As addi- 
tion of ATP or the inhibitor caused global reduction of the 
immunoprecipitates with DT, we could not identify specific 
protein band(s) responsible for DT binding. To identify 
which molecule on SDS-PAGE has the property to bind to 
DT, we carried out a Western blot analysis of  the receptor 
fraction eluted from CM-Sepharose using [125I]CRM197 as 
probe. As shown in Fig. 9, only a single band with a molecu- 
lar mass of  14.5 kD was observed. This band was identical 
to the 14.5-kD band seen in immunoprecipitation study of 
Fig. 8, judged by its mobility on an SDS gel. When the probe 
contained an excess amount of unlabeled CRM197, no 
significant bands were observed. Thus we concluded that 
this 14.5-kD band is the DT receptor or at least a component 
of it. This finding also suggested that 14.5-kD DT receptor 
is associated with the 47- and the 62-kD proteins, and these 
proteins were co-precipitated by the addition of DT or 
CRM197 and the antibody. 

D i s c u s s i o n  

We have shown that an inhibitor present in a membrane frac- 
tion of cultured cells blocks the cytotoxicity or DT by 
preventing its binding to target cells. RNase treatment of the 
inhibitor revealed that the ribonucleotide structure is in- 

Figure 8. Immunoprecipitates of the partially purified DT receptor 
fraction were analyzed by SDS-PAGE. DT receptor fraction was 
radioiodinated and precipitated with DT or CRM proteins and 
anti-DT antibody. The precipitated proteins were run on SDS- 
PAGE (15 % gel) in the presence (A) or absence (B) of dithiothreitol 
(DTT) and autoradiographed. (Lane 1) Anti-DT antibody only; 
(lane 2) DT (300 ng/ml) and anti-DT antibody; (lane 3) ATP 
(2 mM) with DT and anti-DT antibody; (lane 4) CRM197 (300 
ng/ml) and anti-DT antibody; (lane 5) ATP (2 mM) with CRM197 
and anti-DT antibody; (lane 6) DT and control antibody; (lane 7) 
total ~25I-labeled material. The 14.5-kD bands are shown by ar- 
rows and the 47- and 62-kD bands are shown by arrowheads. 

Figure 9. Western blot analy- 
sis of DT receptor. The sam- 
ples of partially purified DT 
receptor (used 10 Ixl for lanes 
2 and 4, and 30 Ixl for lanes 3 
and 5) were run on SDS- 
PAGE (15% gel) and trans- 
ferred to two sets of filters. 
One filter was probed with 
100 ng/ml 125I-CRM197 (lanes 
2 and 3), the other with 100 
ng/ml ~25I-CRM197 in the 
presence of 100 Ixg/ml of unla- 
beled CRMI97 (lanes 4 and 
5). The filters were dried and 

autoradiographed. Lane 1 is molecular markers containing lyso- 
zyme (14,300), carbonic anhydrase (30,000), ovalbumin (46,000), 
BSA (69,000) and phosphorylase b (92,500). The 14.5-kD bands 
are shown by arrows. 
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volved in its activity. In fact, it has been reported that some 
dinucleotides, such as adenyl-(Y,5')-uridine-Y-monophos- 
phate (ApUp), bind to DT (5). ATP is known to bind to DT 
(21) and inhibit its cytotoxic activity (30). Thus the inhibitor 
may inhibit the cytotoxicity of DT by a mechanism similar 
to that of the above mentioned nucleotides. We suggest that 
the inhibitor is not a molecule with a specific role in the bind- 
ing DT to the surface of DT-sensitive cell, the reasons are as 
follows: (a) the inhibitor was found in DT-insensitive cells, 
(b) the inhibitor did not bind to CRM197 and (c) the affinity 
of the inhibitor for DT appeared to be lower than the affinity 
of DT receptor for DT. 

Does the inhibitor exist on the cell surface? The plasma 
membrane-rich fraction used in this paper contained inner 
membranes, and RNA from the cytoplasm may associate 
with inner membranes. To clarify whether the inhibitor 
comes from the surface of the plasma membrane or from in- 
ner membrane components, we treated Ehrlich ascites tumor 
cells with RNase T2 or RNase U2 and then isolated the mem- 
brane fractions. Membranes isolated from such RNase- 
treated and untreated cells showed similar inhibitory activi- 
ties for DT-mediated cytotoxicity. Although this finding may 
indicate that the inhibitory substance mainly exists on inner 
membranes, it was not clear whether RNases used were 
effective for the inhibitor on the cell surface of intact cells. 
Therefore, we could not show any direct evidence on location 
of the inhibitor. However, Keen et al. (16) observed that 
fluorescently labeled DT binds to and is internalized into 
mouse cells when the toxin is added at relatively high con- 
centrations, indicating that binding sites for DT are present 
on the surface of DT-insensitive cells. Weiss and Mayhew 
(23, 47) reported that RNA is a structural component of the 
cell surface membrane based on observations made on the 
mobility of cells after RNase treatment and electrophoresis. 
Terasaki et al. (41) using antibody against single-stranded 
RNA confirmed the existence of RNA on the cell surface. 
These facts support the existence of the inhibitor on the cell 
surface. The inhibitor reported in this study may be derived 
from both the inside and the outside of cells. 

The second DT-binding molecule present in the membrane 
fraction has characteristics of the surface receptor for DT. 
This molecule actually defines the sensitivity of cells to DT 
in different species. In fact, (a) this substance is present only 
in DT-sensitive cells, (b) it binds to CRM197, and its binding 
affinity is similar to that obtained with intact Vero cells. Fur- 
thermore, the results of the competition experiments in 
which binding of [t25I]CRM197 to Vero cell membrane was 
measured in the presence of DT and various CRMs are con- 
sistent with CRM197 binding experiments with intact Vero 
cells. Therefore, we conclude that this binding activity is due 
to the DT receptor present in DT-sensitive cells. Specific 
binding of DT to the receptor has not been reported using iso- 
lated membrane or a solubilized membrane fraction. The 
presence of the inhibitor might have interfered in the binding 
of DT to its receptor and made the interpretation of such ex- 
periments hard. Using ~25I-labeled CRM197 we could dem- 
onstrate DT receptor in a crude solubilized membrane frac- 
tion by a column assay and in a partially purified fraction by 
a dot blot assay. The immunoprecipitation study and Western 
blot analysis revealed a protein of 14.5 kD in SDS-PAGE, 
we think this molecule is the DT receptor or a component 
of it. Furthermore, it was clear by Western blot analysis 

probed with the labeled CRM197 that the 14.5-kD pro- 
tein is the molecule directly binding DT. This conclusion is 
supported by other evidence: using cross-linking agents, 
Cieplak et al. (3) recently suggested that a 10--20-kD cell sur- 
face protein(s) is, or constitutes a portion of DT receptor. Is 
this 14.5-kD protein a functional DT receptor? As DT-DT 
receptor complexes appeared in the void fraction of the 
column assay, using Sephadex G-150 column and crude solu- 
bilized membranes (Fig. 5), it is possible that the 14.5-kD 
proteins form aggregates in membrane prior to solubiliza- 
tion. Of course, the possibility that 14.5-kD protein was a 
processed form of the precursor or a native molecule cannot 
be ruled out. As shown in Fig. 8, two proteins with molecular 
weights of 47 and 62 kD precipitated prominently with 14.5 
kD protein when separated under reducing conditions. These 
molecules are seen to form one bigger molecule under non- 
reducing conditions. These proteins may also be related to 
DT receptor, but much more extensive studies will be re- 
quired to elucidate the relationship of these components to 
the DT receptor. 

It is unclear whether the inhibitor plays any role in DT in- 
toxication. However, we think it may. First, the inhibitor may 
act as a second receptor on DT-sensitive cells. It may serve 
to draw the DT molecule more closely to lipid bilayer, or the 
binding of DT to the second receptor may lead to a change 
in the conformation of the DT molecule to expose a hydro- 
phobic region. The receptor site and inhibitor site on the DT 
molecule may be close together or overlapped. If the inhibi- 
tor is added exogenously, the inhibitor binds and covers the 
receptor site or causes a conformational change, resulting in 
inhibition of the binding to the receptor. The second possible 
role of the inhibitor is in the passage of the toxin from an en- 
docytotic vesicle to the cytoplasm through the lipid bilayer. 
A RNA-protein complex, called signal recognition particle, 
is known to be essential for the translocation of newly synthe- 
sized proteins to the luminal sides of rough endoplasmic 
reticulum (46). Like the signal recognition particle the inhib- 
itor may play some role in translocation of macromolecules 
into the cytoplasm. As CRM197 does not bind to the inhibi- 
tor, the function of the inhibitor may be revealed when the 
fate of CRM197 is analyzed more precisely. Finally, even if 
the inhibitor has no function in DT entry, the fact that this 
DT-binding molecule is present in membrane fractions must 
be taken into account in attempts to isolate the DT receptor. 
As CRMI97 does not bind to the inhibitor, CRM197 may be 
useful for the purification of the DT receptor. 
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