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One-pot and efficient protocol for preparation of some potent pharmaceutically valuable coumarin derivatives under solvent-free
condition via direct coupling using biologically nontoxic organocatalyst, calix[4]arene tetrasulfonic acid (CSA), was introduced.
Calix[4]arene sulfonic acid has been incorporated lately as a magnificent and recyclable organocatalyst for the synthesis of some
organic compounds. Nontoxicity, solvent-free conditions, good-to-excellent yields for pharmaceutically significant structures, and
especially ease of catalyst recovery make this procedure valuable and environmentally benign.

1. Introduction

Finding novel synthetic procedures for a variety of attractive
compounds that can be considered as pharmaceutics has
been investigated over last decades. The introduction of new
methodologies in recent years based on environmentally
friendly conditions using efficient and reusable catalyst as
well as solvent-free procedures has gained significant atten-
tions among the researchers. Among the thoroughly inves-
tigated organic structures, coumarins and their derivatives
were highly regarded due to their vast applications in phar-
maceutical industries. Coumarins, also recognized as ben-
zopyrones, have revealed characteristics of these potent het-
erocyclic compounds and proved to feature significant bio-
logical activities including antimicrobial, antiviral, antitumor,
and antioxidant properties. For instance,monoamine oxidase
inhibitors (MAO) have antidiabetic activity [1], antiallergic
activity [2], anabolic antioxidant, and hepatoprotective activ-
ities [3, 4]. These valuable structures, natural or synthetic
ones, due to theirmentioned characteristics aremultipurpose
compounds and play variety of roles in our lives. On the other
hand, they are being applied to agrochemical [5], food, and

cosmetic industries as additives to serve as optical brighteners
[6, 7], anticoagulants [8], and laser dyes [9, 10] and they
have significant therapeutic roles in pharmaceuticals [11]
and treatment of cancer [12]. Experimental surveys exhibit
the noteworthy chemotherapeutics activities of these organic
structures and they hence have been employed as inhibitors
in growth of diverse human tumour cell lines [13].

Their known functionalized families have shown variety
of antioxidant [14, 15], anti-HIV, anticoagulant, hypotensive,
and spasmolytic activities [16–18]. Besides, some potential
antibiotic characteristics have been reported for coumarin
derivatives such as chartesium, coumermycin, and novo-
biocin [19].These valuable compounds also have proved their
efficiency as biologically active structures in the formulation
of some medicines for a long time [20, 21]. As being natural
molecules, coumarins are among the phytochemical com-
pounds that exist in high concentration in tonka bean,
apricots, cherries, cinnamon,mullein, strawberries, and some
other natural products. However, due to their valuable and
impressive characteristics which resulted in being employed
in the wide range of products, they became desirable
molecules for researchers to find the least harmful and
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Scheme 1: Sulfonation of calix[4]arene using Shinkai method.

the most efficient preparative procedures. In synthetic chem-
istry some methods were considered as famous and pioneer
methods for preparation of these organic compounds. The
first reported procedure for preparation of coumarins was
Perkin reaction that was suggested in 1868 [22]. However,
Perkin reaction is efficient and suitable just for synthesis
of simple coumarins but some alternative methods were
developed during the years including Pechmann [23], Kno-
evenagel [24, 25], Reformatsky [26], Kostanecki-Robinson
[27], andWittig reactions [28, 29]. Although these categories
of well known reactions give coumarins in acceptable yields,
usually they need severe conditions such as high tempera-
tures, dangerous solvents, long reaction time, and producing
byproducts. Excess amounts of harsh acidic activating agents
such as POCl

3
, P
2
O
5
, and polyphosphoric acid besides quan-

titative amount of Lewis acids or sulfuric or sulfonic acids add
to their usage drawbacks due to possible severe difficulties
such as corrosion problem.

So far, different catalyses have been raised to overcome
the mentioned drawbacks in the last decade [30–32]. One
of the motivating macrocyclic structures with great capacity
in different area and that attracted much interest especially
in biochemistry is calixarene. Among the interesting com-
pounds derived from this scaffold, sulfonate calixarene has
aroused much interest in biopharmaceutical applications
[33], due to its promising capabilities in incapsulating; cal-
ixarenes increase not only solubility but also bioavailability
of valuable pharmaceutical drugs such as nifedipine [34,
35], furosemide [36], niclosamide [37], carbamazepine [38],
and topotecan for improving solubility in chemotherapy by
host-guest complexes [39]. Surprisingly,medical experiments
either of in vivo studies or at the cellular level indicate that the
calixarenes have no activity in the Ames test [37]. Moreover,
no acute toxicity for the sulfonated calixarenes is reported
when specified amounts were injected in mice for in vivo
studies. Number of previous organized studies revealed that
these multipurpose compounds are not cytotoxic [40]. Cal-
ixarenes have very favorable physicochemical properties that
are similar to other useful pharmaceutical excipients such as
cyclodextrins [41]. Besides the biocompatibility of sulfonated
calixarenes, investigation on catalytic activity of this motif
in the synthesis of pharmaceutical compounds seems to be
interesting. In this regard and in continuation of our recent
studies on the development of convenient, effective, and
safe protocol in organic and pharmaceutical synthesis [42–
45], herein we represent calix[4]arene tetrasulfonic acid, as
an efficient and environmentally friendly organocatalyst for
the preparation of coumarin derivatives under solvent-free
conditions.

2. Experimental

2.1. Materials and Instruments. The fine chemicals including
p-tert-butylphenol, formaldehyde solution (37%), diphenyl
ether, ethylacetate, methanol, and sodium hydroxide were
purchased from Merck (Schuchardt, Germany). Ethyl ace-
toacetate, resorcinol, bisphenols, salicylic acid, 2,5-dihy-
droxy salicylic acid, phosphorus oxychloride, and silicagel
were obtained from Fluka (Switzerland). Parent tert-butyl-
calixarene was synthesized according to Gutsche procedure
published in [51]. Then it was detertiobutylated and sul-
fonated simultaneously by Shinkai method using concen-
trated sulfuric acid (Scheme 1) [52]. After further purification
described in the literature, the obtained product was applied
as a proficient acidic organocatalysis (Figures 1 and 2).
Melting points were determined with an Electrothermal 9100
Melting Point Apparatus. IR and 1H NMR spectra were
recorded, respectively, on Bruker FTIR Spectrometer and
Bruker Avance III 400MHz NMR Spectrometer. GC-MS
analyseswere carried out on ShimadzuGC 17Agas chromato-
graph coupled with MS-QP 5000 Shimadzu Mass Spectrom-
eter (Tokyo, Japan). Elemental analyses were performed by
CHN Rapid Heraeus Elemental Analyzer (Wellesley, MA).

2.2. General Procedure for Preparation of Coumarins. A
specified amount of the catalyst, CSA (45mg, 0.06mmol),
was added to the mixture of ethyl acetoacetate (130mg,
1mmol) and phenol derivatives (1mmol).Then, theThe flask
was placed in an oil bath and temperature was adjusted to
90∘C. After completion of the reaction which was moni-
tored by TLC, it was cooled down to room temperature
and then poured onto the crushed ice. After half an hour,
reaction mixture was extracted with chloroform three times
(3 × 25mL). Subsequently, the combined organic phase
was washed with saturated aqueous sodium bicarbonate,
brine solution, and water, respectively. Then organic solution
was dried using magnesium sulfate and the crude product
was obtained using rotary evaporator. For further purifi-
cation flash column chromatography was performed using
petroleum ether/ethylacetate, 90 : 10 (Figure 3).

2.3. Coumarin Derivatives Characterization

4-Methyl-2H-chromen-2-one (1a). This compound was
obtained (24mg, 15%) and characterized according to the
described procedure from Ethyl acetoacetate (130mg,
1mmol) and resorcinol (110mg, 1mmol).

IR (𝜐max/cm
−1): 1064, 1238, 1543, 1705, 3020.
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Figure 1: 1H NMR spectra of calix[4]arene sulfonic acid in (a) DMSO-d6 and (b) D
2
O.
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Figure 2: 13CNMR spectrum of calix[4]arene sulfonic acid in D
2
O.

1H NMR (400MHz, CDCl
3
), (𝛿: ppm): 𝛿 2.42 (d, 3H),

6.32 (q, 1H), 7.15–7.42 (m, 3H), 7.48 (d, 𝐽 = 6.0Hz, 1H).
13CNMR (100MHz, CDCl

3
), (𝛿: ppm): 19.1, 116, 117.9, 122,

124.1, 124.6. 132.6, 153, 154.5, 161.6, ESI-MS 𝑚/𝑧: 160; Anal.
Calcd for C

10
H
8
O
2
: C: 75.00,H: 5.00. Found: C: 75.23, H: 5.18.

7-Hydroxy-4-methyl-2H-chromen-2-one (2a). This com-
poundwas prepared (167mg, 95%) and characterized accord-
ing to the described procedure from Ethyl acetoacetate
(130mg, 1mmol) and resorcinol (110mg, 1mmol).

IR (𝜐max/cm
−1): 1060, 1227, 1590, 1680, 3150.

1H NMR (400MHz, CDCl
3
), (𝛿: ppm): 2.35 (d, 3H), 6.11

(q, 1H), 6.69 (d, 𝐽 = 2.4Hz, 1H), 6.78 (dd, 𝐽 = 8.8Hz, 1H),
7.56 (d, 𝐽 = 8.8Hz, 1H), 10.52 (s, 1H).
13C NMR (100MHz, CDCl

3
), (𝛿: ppm): 18.56, 102.62,

110.70, 112.47, 113.29, 127.05, 153.97, 155.28, 160.74, 161.6.
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Figure 3: Schematic preparation of coumarin.

ESI-MS𝑚/𝑧: 176; Anal. Calcd for C
10
H
8
O
3
: C: 68.18, H: 4.54.

Found: C: 68.45, H: 4.76.

6-Hydroxy-4-methyl-2H-chromen-2-one (3a). This com-
pound was obtained (132mg, 75%) and identified according
to the described procedure from Ethyl acetoacetate (130mg,
1mmol) and hydroquinone (110mg, 1mmol).

IR (𝜐max/cm
−1): 1055, 1225, 1565, 1693, 3010, 3412.

1HNMR (400MHz, CDCl
3
), (𝛿: ppm): 2.42 (d, 3H), 6.33

(q, 1H), 6.73 (d, 𝐽 = 8.4Hz, 1H), 6.81 (d, 𝐽 = 8.4Hz, 1H), 7.28
(s, 1H).
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13C NMR (100MHz, CDCl
3
), (𝛿: ppm): 18.38, 109.40,

114.40, 117.50, 120.65, 121.54, 147.10, 153.93, 155.10, 159.70. ESI-
MS 𝑚/𝑧: 176; Anal. Calcd for C

10
H
8
O
3
: C: 68.18, H: 4.54.

Found: C: 68.36, H: 4.88.

4,7-Dimethyl-2H-chromen-2-one (4a). This compound was
prepared (87mg, 50%) and identified according to the men-
tioned procedure from Ethyl acetoacetate (130mg, 1mmol)
and m-cresol (108mg, 1mmol).

IR (𝜐max/cm
−1): 1070, 1146, 1212, 1248, 1378, 1579, 1636,

1704, 2920, 2970.
1H NMR (400MHz, CDCl

3
), 𝛿 (ppm): 2.10 (s, 3H), 2.31

(d, 3H), 4.17 (s, 1H), 6.71–7.29 (m, 3H).
13CNMR (100MHz, CDCl

3
), 𝛿 (ppm): 18.04, 24.17, 110.70,

117.43, 118.20, 124.10, 126.50, 144.50, 152.74, 153.92, 162.1. ESI-
MS 𝑚/𝑧: 174; Anal. Calcd for C

11
H
10
O
2
: C: 75.86, H: 5.74.

Found: C: 75.52, H: 5.49.

7-Methoxy-4-methyl-2H-chromen-2-one (5a). This com-
pound was obtained (171mg, 90%) and charectarized accord-
ing to the mentioned procedure from Ethyl acetoacetate
(130mg, 1mmol) and m-methoxy phenol (124mg, 1mmol).

IR (𝜐max/cm
−1): 1068, 1284, 1510, 1725, 2927, 3070.

1HNMR (400MHz, DMSO), 𝛿 (ppm): 2.40 (d, 3H), 3.86
(s, 3H), 6.21 (q, 1H), 6.95 (d, 1H), 6.98 (q, 1H), 7.68 (d, 𝐽 =
8.4Hz, 1H).
13CNMR (100MHz, DMSO), 𝛿 (ppm): 18.60, 56.37, 101.17,

111.58, 112.58, 113.57, 126.93, 153.93, 155.24, 160.63, 162.84. ESI-
MS 𝑚/𝑧: 190; Anal. Calcd for C

11
H
10
O
3
: C: 69.47, H: 5.26.

Found: C: 69.76, H: 5.48.

7-Amino-4-methyl-2H-chromen-2-one (6a). This compound
was prepared (147mg, 84%) and identified according to
the described procedure from Ethyl acetoacetate (130mg,
1mmol) and m-hydroxy aniline (109mg, 1mmol).

IR (𝜐max/cm
−1): 1052, 1238, 1570, 1688, 3012, 3312, 3468.

1HNMR (400MHz, CDCl
3
), (𝛿: ppm): 2.34 (d, 3H), 6.13

(q, 1H), 6.63 (s, 1H), 6.65 (d, 𝐽 = 8.7Hz, 1H), 7.50 (d, 𝐽 =
8.7Hz, 1H).
13C NMR (100MHz, CDCl

3
), (𝛿: ppm): 19.40, 101.57,

109.40, 111.58, 114.57, 123.46, 153.17, 154.41, 154.63, 161.54. ESI-
MS𝑚/𝑧: 175; Anal. Calcd for C

10
H
9
O
2
N: C: 68.57, H: 5.14, N:

8.02. Found: C: 68.79, H: 5.36, N: 8.21.

7,8-Dihydroxy-4-methyl-2H-chromen-2-one (7a). This com-
pound was obtained (169mg, 88%) and identified according
to the described procedure from Ethyl acetoacetate (130mg,
1mmol) and pyrogallol (126mg, 1mmol).

IR (𝜐max/cm
−1): 629, 807, 1006, 1064, 1186, 1337, 1480, 1524,

1653, 2925, 3217.
1H NMR (400MHz, DMSO), 𝛿 (ppm): 2.35 (d, 3H), 6.12

(q, 1H), 6.80 (d, 𝐽 = 8.4Hz, 1H), 7.08 (d, 𝐽 = 8.8Hz, 1H), 9.67
(s, 1H), 10.04 (s, 1H).
13C NMR (100MHz, DMSO), 𝛿 (ppm): 18.72, 110.64,

112.56, 113.21, 115.95, 132.61, 143.74, 149.87, 154.41, 160.68. ESI-
MS 𝑚/𝑧: 192; Anal. Calcd for C

10
H
8
O
4
: C: 62.50, H: 4.17.

Found: C: 62.86, H: 4.31.

5,7-Dimethoxy-4-methyl-2h-chromen-2-one (8a). This com-
pound was obtained (209mg, 95%) and characterized

according to the mentioned procedure from Ethyl acetoac-
etate (130mg, 1mmol) and 3,5-methoxy phenol (154mg,
1mmol).

IR (𝜐max/cm
−1): 1130, 1353, 1460, 1616, 1733, 2939, 2992,

3024.
1HNMR (400MHz, DMSO), 𝛿 (ppm): 2.46 (d, 3H), 3.83

(s, 3H), 3.84 (s, 3H), 5.98 (q, 𝐽 = 1.2Hz, 1H), 6.46 (d, 𝐽 =
2.4Hz, 1H), 6.54 (d, 𝐽 = 2.4Hz, 1H).
13CNMR(100MHz,DMSO),𝛿 (ppm): 24.05, 56.31, 56.65,

94.01, 95.99, 104.35, 111.08, 154.63, 156.79, 159.43, 160.15, 163.14.
ESI-MS 𝑚/𝑧: 220; Anal. Calcd for C

12
H
12
O
4
: C: 64.45, H:

5.45. Found: C: 64.22, H: 5.29.

4-Methyl-2H-benzo[h]chromen-2-one (9a). This compound
was prepared (193.2mg, 92%) and identified according to
the mentioned procedure from Ethyl acetoacetate (130mg,
1mmol) and 𝛼-naphthol (144mg, 1mmol).

IR (𝜐max/cm
−1): 1044, 1275, 1572, 1750, 2922, 3012.

1HNMR (400MHz, DMSO), 𝛿 (ppm): 2.53 (d, 3H), 6.50
(q, 1H), 7.68–7.74 (m, 2H), 7.78 (d, 𝐽 = 8.8Hz, 1H), 7.87 (d,
𝐽 = 8.8Hz, 1H), 8.02–8.06 (m, 1H), 8.34–8.37 (m, 1H).
13C NMR (100MHz, DMSO), 𝛿 (ppm): 19.14, 114.34,

115.58, 121.74, 122.10, 122.66, 124.44, 127.86, 128.44, 129.12,
134.83, 150.13, 154.70, 160.13. ESI-MS 𝑚/𝑧: 210; Anal. Calcd
for C
14
H
10
O
2
: C: 80.00, H: 4.76. Found: C: 80.32, H: 4.94.

4-Methyl-2H-benzo[f]chromen-2-one (10a). This compound
was obtained (63mg, 30%) and identified according to
the described procedure from Ethyl acetoacetate (130mg,
1mmol) and 𝛽-naphtol (144mg, 1mmol).

IR (𝜐max/cm
−1): 1044, 1215, 1514, 1630, 3052.

1H NMR (400MHz, CDCl
3
), 𝛿 (ppm): 2.45 (d, 3H), 6.32

(q, 1H), 7.32–7.60 (m, 4H), 7.9 (d, 𝐽 = 9.0Hz, 1H), 8.54 (d,
𝐽 = 9.0Hz, 1H).
13C NMR (100MHz, CDCl

3
), 𝛿 (ppm): 24.40, 109.47,

115.70, 117.76, 123.60, 126.35, 126.53, 128.91, 129.84, 134.58,
151.40, 154.96, 160.70. ESI-MS 𝑚/𝑧: 210; Anal. Calcd for
C
14
H
10
O
2
: C: 80.00, H: 4.76. Found: C: 80.45, H: 4.89.

4,6,8-Trimethyl-2h-chromen-2-one (11a). Reaction of Ethyl
acetoacetate (130mg, 1mmol) and 2,4-xylenol (122mg,
1mmol), according to the described procedure, did not yield
the mentioned product.

3. Result and Discussion

Due to environmental concerns, in the last decade a variety
of catalysts has been introduced in organic synthesis; among
them are organocatalysts which have shown recyclability
and nontoxicity as well as efficiency in producing key prod-
ucts. One of the most interesting supramolecular organic
structures that have played so many roles in different areas
especially in chemistry is calixarene and its derivatives.

In the recent years, calix[4]arene tetrasulfonic acid as
an organic catalyst has shown considerable capability in
organic reactions and has been used as a novel efficient
acidic organocatalyst in esterification [53, 54], Mannich type
reaction [55, 56], and synthesis of xanthones, dixanthones
[57], and bis(indolyl)methanes [58]. In this paperwe aimed to
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Table 1: Coumarins prepared from tetrasulfonic acid calixarene via Pechmann reaction.

Substrate Product Time (h) Yield (%) M. P. (found) M. P. (obtained)
1 1a 24 15 79–81 [46] 78-79
2 2a 2.5 95 182–184 [47] 183–185
3 3a 4 75 241-242 [46] 240–242
4 4a 2.5 50 130-131 [48] 132
8 5a 2 90 158–160 [47] 158-159
6 6a 2.5 84 220–224 [49] 222–224
7 7a 2.5 88 234-235 [47] 232–234
8 8a 1.5 95 — 173–175
9 9a 4 92 153–155 [47] 151–154
10 10a 10 30 182-183 [50] 180-181
11 11a 24 — — —
M. P.: melting point.

R

OH

(solvent-free)

O

R
+

O O

H3C OC2H5

Catalyst (0.06 mmol)

90
∘C

CH3

Scheme 2: General procedure for preparation of coumarin derivatives with a variety of phenols using calix[4]arene sulfonic acid.

report a green recognized procedure for the one-pot con-
struction of coumarin derivatives using nonhazardous and
recyclable organocatalyst, calix[4]arene sulfonic acid, under
solvent-free condition. To survey the applicability of the cata-
lyst for synthesis of pharmaceutically interesting compounds,
a variety of coumarins were prepared via direct coupling of
phenols and ethylacetoacetate ester in the presence of a cat-
alytic amount (0.06mmol) of the organocatalyst (Scheme 2).

The product structures and their corresponding melting
points are shown in Table 1. As can be seen, the results
clearly indicated good-to-high yields for coumarin deriva-
tives except three compounds which were obtained in small
quantities. To produce coumarin derivatives, mechanism of
the reaction proceeds similarly to previously prepared xan-
thone derivatives through direct in situ cyclization of inter-
mediates [57]. Exploring the outcome of the cyclization reac-
tion between phenols and Ethyl acetoacetate as well as overall
yields pointed out that some functional groups on phenolic
substrate accelerate the ring closure and promote the product
yields obviously.

As can be deduced from Table 1, enhancing the electron
density will cause higher yields. Yields were promoted by
the presence of electron releasing groups such as amino,
hydroxyl, and methoxy groups (5a–9a). As was expected,
phenols with electron donating groups such as hydroxy
and methoxy activate the phenolic moieties to react faster
with Ethyl acetoacetate, and consequently the products were
obtained in higher yields and shorter times.

To find the best condition and optimize the reaction con-
ditions especially from the environmental point of view, per-
forming some experiments for possible modification on the
reaction was necessary. So, we studied the reaction param-
eters including solvent, amount of catalyst, and reaction

temperature. Reaction of resorcinol and Ethyl acetoacetate
(2a) was considered as a typical reaction and the reaction
parameters were changed and the yields were monitored
consequently. At first, reaction medium was investigated
using polar and nonpolar solvents such as tetrahydrofuran
(THF), dichloromethane (DCM), n-hexane, acetonitrile, and
solvent-free condition. Temperature and amount of catalyst
were unchanged through the reactions. The result indicated
that solvent-free condition gave the higher amount of the
product in shorter periods (Table 2). However, in addition
to higher yields, employing solvent-free protocol reduces the
environmental pollutions and hazardous organic solvents. To
reach the optimum catalytic activity of the catalyst, the dif-
ferent amounts of the catalyst were evaluated with some try-
outs. So, according to Table 2, some experiments were done
and the minimum amount of the catalyst with the acceptable
result was considered as the most favorable amount of the
catalyst. Determination of the optimum reaction tempera-
ture, which is critical for energy consumption issues, was
conducted with some experiments in the range of 25 to
120∘C.Results indicate that higher temperatures are needed to
provide sufficient energy for nucleophilic attack by phenolic
rings and consequently ring closure. Temperatures above
90∘C have shown excellent results in the least time (Table 2).

To explore the potential applicability of this notable
organocatalyst in catalytic organic reactions especially in
producing fine chemicals as well as to cover industrial con-
cern in reducing the chemical pollutants in an environment,
reusability of the catalyst has been practiced and the results
were acceptable. Hence, after each reaction, catalyst was
recovered by washing the precipitate with specified amounts
of deionized water to dissolve the organocatalyst. Then, on
filtration, aqueous solution of catalyst was evaporated, dried,
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Table 2: Optimization of the reaction medium for the synthesis of 4-methyl-2H-chromen-2-one (1)a.

Entry Catalyst (mg) Solvent Temp. (∘C) Time (h) Yield (%)b

1 25 THF 80 5 60
2 25 CH

3
CN 80 5 67

3 25 CH
2
Cl
2

80 12 30
4 25 n-Hexane 80 12 20
5 25 Solvent-free 80 3 78
6 15 Solvent-free 80 5 50
7 25 Solvent-free 80 3 78
8 45 Solvent-free 80 3 88
9 60 Solvent-free 80 2.5 90
10 45 Solvent-free r.t 24 30
11 45 Solvent-free 50 10 60
12 45 Solvent-free 80 3 88
13 45 Solvent-free 90 2.5 95
14 45 Solvent-free 120 2.5 96
aReaction condition: resorcinol (1mmol) with Ethyl acetoacetate (1mmol), p-sulfonic acid calix[4]arene.
bIsolated yield.

First

Second

Third

Fourth

20 40 60 80 1000
Yield (%)

Figure 4: Efficiency of the calixarene sulfonic acid (CSA) in the
synthesis of coumarins.

and adjusted for in further successive reactions. The results
showed that the recycled catalyst was still as efficient as the
fresh one even after four runs of usage, and decreases in
product yields are negligible, Figure 4.

4. Conclusions

In this research, potential applicability of p-sulfonic acid
calix[4]arene (CSA) as a catalyst in the synthesis of phar-
maceutically significant coumarin derivatives was evaluated.
Efficient catalytic activity as well as recyclability makes CSA
an exciting organocatalyst for researchers who are searching
for more environmentally friendly catalysts with less harmful
andmore proficient capabilities. Moreover, herein, the earlier
strategies in the synthesis of coumarin derivatives were
developed using CSA as a catalyst in one-pot and solvent-
free procedure. In this study we demonstrated especial and
valuable organocatalyst for the synthesis of coumarins.
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