
Polarized Protein-Specific Charges from Atoms-in-Molecule Electron
Density Partitioning
Louis P. Lee,† Daniel J. Cole,*,‡,† Chris-Kriton Skylaris,§ William L. Jorgensen,‡ and Mike C. Payne†

†TCM Group, Cavendish Laboratory, 19 JJ Thomson Ave, Cambridge CB3 0HE, United Kingdom
‡Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
§School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom

*S Supporting Information

ABSTRACT: Atomic partial charges for use in traditional force fields for
biomolecular simulation are often fit to the electrostatic potentials of
small molecules and, hence, neglect large-scale electronic polarization. On
the other hand, recent advances in atoms-in-molecule charge derivation
schemes show promise for use in flexible force fields but are limited in
size by the underlying quantum mechanical calculation of the electron
density. Here, we implement the density derived electrostatic and
chemical charges method in the linear-scaling density functional theory
code ONETEP. Our implementation allows the straightforward
derivation of partial atomic charges for systems comprising thousands of atoms, including entire proteins. We demonstrate
that the derived charges are chemically intuitive, reproduce ab initio electrostatic potentials of proteins and are transferable
between closely related systems. Simulated NMR data derived from molecular dynamics of three proteins using force fields based
on the ONETEP charges are in good agreement with experiment.

1. INTRODUCTION

Proteins are essential components of all organisms, carrying out
tasks defined by the information encoded within genes, for
example catalyzing biochemical reactions, mediating cell
signaling, or providing structural rigidity. Computation plays
an important role in the study of proteinssimulations range
from elucidation of enzymatic reaction mechanisms, to the
study of folding pathways, to design of therapeutic molecules
against disease.1 In biomolecular simulations such as these,
molecular mechanics (MM) force fields are often used in which
electrostatic interactions are described by atom-centered point
charges. However, there is no unique method for partitioning
the rigorously calculated quantum mechanical (QM) electron
density among the individual atoms and different charge
derivation schemes often lead to very different results.
In commonly used force fields such as AMBER,2 the MM

partial charges of protein molecules are optimized by fitting
them to reproduce the QM electrostatic potential (ESP) of
small molecules.3,4 These ESP charges are well-suited for MM
force fields, as they reproduce ab initio multipole moments and
electrostatic interactions between molecular fragments.5 A
disadvantage of such techniques is the neglect of polarization
by the environmentindeed, a recent density functional theory
(DFT) natural population analysis of an entire protein in water
found that net charges of residues can vary by up to 0.5 e from
their putative integer values.6 While mean field approaches for
charge fitting are the most appropriate for deriving transferable
force field parameters, often, as in the example of the study of
protein−ligand binding, we are only interested in sampling in
the vicinity of the protein’s native state. In these cases, it would

be ideal to incorporate electrostatic polarization that is specific
to that native state into the charge fitting procedure.
Recent studies have calculated atom-centered charges for

entire proteins, accounting for native state polarization by
including background point charges in a series of iterative
fragment-based ESP fits. The resulting polarized protein-
specific charges perform better than standard AMBER charges
in determining free energies of ligand binding,7 in pKa
calculations,8 and in comparisons with NMR data.9,10 These
results point to the potential improvements that can be made
by using polarized protein-specific point charges. However,
such an approach potentially requires a large number of QM
calculations to iterate all charges in the system to self-
consistency8 and requires restraints11 or conformational
averaging12,13 to treat buried atoms and to address the
sensitivity of the charges to small conformational changes.
An ideal charge derivation scheme should efficiently account

for the surrounding environment, while the resulting charges
should be chemically intuitive, reproduce ab initio electrostatic
properties, be robust with respect to conformational changes,
and be insensitive to buried atoms.14 The charges should be
derived from first principles, with no empirical parameters,
applicable to a wide range of systems without requiring
specialized treatments based on specific chemical knowledge of
a particular molecule, and preferably computable from a single
QM calculation of the whole system. Recently, there has been
renewed interest in electronic density-based atoms-in-molecule
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(AIM) charge partitioning based on the Hirshfeld ap-
proach.15−18 Such methods differ conceptually from ESP in
that the net atomic charges are assigned by dividing a
converged, QM electronic density into a union of overlapping
atomic basins. The density derived electrostatic and chemical
charges (DDEC) method, developed by Manz and Sholl,18

combines two AIM approaches, iterative Hirshfeld (IH) and
iterated stockholder atoms (ISA), to assign atomic charges from
the electron density. The resulting charges have already been
shown to be suitable for force field development.19 The charges
are chemically intuitive and insensitive to small conformational
changes. They adapt to the atom’s environment, reproduce the
ab initio electrostatic potential, and, where applicable, correlate
well with X-ray diffraction and X-ray absorption near-edge
spectroscopy data.19,20 The method can be applied with no
adjustable parameters to buried atoms and to either periodic or
nonperiodic systems. DDEC charges have already been used to
develop force fields for molecular adsorption inside metal−
organic frameworks.21,22 The DDEC method is implemented in
a freely available code (http://ddec.sourceforge.net/), which is
interfaced with codes such as VASP and Gaussian among
others.
Thus, DDEC charges are suitable for environment-specific,

flexible force field development for biomolecular simulations
but are limited by the unfavorable computational scaling of the
underlying QM calculation to systems of a few hundred atoms.
In this paper, we overcome this limitation by implementing the
DDEC scheme in the ONETEP linear-scaling DFT code.
ONETEP combines high basis set accuracy, comparable to that
of plane-wave DFT methods, with a computational cost that
scales linearly with the number of atoms, which allows for an
accurate, fully QM description of systems of thousands of
atoms,23,24 including entire proteins.25−27 We begin by
outlining the various underlying AIM schemes, followed by a
brief description of the linear-scaling DFT code ONETEP. We
validate our internal implementation of the DDEC method-
ology against quantum chemistry calculations in Gaussian0928

for a benchmark set of 25 representative small molecules and
show that charges are derived with linear-scaling computational
cost, allowing analysis of proteins comprising thousands of
atoms from a single DFT calculation. We demonstrate that, for
these large systems, the features of the DDEC scheme that
make the charges desirable for flexible force field development
are maintained. Namely, the charges (i) respond to their
environment in a chemically intuitive manner; (ii) reproduce
electrostatic properties of the DFT calculation; and (iii) are not
overly sensitive to small conformational changes or the
presence of buried atoms. Finally, we construct a MM force
field based on the DDEC charges for three proteins and
compare the results of our MM simulations with experimentally
measured NMR dynamic observables and a standard
biomolecular force field.

2. COMPUTATIONAL METHODOLOGY

2.1. Density Derived Electrostatic and Chemical
Charges. The DDEC method is based upon two recently
developed extensions to the original Hirshfeld AIM scheme.15

In the original formulation, an electronic density n(r) is divided
into overlapping atomic basins nA(r) for each atom A according
to the weighting formula:
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where nA
0(r) is the atomic reference density, whose overlapping

sum over all atoms in the system ∑BnB
0(r) is termed the

promolecular density. This form of stockholder partitioning,
where the electronic density at each point r is distributed based
on the proportional contribution from the reference densities of
each atom at that point, has been shown to minimize the
information distance FAIM (Kullback−Liebler entropy) between
the real and promolecular density,29 maximizing the informa-
tion retained in the reference atomic states nA

0(r) when
transferring to the molecular environment:
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subject to the constraint that ∑AnA(r) = n(r); that is, the
electronic density is completely partitioned. In other words, the
stockholder partitioning exhaustively divides the real electronic
density into a set of overlapping atomic densities nA(r) in such
a way as to maximize the density distribution similarity to their
respective reference density counterparts nA

0(r).
Shortcomings of the original Hirshfeld method included an

arbitrariness in the choice of reference atomic densities nA
0(r).

Neutral, gas-phase atomic densities were often chosen as
references, although these commonly led to atomic populations
that were too close to zero.17 Such problems are addressed in
recently proposed iterative extensions to the Hirshfeld
method,16,17 in which reference densities are successively
improved until self-consistency is achieved. In the iterative
Hirshfeld (IH) scheme proposed by Bultinck et al.,17 the IH
reference densities nA

0(i,r) are derived from the partitioned
atomic density at iteration i, nA(i,r), by the following procedure.
First, the (noninteger) electronic populations of each atom
QA(i) are computed in the usual way from the partitioned
atomic densities:

∫=Q i n i r r( ) ( , )dA A (3)

Instead of choosing neutral reference states as in the original
Hirshfeld method, new reference states are generated by linear
interpolation between densities of free atoms or ions with the
next lowest integer (τ = lint(QA(i)) and the next highest integer
(τ + 1) number of electrons:
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The purpose of the interpolation is to obtain a suitable gas-
phase reference density for a hypothetical ion comprising QA(i)
electrons. The partitioned atomic densities for the next
iteration i + 1 are then derived from the reference states
generated at iteration i:
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The procedure is iterated until the changes in the set of IH
charges fall below a specified threshold. The resulting charges
have been shown to reproduce ab initio electrostatic properties
of small polypeptides and to be relatively insensitive to small
conformational changes.14
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An alternative approach by Lillestolen and Wheatley,16

meanwhile, named iterated stockholder atoms (ISA), takes the
spherical average of the partitioned atomic density nA(i,r) at
iteration i as the (ISA) reference density that enters into eq 5,
where ⟨···⟩A denotes spherical averaging about the center of
atom A:

= ⟨ ⟩n i n ir r( , ) ( , )A
0

A A (6)

In practice, the averaging is performed on a set of discrete radial
shells up to a maximum radius rmax. The ISA scheme is argued
to be less empirical than IH, as the latter still relies on a library
of externally generated ionic densities. ISA also produces a
better fit to the ESP due to the low-order multipoles possessed
by the converged nA(r) resulting from the spherical-averaging
procedure used to generate the reference densities.18

The DDEC scheme by Manz and Sholl18,19 combines the IH
and ISA methods by minimizing a combined information
entropy functional (eq 2):

χ χ= + −F F F(1 )DDEC IH ISA (7)

where FIH/ISA are constructed with IH/ISA reference densities
and weighted by an adjustable parameter χ. Minimizing eq 7
with respect to nA(r) with the same constraint as eq 2 leads to a
partitioning of the form:
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where nA
IH/ISA(i,r) are the respective reference densities given by

eqs 4 and 6. By allowing a fraction of FIH to contribute toward
curvature in regions that otherwise have shallow optimization
landscapes, for example, buried atoms, this technique alleviates
the slow convergence of the ISA method for such regions while
retaining the appealing attributes of the ISA scheme. An
important addition to the DDEC scheme is the employment of
charge-compensated reference IH densities, referred to as the
DDEC/c2 scheme.18 These densities are generated from DFT
ground-state ionic calculations in the presence of a charge
compensation sphere, akin to a conductor-like polarizable
continuum model (CPCM) treatment with a solvent of infinite
dielectric constant.18 The justification for using such
compensated densities instead of free ionic states, as in the
original IH scheme, stems from the dielectric screening
experienced by an ion embedded within a molecule, whereby
its density profile can be modified by the effective dielectric
constant. The charge compensation sphere acts to expand
(contract) the reference density in the case of cations (anions).
2.2. ONETEP. ONETEP30 is a linear-scaling DFT package

based on a reformulation of conventional Kohn−Sham DFT in
terms of the single-particle density matrix:

∑ρ ϕ ϕ′ = * ′
α β

α
αβ

βKr r r r( , ) ( ) ( )
, (9)

where {ϕα(r)} are nonorthogonal generalized Wannier
functions (NGWFs) that are localized in real space,31 and
Kαβ is a representation of the density matrix in the biorthogonal
duals of the NGWFs. ONETEP achieves linear-scaling by
exploiting the “nearsightedness” of the single-particle density
matrix in nonmetallic systems.32 In practice, linear-scaling arises
from enforcing strict localization of the NGWFs onto atomic
regions and through the optimization of the density kernel and

NGWFs, subject to localization constraints. Optimizing the
NGWFs in situ allows for a minimal number of atom-centered
orbitals to be used while maintaining plane-wave accuracy. The
NGWFs are represented in a basis of highly localized periodic
cardinal sine (psinc) functions (otherwise known as Fourier−
Lagrange mesh functions).33 The psinc functions are related to
plane waves via a Fourier transform, meaning that systematic
improvement is possible through adjustment of the psinc grid
spacing, analogous to converging the kinetic energy cutoff in
traditional (N3) plane-wave DFT codes. In order to expedite
optimization, the NGWFs can be initialized closer to their
ground states by using an in-built pseudoatomic solver, which
self-consistently solves the DFT Kohn−Sham equations for
isolated atoms using the same pseudopotentials and exchange-
correlation functional as the full calculation.34 Implicit
solvation, whose inclusion is essential both for an accurate
description of the protein’s aqueous environment and to aid
optimization of the density kernel,35 is implemented within
ONETEP. This is a minimal parameter, self-consistent model
based on direct solution of the inhomogeneous Poisson
equation for a solute cavity defined by the isosurface of the
electron density.36,37

2.3. DDEC Implementation in ONETEP. We have
implemented the DDEC method18,19 within ONETEP as a
postprocessing module to take advantage of its parallel and
efficient algorithms for sparse matrix algebra and operations
with localized orbitals and electron distributions. A single DFT
calculation is performed on the system to obtain the ground-
state electronic density, which is then processed to extract the
DDEC net atomic charges. Reference densities for the IH part
of the calculation are generated internally at run time using the
same exchange-correlation functional, pseudopotentials, and
NGWF cutoff radius as the full DFT calculation, with the c2
charge compensation scheme.18 Specifically, using the
pseudoatomic solver module,34 as described in section 2.2,
the Kohn−Sham equations for a set of atomic orbitals of an
isolated atom are solved self-consistently on a radial grid with
an additional spherical surface of compensation charge.18 The
effect of this charged surface is expressed equivalently via
Gauss’ Law as an additional radial electrostatic potential term
Vcomp in the Hamiltonian:

ψ ε ψ− ∇ + + ̂ + =
⎡
⎣⎢

⎤
⎦⎥V V Vr r

1
2

( ) ( )2
loc nl comp nlm nl nlm (10)

where the first three operators are the kinetic energy, local and
nonlocal potentials, and Vcomp = Qcomp/|r| for |r| > Rcomp, with
Qcomp and Rcomp the charge and radius of the compensation
sphere.
Following Manz and Sholl,18 for cations, the magnitude of

the compensation charge (Qcomp) is chosen to neutralize the
ion, with the compensation sphere radius (Rcomp) set to the
average of ⟨ψnlm|r|̂ψnlm⟩ expectation values of all occupied
orbitals {|ψnlm⟩} in the neutral species that are vacant in the
cation. For anions, the compensation charge is chosen to make
the electrostatic potential at an infinitesimal distance outside
the compensation sphere zero. The radius of the compensation
sphere is incrementally adjusted in 0.1 Bohr steps until the total
energy of the system is minimized.
Whole-molecule densities (total and promolecular) are

stored on regular Cartesian grids, while spherically averaged
promolecular density profiles for individual atoms are
computed and stored on atom-centered sets of equally spaced
radial shells up to a predefined maximum cutoff radius. Linear-
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scaling computation with respect to the number of atoms (for
each iteration) is achieved at a modest cost of computational
memory by computing and storing the total promolecular
density (∑BnB

0(i,r)) once per DDEC iteration, on the same grid
as the molecular density. Figure 1a shows the computational
scaling of our DDEC implementation for periodic supercells of
bulk water of increasing size, up to around 2500 atoms
(Supporting Information). Even for the largest system, the
computation time of the DDEC analysis is under 20 min. The
DFT calculation itself requires around 12 h on 160 cores,
making the calculation of DDEC charges for systems
comprising thousands of atoms feasible on a near-routine basis.
Importantly, the number of iterations required for charge

convergence remains virtually constant for increasing numbers
of atoms, ensuring that the total computational effort remains
linear-scaling with respect to system size. Figure 1b reveals that
the distribution of charges obtained for bulk water is
independent of system size. The atomic charges distributions
are centered on values close to those typically used in MM
force fields (TIP3P),38 while they show some spread as one
might expect for atoms in a liquid with differing local
environments.
Recently, Manz and Sholl introduced an update to the

DDEC method, named DDEC/c3.19 The DDEC/c3 method
improves convergence of charges for nonporous solids with
short bond lengths between diffuse atoms by enforcing
exponential decay of atomic electron densities and conditioning
the reference IH densities nA

IH(i,r) that enter eq 8 to the
material of interest. In our implementation, we use the
conditioned reference densities but do not enforce radial
decay of the partitioned atomic densities nA(r). Our reasoning
is that our studies are aimed at biomolecular systems, which are
porous materials lacking compacted regions, and we anticipate
that the partial weighting by IH reference densities during
optimization will be sufficient to ensure the stability of atomic
charges for embedded atoms. In addition, in our implementa-
tion, core charge handling has been completely excluded, as we
employ norm-conserving pseudopotentials. Literature studies
have found little dependence of IH charges on the treatment of
core electrons.39 Nevertheless, in the following section, we test
both of these assumptions by validating ONETEP-calculated
DDEC charges against the full DDEC/c3 method employing
the all-electron code Gaussian09.28

2.4. Validation. The validity of our DDEC implementation
was tested using a set of 25 diverse, neutral, small, organic
molecules.40 Benchmarking was performed against the standard
DDEC method as implemented in the CHARGEMOL package

(version 2.1 beta, obtained from http://ddec.sourceforge.net/),
employing 100 radial shells (NRad) up to a maximum cutoff
radius (rmax) of 5 Å, together with the supplied c3 charge-
compensated reference density library (DDEC/CHARGE-
MOL).18,19 Molecular geometries were optimized in vacuo
with a 6-311G(d,p) basis set, and electronic densities were
generated with an aug-cc-pVQZ all-electron basis set in
Gaussian09.28 The PBE exchange-correlation functional41 was
used throughout. For all DDEC analysis, the mixing parameter
χ was set to 3/14, which has been shown to give the optimal
balance between minimizing the atomic multipoles and
maximizing chemical accuracy.19 The set of net atomic charges
was considered converged when the maximum absolute change
for any atom for three successive iterations was less than 2 ×
10−5 e.
ONETEP calculations were performed in vacuum using a

cubic simulation cell of 30 Å, with the spherical cutoff Coulomb
approach to avoid electrostatic interactions between molecules
and their periodic images.42 Interactions between electrons and
nuclei were described by norm-conserving pseudopotentials.
NGWFs were initialized as orbitals obtained from solving the
Kohn−Sham equation for free atoms,34 with a 1s configuration
for H, a 2s2p configuration for C, N, O, and F, and a 3s3p
configuration for S and Cl. The NGWFs were expanded in a
psinc basis with an energy cutoff of 1000 eV, corresponding to a
grid spacing of 0.45 Bohr, and were localized in real space with
radii of 10 Bohr. Convergence of the atomic charges generated
by our implementation of the DDEC method in ONETEP
(referred to as DDEC/ONETEP) with respect to the
ONETEP psinc grid spacing and NGWF cutoff radii, as well
as the DDEC parameters rmax and NRad was investigated for
nitroethane and discussed in Supporting Information Figure S1.
Figure 2 shows the correlation between the DDEC/

ONETEP and DDEC/CHARGEMOL charges for every
atom in the benchmark set. Despite the different approaches
used in obtaining the ground-state electronic densities and the
subsequent charge analysis, the difference between the two
charge sets is very small with a mean absolute deviation (MAD)
of less than 0.02 e.
Atomic charges for use in force fields should approximately

reproduce the ab initio electrostatic potential outside the
molecule’s electron density. We can measure the error ΔV in
the Coulombic potential of the DDEC charges, compared with
DFT, as19

Figure 1. (a) Computation time required for DDEC postprocessing calculations of bulk water. Simulations were executed on 160 Intel Sandy Bridge
cores. Numbers beside points indicate the number of DDEC iterations required for convergence. (b) DDEC atomic and molecular charge
distributions of bulk water for three system sizes. Vertical dashed lines indicate MM TIP3P water charges.
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where the sum is performed for all points i lying within 1.4 and
2.0 times the van der Waals radii of the nuclei,43 on the same
grid mesh used to calculate the electron density. In order to
remove the arbitrary vacuum level of the DFT potential
VDFT(r), the potentials are displaced by the averaged difference
over the included grid points. Our calculations of ΔV are
performed for a test charge of 1 e in vacuum. Typical errors in,
for example, interaction energies of neutral ligands with
proteins in solution will tend to be lower than this error
estimate.12 Nevertheless, it is a good indicator of the ability of a
method to reproduce the ab initio ESP.
Figure 3 (bottom) shows that DDEC charges reliably

reproduce the electrostatic potential around the molecule,
with ΔV errors of approximately 1 kcal/mol for both DDEC/
CHARGEMOL and DDEC/ONETEP. For neutral molecules,
the dipole is the leading order term in the multipole expansion

and, thus, is the most significant in determining intermolecular
electrostatic interactions. In Figure 3 (top), we compare the
DDEC vector dipole moments with those computed directly
from their respective ab initio electronic densities. Again,
ONETEP performs as well as CHARGEMOL. For comparison,
we have also plotted the error in the dipole moment and ΔV
(eq 11) for ESP charges. In agreement with previous charge
comparisons,14,18,44 the ESP charges reproduce the ab initio
electrostatic potential and dipole moment more closely.
Despite this better performance of ESP charges for small
molecule electrostatics, DDEC charges will be suitable for
polarized protein-specific charges if, as we shall investigate in
the next section, they are able to reproduce the electrostatic
properties of much larger molecules containing buried atoms
better than standard MM force fields.
We conclude that, at least for organic systems comprising

light atoms, our use of DDEC charge analysis within the
pseudopotential approximation and without enforcing radial
decay of the partitioned atomic densities is valid. It should be
emphasized that the DDEC analysis can only be as accurate as
the electron density output by the underlying QM calculation.
In the current paper, we have used the PBE exchange-
correlation functional in our ONETEP calculations, although
future advances will allow alternative treatments of electron−
electron interactions, such as B3LYP45 and dynamical mean
field theory.46 For comparison, Supporting Information Figure
S2 compares Gaussian09 DDEC charges calculated using PBE
and B3LYP exchange-correlation functionals. The MAD is less
than 0.02 e, implying that the PBE functional gives a reliable
electron density for the calculation of DDEC charges.

3. PROPERTIES OF DDEC CHARGES
3.1. DDEC Charges Respond to their Environment. In

order to aid in the interpretation of QM simulations, atomic
point charges should respond in a chemically intuitive manner
to their environment. As an example, Figure 4, b and c, shows
ONETEP/DDEC charges for the phenol molecule in two
different environments: first in water and, second, in a small
model cluster representing the negatively charged binding
pocket of the L99A/M102E mutant of T4 lysozyme47

(Supporting Information). The two environments are typical
of those simulated in, for example, the optimization of small
molecule inhibitors for drug design.1 For comparison, Figure 4a
shows the RESP charges for phenol, calculated in vacuum at the
HF/6-31G* level to approximate aqueous polarization,5 the
same level of theory that has been used to parametrize the
AMBER force field4 that we employ as a benchmark in later
sections. The DDEC charges in water agree with the RESP
charges with a root-mean-square (RMS) deviation of 0.04 e.
Similar results are obtained by comparing with RESP charges
derived using a polarizable continuum model (PCM) to model
solvation (Supporting Information Figure S3). There are no
large changes in the DDEC charges of the phenol molecule on
moving to the protein binding pocket. Charges on the aromatic
ring change by up to 0.05 e in the more hydrophobic
environment, while the −OH group, which is hydrogen-bonded
to residue E102, becomes more strongly polarized.
We have utilized the linear-scaling nature of our DDEC

implementation to calculate DDEC charges of three proteins:
ubiquitin, the SMN Tudor Domain, and hen egg lysozyme
(PDB: 1UBQ, 1MHN, 6LYT). Initial structures were prepared
by protonation using the AMBER11 tleap module2 or by the
MOLPROBITY software.48 DFT calculations were performed

Figure 2. Correlation between DDEC/CHARGEMOL and DDEC/
ONETEP charges for all atoms in the 25 molecule benchmark set.
Also shown is the mean absolute deviation (MAD) between the two
sets.

Figure 3. (top) Errors in the DDEC dipole moment vectors, |μDDEC −
μDFT|, compared to ab initio dipole moments. (bottom) ΔV for the 25
molecule set. ESP refers to results from Merz−Kollman charges
(calculated with Gaussian09).
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using the minimal parameter continuum solvation model of
ONETEP with a relative dielectric permittivity of 80 to
represent water solvent.36 A postprocessing calculation was
performed on the converged electronic density to extract
DDEC charges (Supporting Information). It should be
emphasized that the entire charge set is derived from a single
DFT calculation, on systems up to 1960 atoms, and thus
naturally incorporates native state polarization.
As we found for the small test systems, DDEC charges for

the proteins are similar to the mean field AMBER ff99SB
charges,49 with a correlation coefficient of 0.96 (Figure 5a).
However, the RMS deviation between the charge sets is 0.11 e,
as expected since the AIMs were optimized based on the ab
initio electronic density for atoms embedded in their local
environment. Comparisons with the AMBER ff033 force field
charges yield similar conclusions (Supporting Information
Figure S4). For chemically identical atoms that share the
same charges in AMBER, the DDEC charges span a wider
range, which is indicated by the vertical spread of points. For
example, DDEC charges for backbone O atoms of leucine vary
between −0.72 and −0.56 e, with an average of −0.63 e,
compared to the constant AMBER value of −0.57 e. The
prominent outliers in Figure 5a (with absolute charge
disagreement larger than 0.25 e) are mostly nonbackbone sp3

carbon atoms, most of which are close to neutral in AMBER,
but adopt a range of values in DDEC, depending on the residue
type and their particular local environments. For example, the
Cγ atom in glutamine has a charge of −0.06 e in AMBER, but
ranges from −0.41 to −0.37 e in DDEC. Similar deviations in C
charges from AMBER values have been observed in conforma-
tionally averaged ESP charges derived from dipeptide frag-

ments.13 The largest discrepancy between the two charge sets is
in the terminal nitrogen atom, which is positively charged in
AMBER (0.16 e) but negatively charged in DDEC (−0.52 e).
Several ESP studies3,13 have indicated that our DDEC value is
more appropriate for the charge of the N-terminus.
Of particular interest is the observation that the charges of

backbone−backbone hydrogen bonds calculated by DDEC/
ONETEP are more polarized than in the AMBER force field.
Following Ji et al.,50 we define the electrostatic contribution to
the hydrogen bond between backbone NH and CO groups as
the Coulombic interaction between atoms carrying point
charges q:

= + + +E
q q

r

q q

r

q q

r

q q

rHB
N C

NC

N O

NO

H C

HC

H O

HO (12)

Figure 5b reveals that the resulting dipole−dipole interaction is
stronger for DDEC charges than AMBER. It is possible that the
enhancement of the interaction is a systematic bias in the
potential of the DDEC charges, though it does support
previous hypotheses that proteins are stabilized in their native
environment via electronic polarization.10 We investigate this
effect further in Section 4 by comparing the dynamics of
backbone hydrogen bonds with experimental NMR observ-
ables.

3.2. DDEC Charges Reproduce Ab Initio Electrostatic
Potentials. The correct treatment of electrostatics is vital in
the accurate determination of molecular interactions in
biological systems. In particular, if DDEC charges are to be
useful as polarized protein-specific charges, they should
reproduce ab initio electrostatics for large molecules better
than standard force fields that are based on ESP charges. We

Figure 4. (a) RESP charges for phenol calculated in vacuo at the HF/6-31G* level. (b) DDEC/ONETEP charges calculated in a 20 molecule water
cluster using with identical simulation parameters as Section 2.4. (c) Same as in part b, but within a 86 atom cluster representing the T4 lysozyme
L99A/M102E binding pocket. Charges for parts b and c have been averaged over five different conformations. Standard error of the mean is less than
0.01 e for the −OH group, and the maximum on any atom is 0.018 e.

Figure 5. (a) Correlation between DDEC partial atomic charges and the AMBER ff99SB force field for ubiquitin. (b) Electrostatic contribution to
the backbone hydrogen bond energies in the X-ray crystal structure of ubiquitin. The x-axis denotes the protein donor/acceptor residues involved.
DDEC charges give slightly more negative hydrogen bond energies, indicating enhanced stabilization.
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have calculated the electrostatic potential and the dipole
moments of the three proteins studied in the previous section
with full DFT, the derived DDEC charges, and with a standard
AMBER force field (Supporting Information Figure S4 gives
the same information for the AMBER ff03 force field). For all
charge distributions, the electrostatic potential was computed in
vacuum, in order to better observe the discrepancy between ab
initio and point charge values that would otherwise be
dampened by dielectric screening. We note, however, that the
ab initio, DDEC and AMBER charge distributions have already
incorporated solvation effects in their calculation, and the
electrostatic comparisons are, therefore, equivalent. Table 1

shows that DDEC/ONETEP AIMs reproduce the total ab
initio potential and dipole moments μDFT for all three proteins,
vastly outperforming the standard MM charges. Figure 6 shows

the difference in electrostatic potential between the two charge
sets and the DFT calculation. Although the standard MM
charges are fit to closely reproduce the ESP of small molecules,
they neglect large-scale electronic polarization that is present in
protein-specific charges, and hence, the error in the computed
ESP is large. The computed errors in the MM electrostatic
potential are consistent with literature studies of errors in
interaction energies between charged biotin ligands and the
avidin protein in vacuum (11 kcal/mol on average).12 For more
realistic simulations, the same study found that the error was
reduced to approximately 2 kcal/mol for neutral ligands and to
0.7 kcal/mol if solvent screening is also included.

We noted earlier that ISA charges are particularly good at
reproducing the ESP, since the electron density is divided into
spherically symmetric partitions. This point is reinforced by
Figure 7, which reveals that the deviation from the ab initio

dipole moment of ubiquitin decreases with decreasing χ
(increasing ISA fraction). However, one of the motivations
for including IH reference densities in the DDEC information
entropy functional (eq 8) was to alleviate problematic
convergence for AIM charges of embedded atoms due to the
shallow optimization landscapes experienced in such regions.18

We find that the DDEC method with χ = 3/14, as recommended
for all systems by Manz and Sholl,19 is a good compromise
between reproducing accurately the ESP of the system,
reducing the number of self-consistency iterations required
for convergence (Figure 7) and, as we shall see in the next
section, improving the transferability of the charges. Further
comparisons between DDEC, IH, and ISA charges are
presented in Supporting Information Figure S5.

3.3. DDEC Charges are Transferable. In order to be of
use in parametrizing flexible force fields, atomic charges, even
those of buried atoms, must not be overly sensitive to small
conformational changes. To study conformational depend-
encies of the DDEC charges for large systems, we have
performed DDEC analysis of nine experimental NMR
conformers of bovine pancreatic trypsin inhibitor (BPTI,
PDB: 1PIT) in implicit solvent (892 atoms). Each residue in
Figure 8 is colored by the average of the standard deviation in
the calculated atomic charges over the nine conformations. The
first point to note is that the DDEC charges are much more
stable to conformational change than the ISA charges. While
some fluctuation due to the changing environment is expected,
the protein conformers are all close to the native state and the
DDEC charges reflect this. This is in stark contrast to RESP
charges, for which a recent review of atomic charge models
found strong fluctuations in partial charges for an ensemble of
polypeptide chain conformations.14 Second, there is no
discernible difference between charge fluctuations in buried
and exposed residues, as would be observed for shallow
optimization landscapes. Finally, the width of the protein chains
in Figure 8 reflects the average positional fluctuation of each
residue. It is noticeable that DDEC charges vary more strongly
in residues with a high degree of flexibility, especially when they
form intramolecular contacts (between β-sheets, within α-
helices, and in sections linked by disulfide bridges), as one
might expect.

Table 1. RMS Error (ΔV) between the Ab Initio DFT
Potential and Coulombic Point Charge Potentials Derived
from DDEC/ONETEP and AMBER ff99SB Charges for
Three Proteins Calculated using Equation 11a

ΔV (kcal/mol) |μDFT − μ| (D)

protein
total charge

(e)
DDEC/
ONETEP AMBER

DDEC/
ONETEP AMBER

1UBQ 0 1.30 7.56 2.2 34.2
1MHN −4 1.54 5.49 3.6 11.8
6LYT +8 1.35 6.99 0.9 32.2

aAlso shown are errors in the protein dipole moment vectors, which
have been calculated relative to the center of mass of each protein to
remove ambiguity for charged systems. The DDEC charges reproduce
electrostatic properties of large molecules much better than do the
mean field classical point charges.

Figure 6. Difference in calculated electrostatic potential between point
charges and DFT for ubiquitin. The ESP difference is calculated at the
solvent-accessible surface of the protein. Also shown as gray, blue, and
red arrows are the calculated DFT, DDEC, and AMBER dipole
moments, respectively.

Figure 7. Dependence of the DDEC dipole moment error on the
mixing parameter χ. Increasing the ISA content reduces the dipole
error but also increases the number of iterations required for charge
convergence and, hence, the computational time.
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We showed in the previous section that DDEC charges are
able to accurately reproduce the ESP around the structure that
they are fit to. Here, we investigate whether average charges
derived for an ensemble of native state conformations are able
to accurately describe the electrostatic properties of each
conformation close to that native state. Such a test is vital if the
charges are to be used in the construction of force fields for
simulating the dynamics of proteins. Figure 9 shows the

discrepancy between dipole moments calculated via atomic
point charges and DFT. To obtain the best agreement with the
DFT dipole moment of a particular structure, it is preferable to
fit the DDEC atomic point charges to that particular structure.
However, encouragingly, there is very little degradation in
performance if DDEC charges that have been averaged over the
full ensemble are used instead. This reflects the transferability
of DDEC charges between conformations close to the native
state. The force field charges perform relatively well for this
structure but not as well as the polarized protein-specific
charges. This behavior is in agreement with previous work
showing that ESP charges give the best fit to ab initio
electrostatics for a given structure, but that DDEC charges are
generally more transferable to different, similar structures.19

4. PROTEIN DYNAMICS
As we have demonstrated in the previous section, DDEC
charges derived from the DFT electron density of entire
proteins have properties that make them desirable for use in
flexible force fields. We now put this into practice by
performing molecular dynamics (MD) simulations of the
three proteins described previously (PDB: 1UBQ, 1MHN,
6LYT) using force fields based on our calculated DDEC
charges. We have followed the procedure of Tong et al.9 by
taking the bonded and Lennard-Jones parameters directly from
the AMBER ff99SB force field but replacing the atom-centered
point charges by the DDEC/ONETEP charges. It should be
emphasized that torsional and Lennard-Jones parameters are as
important as the charges in determining protein dynamics and a
large number of alternative force fields exist, many of which
outperform the ff99SB force field in comparison with
experiment.51 Nevertheless, here we concentrate on demon-
strating the feasibility of using AIM approaches to supplement
an existing, commonly used force field.
Figure 10 shows the backbone RMS deviations of the three

proteins from their X-ray crystal structures over the course of

10 ns simulations, performed at 300 K in explicit water
(Supporting Information). For both force fields, the exper-
imental structure is stable over the course of the simulation.
To assess the quality of simulated MM dynamics, it is

common to use, as metrics, experimental NMR-derived
quantities. The square of the generalized order parameter S2,
based on the Lipari−Szabo model-free approach to analyzing
nuclear spin-relaxation measurements,52 is the plateau value of
the time-correlation function C2(t) of the second-order
Legrendre polynomial of backbone N−H bond unit vectors
e(t):

τ τ= ⟨ · + − ⟩C t te e( )
1
2

3( ( ) ( )) 12
2

(13)

where C2(t) is time-averaged over a trajectory τ.53 S2 represents
the spatial restriction of the motion of N−H bond vectors, and

Figure 8. DDEC/ONETEP charge and conformation fluctuations for
nine NMR models of BPTI. Average positional fluctuation per residue
is represented by its putty width and average charge fluctuation
(standard deviation) per residue by its color. ISA charge fluctuations
have been clipped at 0.04 e for visual clarity (ten residues in the ISA
method have values greater than 0.04 e, with a maximum of 0.06 e).
ISA charges are DDEC/ONETEP charges derived with χ = 0 (eq 7).

Figure 9. Deviation between charge model and ab initio dipole
moment vectors for nine NMR conformers of BPTI. DDEC/
ONETEP charges have been calculated separately for each structure
(dark blue) and averaged over all structures (light blue). AMBER
ff99SB charges are included for comparison. The net charge of the
system is +6 e.

Figure 10. Backbone Cα root-mean-square deviation (RMSd) with
respect to the initial experimental PDB structure for 1UBQ, 1MHN,
and 6LYT, with running averages taken over 50 ps windows. The first
and last four residues have been excluded due to their high flexibility.
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a lower S2 value corresponds to a more flexible residue. S2

values were calculated from our 10 ns MD simulations using
the iRED method54 as implemented in the AMBER11 ptraj
module. In this method, a covariance matrix M is constructed
from the N−H unit bond vector pairs ei,j in a fixed reference
frame and averaged over the entire trajectory:

= ⟨ · − ⟩M e e
1
2

3( ) 1ij i j
2

(14)

S2 of residue i is then obtained from solving the eigenvalue
equation Mm = λmm as

∑ λ= − | |
=

−

S m1i
m

N

m i
2

1

5
2

(15)

where the sum is taken over N − 5 eigenvectors excluding five
with the largest eigenvalues, and mi is the ith component of
eigenvector m.53,55

Figure 11 compares simulated and experimental56−58 S2

profiles for the standard AMBER ff99SB force field and the

same force field supplemented by DDEC/ONETEP atomic
charges. The only difference between the simulation protocols
is in the point charges and so any improvement in the
calculated order parameters is due to the inclusion of native
state polarization in their calculation. Table 2 compares the
agreement between simulated and experimental S2 data (for all
residues where experimental data is available). It indicates that
DDEC AIM charges perform better than mean field force field
charges in providing a suitable electrostatic environment that
maintains protein stability throughout the 10 ns trajectory while

remaining dynamically consistent with experimental observa-
tions.
In addition to backbone rigidity, we also compared the NMR

scalar coupling h3JNC′ of the NH···OC backbone−
backbone hydrogen bonds, which provides a measure of
hydrogen bond dynamics within a protein. It was shown by
Barfield59 that h3JNC′ values, being dependent on the wave
function overlap across the hydrogen bond, are strongly
geometry dependent and can be parametrized as such by
several formulas, with the simplest based on only the H···O
distance rOH and H···OC angle θ:60

θ= −′
−J e( 357 Hz) cos ( )h r3

NC
3.2 2OH

(16)

Equation 16 was used to compute the time-averaged h3JNC′ of
backbone−backbone hydrogen bonds60,61 using the AMBER
ff99SB and DDEC/ONETEP MM snapshots over the 10 ns
trajectories. The results are correlated with experimental
measurements61,62 in Figure 12. The RMS deviations between

simulation and experiment (Figure 12, in brackets) once again
indicate that DDEC/ONETEP charges perform at least as well
as AMBER charges, illustrating that backbone N−H and CO
bond polarization is also suitably described by the electron
density partitioning approach to charge derivation.

5. CONCLUSIONS
The DDEC atoms-in-molecule scheme for the assignment of
atomic charges through partitioning of the ab initio electron
density has a number of features that makes it desirable for
charge derivation for flexible force fields.18,19 However, its use
in the analysis of realistic biomolecular systems has, until now,
been limited by the computational expense of the underlying
QM calculation. In this paper, we have implemented the DDEC
scheme in the linear-scaling DFT code ONETEP. Strict
localization of the NGWF basis in ONETEP onto atomic

Figure 11. Comparison between the experimental and calculated
backbone N−H order parameter S2 for 1UBQ, 1MHN, and 6LYT
using AMBER ff99SB and DDEC atomic charges. Quantitative
comparisons are given in Table 2.

Table 2. RMS Difference, MAD, and Average S2 Ratio ⟨SMM
2 /SNMR

2 ⟩ between MM and experimental order parameters in Figure
11a

RMS S2 MAD S2 ⟨SMM
2 /SNMR

2 ⟩

protein AMBER DDEC/ONETEP AMBER DDEC/ONETEP AMBER DDEC/ONETEP

1UBQ 0.060 0.053 0.040 0.040 1.03 ± 0.11 1.03 ± 0.13
1MHN 0.118 0.087 0.074 0.060 0.95 ± 0.17 1.01 ± 0.14
6LYT 0.065 0.047 0.043 0.034 0.99 ± 0.09 1.00 ± 0.06

aThe agreement of the generalized order parameter with experiment is improved by using the DDEC/ONETEP protein-specific charges.

Figure 12. h3JNC′ comparison between simulation and experiment61,62

for 1UBQ and 1MHN. RMS differences from experiment are given in
brackets beside labels.
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regions allows derivation of the electronic density of systems
comprising thousands of atoms with affordable computational
expense. Optimizing the NGWFs in situ allows for a minimal
number of atom-centered orbitals to be used while maintaining
near-complete basis set accuracy. Systematic improvement in
accuracy is achievable via tuning of a very small number of
parameters and, along with a minimal parameter solvation
model, allows the user to derive charges for any molecular
system with no prior knowledge of its chemical characteristics.
The DDEC method is also suitable for implementation in other
DFT codes, as well as for example fragment molecular orbital
approaches to generating the electron density of large systems,
for which we hope our implementation will provide an accuracy
benchmark.
We have validated our implementation of the DDEC method

in ONETEP against the standard CHARGEMOL package with
quantum chemistry calculations in Gaussian09. In agreement
with previous observations, DDEC charges perform less well
than ESP charges in reproducing the ab initio potential of small
molecules.18 Nevertheless, our interest here is in the calculation
of polarized charges for entire proteins. Indeed, we have found
that the errors in the electrostatic potential at the surfaces of
three proteins are very similar to those for small molecules
(errors of 1.3−1.5 kcal/mol). Furthermore, the system-specific
DDEC charges outperform standard AMBER charges for these
molecules (errors of 5−7 kcal/mol). We would expect similar
performances for other force fields that have been fit to small
molecules without incorporating large-scale polarization.
Although the ESP method is unsuited to the direct

calculation of atomic charges from a single QM calculation
due to the sensitivity of the charges to buried atoms and small
conformational changes,14 a number of studies have determined
protein-specific charges based on this method. By separating
the system into a large number of dipeptide fragments, fitting
ESP charges to the resulting structures and averaging them over
several conformations of the protein, stable and transferable
charges have been obtained.12,13 By also including the effects of
the environment, represented by point charges, in an iterative
ESP fit, it should be possible to further derive polarized protein-
specific charges that are stable with respect to small changes in
conformation.8 Although the ESP charges are preferable to
DDEC for reproducing the ab initio potential of small
molecules, it is not obvious that these conformation-averaged
ESP charges are the optimum choice for large molecules. In
fact, Manz and Sholl have shown that DDEC and
conformation-averaged ESP charges give essentially the same
agreement with the ab initio electrostatic potential of small
molecules.19 It would be interesting, in future work, to make
this comparison for larger molecules.
Further advantages of the DDEC charges are that, since they

are derived from a single DFT calculation of entire
biomolecules, environmental polarization is naturally included.
Moreover, no prior, system-specific chemical knowledge or
specialized treatment is required to ensure proper charge
derivation, rendering the method extremely versatile. In
agreement with previous observations of smaller systems, the
charges are insensitive to small conformational changes and
buried atoms require no special treatment. In this paper, we are
interested in the application of DDEC charges to standard MM
force fields. Therefore, we have restricted the DDEC expansion
to monopole order in our electrostatic potential comparisons.
As discussed by Manz and Sholl,18 the electrostatic potential
description of DDEC charges can be trivially improved by

including higher order multipole terms in the partitioned AIM
densities, without requiring a new fitting procedure.
We have incorporated the DDEC charges of three proteins

into a classical force field and run molecular mechanics
simulations to compute NMR order parameters and scalar
couplings. Our observations indicate that the DDEC AIM
charges perform at least as well, if not better than AMBER
ff99SB in replicating protein dynamics. The charges of
backbone−backbone hydrogen bonds are more polarized in
DDEC/ONETEP than in the standard AMBER force field.
Nevertheless, they are able to replicate dynamics consistent
with experiments when used in MM force fields. Our results are
therefore consistent with previous hypotheses that electronic
polarization is important in stabilization of a protein’s native
state.9 It should be noted that these DDEC AIMs were
obtained without explicit fitting to replicate electrostatic effects
nor parametrization to experimental properties.
The potential applications of linear-scaling DDEC analysis

span a wide range of problems in which accurate determination
of electrostatics via atomic point charges is important. DDEC
charges have already been used to study molecular adsorption
inside metal−organic frameworks.21,22 In the biomolecular
sciences, the optimization of protein-inhibitor interactions for
drug design, pKa calculation, study of ion channel conductivity
and elucidation of enzymatic reaction mechanisms all depend
critically on an accurate description of the electrostatic
potential, for which DDEC perform markedly better than
standard classical force field charges.
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