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Mycobacterium tuberculosis (Mtb) is a successful intracellular pathogen that thrives
in macrophages (Mϕs). There is a need to better understand how Mtb alters cellular
processes like phagolysosome biogenesis, a classical determinant of its pathogenesis.
A central feature of this bacteria’s strategy is the manipulation of Mϕ actin. Here,
we examined the role of microRNAs (miRNAs) as a potential mechanism in the
regulation of actin-mediated events leading to phagocytosis in the context of mycobacteria
infection. Given that non-virulent Mycobacterium smegmatis also controls actin filament
assembly to prolong its intracellular survival inside host cells, we performed a global
transcriptomic analysis to assess the modulation of miRNAs upon M. smegmatis
infection of the murine Mϕ cell line, J774A.1. This approach identified miR-142-3p
as a key candidate to be involved in the regulation of actin dynamics required in
phagocytosis. We unequivocally demonstrate that miR-142-3p targets N-Wasp, an
actin-binding protein required during microbial challenge. A gain-of-function approach for
miR-142-3p revealed a down-regulation of N-Wasp expression accompanied by a decrease
of mycobacteria intake, while a loss-of-function approach yielded the reciprocal increase of
the phagocytosis process. Equally important, we show Mtb induces the early expression
of miR-142-3p and partially down-regulates N-Wasp protein levels in both the murine
J774A.1 cell line and primary human Mϕs. As proof of principle, the partial siRNA-mediated
knock down of N-Wasp resulted in a decrease of Mtb intake by human Mϕs, reflected in
lower levels of colony-forming units (CFU) counts over time. We therefore propose the
modulation of miRNAs as a novel strategy in mycobacterial infection to control factors
involved in actin filament assembly and other early events of phagolysosome biogenesis.
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INTRODUCTION
In the arms race of host-microbe coevolution, pathogens such as
Mycobacterium tuberculosis (Mtb) have evolved ingenious strate-
gies to survive inside the host. Prominent among these strategies
is the subversion of macrophages (Mϕs), which play a dual role
as the primary host cell for microbial replication and as the cru-
cial effector cell in the immune response against this obligate
intracellular pathogen. Mϕs are ideal targets for subversion since
they are endowed with bacterial killing mechanisms, such as the
exposure of the invading microbes to a hostile intracellular envi-
ronment, such as occurs following fusion of phagosomes with
acidic and hydrolase-rich lysosomes (phagolysosomes). Perhaps
the best-known strategy for any invading bacterial pathogen is to

manipulate the early steps of the interaction with Mϕs, in order
to avoid the activation of the microbiocidal mechanisms. This is
indeed the case for Mtb as the inhibition of phagolysosome bio-
genesis in infected Mϕs is a classical pathogenesis determinant
(Deretic et al., 2004).

We, and others, have shown that in phagolysosome biogenesis
there are at least three distinct processes inhibited by mycobac-
teria: phagosomal actin assembly, fusion with lysosomes, and
acidification (Sturgill-Koszycki et al., 1994; Anes et al., 2003, 2006;
Castandet et al., 2005; Kozomara and Griffiths-Jones, 2011). A
central feature to this pathogenic strategy is the manipulation
of actin’s fate within Mϕs such that it favors bacterial survival.
In Mϕs, actin filament assembly is required for pseudopodia
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provided evidence that phagosomal membranes provide tracks
for lysosomes to move toward the actin nucleating organelle
(Anes et al., 2003; Kjeken et al., 2004). In addition, actin fila-
ment assembly also plays a role in the pro-inflammatory response.
Several signaling lipids, cAMP, extracellular ATP and the P2X7
receptor, were shown to be involved in actin assembly and the
killing/survival of pathogenic mycobacteria (Kalamidas et al.,
2006; Treede et al., 2007; Jordao et al., 2008a,b; Kühnel et al.,
2008; Kuehnel et al., 2009). Furthermore, some lipid effectors that
regulate actin assembly also control NF-κB, a transcription fac-
tor involved in the pro-inflammatory response (Gutierrez et al.,
2009). While these observations suggest a central role of actin
assembly in boosting the ability of Mϕs to kill mycobacteria,
the mechanism(s) of how Mtb or Mϕs control actin-mediated
dynamic events during infection remain relatively unknown.

Considering the temporal aspects of the phagocytic process it
must be appreciated that many of the processes occur at quite dif-
ferent time scales. A single round of phagocytosis occurs much
faster (in a few minutes) than a transcriptional response result-
ing in protein synthesis (at least 10 min, and up to many hours).
The earliest measurable event in phagocytosis is actin assem-
bly, a highly sophisticated process that generally occurs on the
surface of cellular membranes; it occurs at the time scale of sec-
onds. Therefore, the mechanisms influencing these early events
of the microbe-Mϕ interaction must be equally dynamic in terms
of time and efficiency. Recently, a new class of regulators has
emerged as key participants in controlling cellular processes:
the microRNAs (miRNAs). These are small non-coding, single-
stranded RNAs (around 22 nucleotides length), which act by
specifically binding to the 3′-UTR regions of target mRNAs, caus-
ing translational repression or mRNA degradation, along with
subsequent reduction in protein expression and thereby function.
The miRNAs are emerging as important subject of investiga-
tion due to their roles in development, cancer (Williams, 2008),
metabolic and neurologic disorders (Boissonneault et al., 2009),
cardiac regeneration (Eulalio et al., 2012a). They are also accepted
as playing key roles in inflammatory responses (O’Connell et al.,
2012); among other biological activities.

Especially relevant to the present study are the observations
implicating miRNAs in the regulation of the mRNA levels of
actin-binding proteins (ABP) and other factors involved in actin-
mediated events. For instance, miR-21 targets the mRNA for the
tropomyosin (Zhu et al., 2007); both miRNA-143 and miR-145
regulate podosome formation in smooth muscle cells (Xin et al.,
2009); and miR-145, miR-133a, and miR133b target the fascin
homolog 1 (Kano et al., 2010). Moreover, cofilin is indirectly reg-
ulated by miR-205 via Rho-ROCKI activity in keratinocytes (Yu
et al., 2010). Other known examples include that of MiR-132 reg-
ulating Rac1 activity and hippocampal spine formation (Impey
et al., 2010), and miR-206 targeting the mRNA for the GTPase,
Cdc42, in a breast cancer cell line (Liu et al., 2010). Finally, the
WASP family member WAVE3, an actin cytoskeleton remodel-
ing and metastasis promoter protein, is regulated by miR-200
(Sossey-Alaoui et al., 2009). Therefore, it is plausible that micro-
bial pathogens might manipulate actin-dependent events through
the modulation of the host miRNAs to enhance their survival
within Mϕs.

In the context of host-pathogen interactions, the pathogenic
capacity to alter the host miRNA repertoire is most clearly seen in
the considerable progress done in the context of viral and para-
sitic infections (Cullen, 2011; Hakimi and Cannella, 2011). Yet, in
comparison to these two types of microbial infections, the host
miRNA response to bacterial pathogens has been less explored
(Eulalio et al., 2012b). Perhaps the importance of miRNAs in
the host response against bacterial infections is best illustrated in
the case of Salmonella. Indeed, this intracellular bacterium trig-
gers specific alterations in the miRNA repertoire in Mϕs, such as
the down-regulation of the Let-7 miRNA gene family members
that serve as a post-transcriptional brake to IL-6 and IL-10 secre-
tion, thereby modulating the immune response in favor of the
pathogen (Voinnet, 2011; Eulalio et al., 2012b). Recently, how-
ever, there has been also an increase interest in the role of miRNA
in mycobacterial infections. This includes the identification of
miRNAs as biomarkers for tuberculosis (TB) at different stages
(Fu et al., 2011; Wang et al., 2011; Qi et al., 2012; Yi et al., 2012;
Spinelli et al., 2013), and the modulation of the miRNA repertoire
during host cell infection with Mtb (Rajaram et al., 2011; Singh
et al., 2013), Bacillus Calmette-Guerin (BCG) (Ma et al., 2011; Wu
et al., 2012) and M. avium (Sharbati et al., 2011). In particular, the
regulatory effect on pro-inflammatory cytokine production via
the mIR-125b/mIR-155 axis represents the best described strat-
egy of how Mtb subverts host immunity and potentially enhances
its virulence. On the one hand, Mtb blocks the biosynthesis of
TNFα and prevent its pro-inflammatory consequences by increas-
ing inducing high levels of mIR-125b through lipomannan (the
major cell wall component) secretion. On the other hand, the
lipomannan from the non-pathogenic M. smegmatis fails to affect
the mIR-125b expression, and instead, the host miRNA response
is characterized by the induction the mIR-155 expression, which
enhances TNFα mRNA half-life and translation, resulting in a
stronger microbiocidal outcome (Rajaram et al., 2011).

To our knowledge, there are no reports in the literature con-
cerning the role of miRNAs in the mRNA regulation of ABPs
associated with early events in bacterial phagocytosis leading
to phagolysosome biogenesis. Based on previous work with M.
smegmatis as a model of phagocytosis, we found out that this
non-virulent mycobacterial strain is able to modulate the actin
cytoskeleton and the pro-inflammatory response in such as way
as to enable its intracellular survival up to 2 days, despite the fact
that it cannot prevent its ultimate elimination from the host cell
(Anes et al., 2003, 2006; Jordao et al., 2008a). The ability of the
host cell to assemble actin from the membrane of the phagosome
is directly related with additional fusion events with lysosomes
that lead to the killing of mycobacteria. We therefore decided to
investigate the role of miRNAs as a potential novel mechanism
in the regulation of actin-mediated events influencing the pro-
cess of phagocytosis within the context of mycobacteria infection,
including both non-virulent and virulent species.

MATERIALS AND METHODS
CELL PREPARATION, CELL LINES AND BACTERIAL CULTURE
CONDITIONS
The mouse Mϕ cell line J774A.1 was cultured as described pre-
viously (Anes et al., 2003). The human monocyte derived Mϕs

Frontiers in Cellular and Infection Microbiology www.frontiersin.org June 2013 | Volume 3 | Article 19 | 2

http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org
http://www.frontiersin.org/cellular_and_infection_microbiology/archive


Bettencourt et al. miR-142-3p control of N-Wasp to modulate phagocytosis

were obtained from healthy blood donors (Instituto Português
do Sangue, Lisbon, Portugal), and differentiated following a pre-
viously published procedure (Wang et al., 2010). A protocol
of collaboration was established between Drs. Anes and Castro
(the head of the Portuguese Institute for Blood in 2007), in
order to have access to buffy coats from blood donors for sci-
entific research. Alternatively, monocytes were obtained from
healthy blood donors Etablissement Français du Sang (EFS) in
Toulouse, France. Written informed consents were obtained from
the donors under EFS contract n◦21/PVNT/TOU/IPBS01/2009-
0052. Following articles L1243-4 and R1243-61 of the French
Public Health Code, the contract was approved by the French
Ministry of Science and Technology (agreement nuAC 2009-
921). The monocytes were differentiated into Mϕs following a
previously published protocol (Tailleux et al., 2003).

The strain Mycobacterium smegmatis mc2155, containing
a p19 (long lived) EGFP plasmid was kindly provided by
Dr. Douglas Young (London School of Hygiene and Tropical
Medicine, London, UK), and the green fluorescent protein
(GFP)-expressing strain of M. tuberculosis (H37Rv-pEGFP) plas-
mid was a kind gift from G. R. Stewart (University of Surrey,
United Kingdom). M. smegmatis was grown in medium contain-
ing Middlebrook’s 7H9 broth Medium (Difco, USA), Nutrient
broth (Difco, USA) supplemented with 0.5% glucose and 0.05%
Tween 80 at 37◦C on a shaker at 200 r.p.m. (Anes et al., 2003).
Bacteria were sub-cultured every day in fresh medium before use.
M. tuberculosis H37Rv was grown in Middlebrook’s 7H9 medium
(Difco) and supplemented with 10% OADC Enrichment (Oleic
acid; Albumin Factor V, Bovine; Dextrose; Catalase Powder;
Sodium Chloride) (Difco, USA) (Anes et al., 2003).

Mϕ INFECTION
Bacterial cultures in exponential growth phase were spin-down,
washed in phosphatebuffered saline (PBS, without Ca2+ or
Mg2+, GIBCO Invitrogen) and resuspended in Dulbecco’s
Modified Eagle Medium (DMEM). Bacterial clumps were
removed by incubation in an ultrasonic water bath for 15 min, fol-
lowed by a low speed centrifugation for 2 min. Mϕs were seeded
onto 24-well tissue culture plates, 5 × 105 cells/well, for protein
and RNA extraction. For immunofluorescence (IF), 0.5 × 105

cells/well were seeded into cover slips and incubated for overnight
until reach 1.5 × 105 cells per cover slip. Mϕs were infected with a
single-cell suspension of mycobacteria at multiplicity of infection
(MOI) of 10:1 (10 bacteria per Mϕ). Bacteria were internalized
by Mϕs during 1 h (infection experiment), at 37◦C with 5% CO2.
In every experiment, after 1 h of infection, cells were washed with
PBS and maintained in DMEM with Gentamycin (10 μg/ml) to
kill extracellular bacteria.

The colony-forming units (CFU) assay in Mϕs was performed
following a previously published proceduture (Botella et al.,
2011). Briefly, Mϕs were incubated with bacteria in RPMI-10%
AB serum (MOI 0.1 for human cells and 10 for mouse cells) and
for various times (see text). For bacterial proliferation experi-
ments, after a 4-h infection with H37Rv-eGFP, Mϕs were washed
with PBS to remove extracellular bacteria, and were then incu-
bated in fresh medium. At the indicated time points, cells were
lysed with 500 μl of 0.1% Triton X-100 in sterile water, and viable

intracellular bacteria were counted by plating serial dilutions of
the lysates onto Middlebrook 7H11 agar-10% OADC.

Alternatively, the rate of phagocytosis of H37Rv-pEGFP by
human Mϕs was measured after 4 h of infection (MOI 10) by flow
cytometry using a Becton Dickinson LSRII flow cytometer using
the FlowJo software.

MicroRNA EXPRESSION
Total RNA was isolated using TRIzol reagent (Invitrogen,
Paisley, Scotland) according to the manufacturer’s instruc-
tions. RNA quality was controlled using the RNA 6000 Pico
LabChip kit (Agilent, Waldbronn, Germany) and quantified
with a NanoDrop ND-1000 Spectrophotometer (Nanodrop
Technologies, Wilmington, DE, USA). Microarray results were
submitted to GEO repository with the GEO accession number
GSE23429.

RT-qPCR
Messenger RNA relative quantification started with 1 μg of total
RNA that was used for random hexamer primed cDNA synthe-
sis (SuperscriptTM II reverse transcriptase, Invitrogen) according
to the manufacturer protocol. Amplification was detected using
SYBR Green PCR master mix (Applied Biosystems) and differ-
ent sets of primers (MWG) at a final concentration of 0.5 μM.
The PCR settings used: 1 cycle of 95◦C for 10 min, followed
by 40 cycles of 95◦C for 15 s, 60◦C for 30 s, and 72◦C for 30 s.
The mRNA expression profiles were normalized with respect
to GAPDH (Glyceraldehyde 3-phosphate dehydrogenase). The
qPCR was performed using an ABI 7500 Real Time PCR System
(Applied Biosystems) and data was collected at the amplification
step and analysed with SDS v1.2. Software. Fold increase of each
gene was calculated using the −2−��Ct method.

The specific relattive quantification of miR-142-3p in total
RNA samples was based on TaqMan MicroRNA Assays from
Applied Biosystems (ABI) in our laboratory or by final report
analysis provided by EXIQON (DK) microRNA qPCR services.
Briefly, 10 ng of total RNA were used for cDNA synthesis, accord-
ing to the manufacturer protocol. The qPCR was run with the
following steps: 1 cycle of 95◦C for 10 min, followed by 40 cycles
of 95◦C for 15 s, and 60◦C for 15 s, without dissociation stage. The
miRNA expression profiles were normalized either to reference
gene U6 (snRNA) or to the average obtained between miR-23a,
miR-23b, and miR-24, whose expression levels are stable under
the experimental conditions applied in this study. The mean and
standard deviation over all the median normalized intensity data
obtained from the microarray was calculated. The data was fil-
tered so that the mean expression of the median normalized
intensity value is high (higher than 10), and that the standard
deviation is low (15 % of the mean).

IDENTIFICATION OF THE SPECIFICITY OF miR-142-3p TO THE 3′-UTR
mRNA OF N-WASP
A 356 bp fragment of 3′-UTR of Wasl mRNA, containing the
seed sequence (ACACTAC) of miR-142-3p was amplified by PCR
(forward primer 5′-GCGACGTCGGTGAAATACTAAACACTA
CTTC-3′, reverse primer 5′-CCCTCGAGGTACAGAAAAAGTA
GGGTATG-3′). The fragment was designated as Wasl 3′-UTR and
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inserted into the pmirGLO dual-luciferase miRNA target expres-
sion vector (Promega), between the SacI and XhoI restriction
sites. Mutant plasmids were constructed bearing a single point
mutation on the primer that includes the seed sequence, thus
incorporating this mutation on the amplicon during the PCR
amplification. The forward primer 5′-GCGAGCTCGGTGAA
ATACTAAACATTACTTC-3′ for Wasl 3′-UTR plasmid was used.
Point mutation is underlined.

TRANSIENT TRANSFECTION
The miR-142-3p mimics and inhibitors (Dharmacon, Lafayette,
CO, USA) were used for transient transfection in gain or loss-of-
function experiments, respectively. The negative control sequence
(scramble), was designed by the supplier, and was confirmed
to have minimal sequence identity with miRNAs in human,
mouse and rat. Either 100 nM of synthesized oligonucleotide
or 10 ng/μl of plasmid were mixed with 1.5 μl of Dharmafect4
(Dharmacon, Lafayette, CO, USA) per 400 μl of serum free
DMEM and transfected into 1.5 × 105 cells. The transfection effi-
ciency achieved was approximately 90%, as evaluated by confocal
microscopy using a miR-142-3p inhibitor labeled with Alexa 594
fluorochrome (Exiqon, Vedbaek, Denmark). After transfection,
the cells were allowed to recover by incubating either for 48 or
72 h at 37◦C, for total RNA of phenotypic assays.

For the Dual-Luciferase assay, the constructed plasmids were
co-transfected, with the mimics for miR-142-3p or scram-
ble (Dharmacon, Lafayette, CO, USA), into HEK293t cells.
The reporter assay was performed using the Dual-Luciferase
Reporter Assay System (Promega), according to manufacturer’s
instructions.

IMMUNOFLUORESCENCE
Cells were fixed with 4% paraformaldehyde, 4% sucrose solution
in PBS for 30 min, and quenched by incubating with PBS 50 mM
NH4Cl. Then cells were permeabilized with 0.1% Triton in PBS
for 5 min. Fixed cells were washed and blocked with 1% BSA in
PBS and incubated with rhodamine-phalloidin for F-actin stain-
ing and 4′,6-diamidino-2-phenylindole, dihydrochloride (DAPI)
for nuclear staining (both from Molecular Probes, Invitrogen,
UK), in 1% BSA/PBS for 30 min. Cells were mounted with Dako
mounting media and analysed by confocal microscopy (Zeiss
LSM510 META).

WESTERN BLOT
Cells plated in 24-well plates, under different conditions, were
washed twice with PBS, and harvested in 250 μl of ice-cold, non-
denaturating lysis buffer (TRIS 50 mM, NaCl 150 mM, Triton 1%,
EDTA 1 mM, Protease Inhibitor Cocktail Tablets from Roche,
Mannheim, Germany). Lysates were collected after 30 min of
incubation and spun down for 5 min at 12000 × g, to remove
debris of broken cells. The supernatant was collected and the
protein concentration was measured using Bradford method.
Approximately 20 μg of protein extracts were subjected to elec-
trophoresis in 10% SDS-PAGE gels, transferred to a nitrocel-
lulose membrane and blocked with 0.1% Tween20, 5% of low
fat milk Tris Buffered Saline (TBS). The nitrocellulose mem-
brane was then incubated with the primary antibodies, anti-

N-Wasp, Cdc42, or Tubulin rabbit monoclonal antibodies (Cell
Signaling, USA). For the confirmation of siRNA-mediated inacti-
vation of N-Wasp, total protein lysates were extracted in the same
manner as above. Proteins were separated with 4–12% Bis-Tris
Gel (Invitrogen), transferred onto nitrocellulose membranes and
incubated with anti-N-WASP (H100, Santa Cruz Biotechnology,
1/200), anti-actin (A5060, Sigma, 1/10000) overnight at 4◦C. All
membranes were washed and incubated with secondary HRP-
conjugated antibodies. The bands were visualized with a chemilu-
miniscence reagent (Amersham Biosciences, UK) and quantified
using Adobe Photoshop CS3 software.

siRNA-MEDIATED GENE SILENCING
Human Mϕs were transfected with the siRNA (final concen-
tration of 133 nM) using the Hiperfect transfection reagent
according to the protocol we have developed and optimized
(Lefèvre et al., 2013). This siRNA targeted the following human
genes (all SMARTpool from Dharmacon): WASL and a non-
targeting/scramble. This protocol resulted in a transfection effi-
ciency of nearly 100% and a survival rate ranging no less than
85%, as determined by flow cytometry of cell transfected with
siGLO RISC-free siRNA (Dharmacon) and the Anexin-V kit
(Miltenyi Biotec). Upon 6 h of transfection with these siRNAs,
the reaction was stop by adding medium with the presence of
MCSF (10 ng/ml) (Miltenyi Biotec). After 96 h, MDMs were used
for experiments. The gene silencing effect lasted up to 7 days with
no significant toxicity to MDMs. Functional gene silencing was
verified by western blot analysis as described above.

ANALYSIS OF MICROARRAY DATA
GPR files produced from GenePix Prov V 6.0 software (Molecular
Devices) analysis of scanned tif images were parsed, com-
bined and the data median normalized using the MiChip
library of BioConductor (http://www.bioconductor.org/help/
bioc-views/release/bioc/html/MiChip.html). The median of the 3
uninfected replicates was taken and used to produce log2 ratios
with respect to the normalized data from infected cells. The
log2 ratio data was then analysed using Significance Analysis of
Microarrays (SAM) (Tusher et al., 2001) with a False Discovery
Rate (FDR) < 1% using the TigrTools MeV package (Saeed et al.,
2006) and hierarchal clustered using the same application.

STATISTICAL ANALYSIS
Data are presented as mean either ± SD or ± SEM of at least
three independent experiments; p-values (Student’s T-Test) are
relative to the control. Statistical significance was assumed when
P < 0.05.

RESULTS
EXPRESSION OF miR-142-3p IS INDUCED IN MURINE Mϕs UPON
MYCOBACTERIA INFECTION
To discern whether miRNAs are involved in phagocytosis during
the context of mycobacterial infection, we first decided to assess
the modulation of miRNAs via a global transcriptomic analysis.
Previously, we demonstrated that the non-virulent M. smegmatis
is able to modulate actin filament assembly in order to prolong its
intracellular survival up 2 days before it succumbs to the diverse
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antimicrobial strategies employed by Mϕs to eliminate intracellu-
lar pathogens (Anes et al., 2003, 2006; Jordao et al., 2008a). Since
virulent Mtb is well known to block actin filament assembly to
facilitate its survival in the host cell, we reasoned that the con-
trol mechanisms of actin filament assembly might be a shared
feature among these mycobacterial strains. For this reason, and
the fact that M. smegmatis is an easier model to work with (i.e.,
a fast doubling time and a biosafety level 1 laboratory require-
ment), we performed microarrays analysis. For this we infected
the murine Mϕ cell line J774A.1 with this non-virulent bacterium
for 1 h. As shown in Figure 1A and Table 1, this approach revealed
the modulation of 36 miRNAs, of which 27 were induced and 9
down-regulated.

Next, in order to select the key potential miRNA candidates
involved in the regulating actin dynamics required for phagocy-
tosis, we applied the following criteria: (1) the quality of the raw
data was considered by looking for midrange expression in order
to avoid the effects of low level expression changes due to back-
ground or high level saturation; (2) to ensure reproducibility we
used data based on triplicates with acceptable low standard devia-
tions; (3) the miRNAs should be highly conserved across species;
and the mRNA targets should be both (4) relevant early on during
bacteria internalization and (5) encode for ABPs. Based on these
criteria, the miR-142-3p was selected as the best candidate for fur-
ther study. Not only was its level of expression level acceptable
(∼2.4 fold change) but also it represented one of the highest mod-
ulated miRNA’s in our microarray analysis (Figure 1, Table 1);
it was also predicted to bind ABPs involved in phagocytosis,
as explained below. Moreover, miR-142-3p expression is associ-
ated to normal myeloid leukocyte differentiation (Careccia et al.,
2009), and among its bona fide gene targets in the immune system,
include the pro-inflammatory cytokine IL-6 that plays an essen-
tial role in protective and pathological immune responses (Sun
et al., 2011). To further validate the induction of this miRNA,
we performed qPCR analysis in J774A.1 Mϕs infected with M.
smegmatis at different time points and compared their expression
levels to uninfected cells. As shown in Figure 1B, we observed at
1 hpi a slight, but significant induction miR-142-3p expression
that was, however, short-lived: it returned to basal levels at 4 hpi.
Altogether, while the expression levels for this miRNA in J774A.1
Mϕs infected with M. smegmatis was slightly lower in the qPCR
analysis compared to those obtained from the microarray data,
they supported the notion that miR-142-3p is up-regulated at the
earliest stage of infection.

The miR-142-3p is predicted to target two mRNAs encod-
ing for ABPs, cofilin2 (Cfl2) and Wiskott-Aldrich Syndrome-
Like (human) (N-Wasp), which are involved during the early
events of phagocytosis (McGee et al., 2001; Caron et al., 2006;
Park and Cox, 2009; Dart et al., 2012). These two targets
were consistently present in all in 5 miRNA target predic-
tion databases used in this study: Targetscan (Lewis et al.,
2005), miRDB (Wang, 2008; Wang and El Naqa, 2008) and
microRNA.org (Betel et al., 2008), Diana (Maragkakis et al.,
2009a,b) and PicTar (Krek et al., 2005). Furthermore, addi-
tional predicted targets from all 5 databases were combined and
the intersections computed. Out of 2548 distinct genes, only
11 overlapped in all 5 prediction sets (Table 2). The combined

FIGURE 1 | MicroRNA Expression in J774A.1 Macrophages infected

with M. smegmatis for 1 h. (A) Heatmap of the most significantly
regulated genes. The median normalized intensity values for each of the
three infected replicates were divided by the median of the uninfected (wild
type) samples. The ratio was then converted to log2 space and changes in
the expression ratio were analysed using the Significance Analysis of
Microarrays Test to isolate those with significant changes, FDR < 1%.
(B) Relative expression of miR-142-3p in mouse cells infected with M.
smegmatis at MOI 10, as measured by qPCR analysis. Data is represented
as the mean fold change per sample ± SD at 1 and 4 h post-infection
(∗P ≤ 0.05).
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Table 1 | MicroRNA fold change regulation.

Name Regulation (fold change)

Positive Negative

mmu-miR-19b

mmu-miR-805

mmu-miR-142-3p

mmu-miR-181a-1*

mmu-miR-742

mmu-miR-298

mmu-miR-193

mmu-miR-101a*

mmu-miR-207

mmu-miR-329

mmu-miR-219

mmu-miR-19a*

mmu-miR-684

mmu-miR-29a*

mmu-miR-32

mmu-miR-33

mmu-miR-574-3p

mmu-miR-689

mmu-miR-331-3p

mmu-miR-690

mmu-miR-691

mmu-miR-93

mmu-miR-142-5p

mmu-miR-709

mmu-miR-713

mmu-miR-338-3p

mmu-miR-711

mmu-miR-106b

mmu-miR-379

mmu-let-7f

mmu-miR-375

mmu-miR-377

mmu-miR-10b

mmu-miR-451

mmu-miR-188-3p

mmu-miR-214*

ND, Not detected.

The fold change is calculated by the ratio between the average of the microarray

data of the infected cells, and the average of the microarray data of the non-

infected cells. The differential expression for each gene is statistically significant

(P ≤ 0.05).

list of distinct gene targets (2548 genes, 2275 mapped to GO
terms) derived from the 5 miRNA target databases was further
analysed for enrichment of molecular function Gene Ontology
terms using the Genomatix Genome Analyser GeneRanker tool
(www.genomatix.de) El Dorado version 1210. GO terms selected
have a probability of enrichment less than 0.01. This anal-
ysis showed that ABPs and cytoskeletal-binding proteins are
indeed strongly enriched as potential targets of the miR-142-3p
(Table 3).

THE mRNA FOR N-WASP IS TARGETED BY miR-142-3p
Given its involvement during early events of phagocytosis (McGee
et al., 2001; Caron et al., 2006; Park and Cox, 2009; Dart et al.,
2012), and the strong prediction for it being a gene target for
miR-142-3p (Tables 1 and 3), we asked whether this miRNA
may target the 3′-UTR mRNAs Wasl (mRNA for N-Wasp). To
accomplish this, we used a dual luciferase reporter vector sys-
tem in which the 3′-UTR sequence for Wasl was inserted into
the pmirGLO dual-luciferase target expression vector. The sys-
tem allows one to quantitatively assessing the transcript activity,
upon binding to a potential miRNA target, thus validating the
specificity of miRNA-mRNA 3′-UTR pair interaction. As shown
in Figure 2A, the relative luciferase activity is lower in the pair
miR-142-3p/Wasl relative to the control, indicating that the miR-
142-3p targets the Wasl mRNA 3′-UTR with high probability
(P < 0.01). By contrast, when a plasmid bearing a mutated form
of the Wasl sequence by one nucleotide substitution was tested,
there was no decrease in luciferase activity detected. Altogether,
this demonstrates that Wasl is indeed a target of miR-142-3p.

THE MODULATION OF miR-142-3p EXPRESSION PARTIALLY
INFLUENCES THE AMOUNT OF N-WASP PROTEIN
Our previous results confirmed that miR-142-3p targets the
mRNA sequence of N-Wasp, suggesting it may influence the level
of N-Wasp protein, and consequently, the phagocytosis process.
In order to test this hypothesis, we first verified whether the
pathogenic Mtb strain H37Rv was capable of modulating the
miR-142-3p expression as M. smegmatis. We performed a time
course of infection (1, 4, and 24 hpi) with either strains and mea-
sured the miR-142-3p expression by qPCR analysis. As shown
in Figure 2B, Mtb significantly induced the expression levels for
miR-142-3p at 1 hpi similar to that obtained with M. smegma-
tis challenge. Yet, similar to the pattern obtained during infection
with M. smegmatis, the induction caused by Mtb was short-lived,
as the expression levels for miR-142-3p drops considerably at
4 hpi and remains low at 24 hpi (Figure 2B). Therefore, if miR-
142-3p plays a role in regulating N-Wasp activity, then it is only
early on during the interaction with mycobacteria, such as the
phagocytosis process.

Next, to examine whether miR-142-3p is able to regulate N-
Wasp expression in Mϕs, we conducted gain-of-function and
loss-of-function experiments in order to measure N-Wasp pro-
tein levels during mycobacterial infection. We employed the use
of either “mimics” of miR-142-3p to imitate and increase its
behavior (gain-of-function), or “inhibitors” to nullify its activ-
ity (loss-of-function), as described in Materials and Methods. In
this manner, Mϕs were transfected with mimics or inhibitors of
miR-142-3p and subsequently challenged with either M. smeg-
matis or Mtb for 1 h. Whole cell extracts were then prepared for
western blot analyses. As shown in Figure 2C, our results revealed
that Mtb alone can partially down-regulate the levels of N-Wasp
protein (∼20% less relatively to non-infected cells), as challenge
with M. smegmatis (either alive or heat-killed) failed to alter its
expression level. Likewise, the use of mimics partially decreased
the N-Wasp protein (∼20% less, relative to miRNA control) in
non-infected cells. Strikingly, there seemed to be an additive effect
with the use of mimics and challenge with Mtb since the level
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Table 2 | The detailed listing of the 11 genes that appear in the 5 databases.

Gene Name Accession number GO function DB counts

TMEM59 Transmembrane protein 59 NM_029565 Molecular function 5

ASH1L Ash1 (absent, small, or
homeotic)-like (Drosophila)

NM_138679 DNA-binding, histone-lysine
N-methyltransferase activity, metal ion-binding,
methyltransferase activity, molecular function,
transferase activity, zinc ion-binding

5

STRN3 Striatin, calmodulin-binding
protein 3

NM_052973, AK140447 Armadillo repeat domain-binding,
calmodulin-binding, protein complex-binding,
protein phosphatase 2A-binding,
sequence-specific DNA-binding transcription
factor activity, transcription repressor activity

5

CFL2 Cofilin 2, muscle NM_007688 Actin-binding, molecular function 5

RGL2 Ral guanine nucleotide dissociation
stimulator-like 2

NM_009059 Guanyl-nucleotide exchange factor activity 5

LRRC1 Leucine rich repeat containing 1 NM_172528, BC046591 Molecular function 5

WASL Wiskott–Aldrich syndrome-like

(human)

NM_028459 Actin-binding, protein-binding, small

GTPase regulator activity

5

EHF Ets homologous factor NM_007914, AF035527,
BC005520

DNA-binding, sequence-specific DNA-binding,
sequence-specific DNA-binding transcription
factor activity

5

SH3GLB1 SH3-domain GRB2-like B1
(endophilin)

NM_019464, AF272946 SH3 domain-binding, cytoskeletal adaptor
activity, fatty acid-binding, lipid-binding,
lysophosphatidic acid acyltransferase activity,
protein-binding, protein homodimerization
activity

5

CPEB2 Cytoplasmic polyadenylation
element-binding protein 2

NM_175937, AK042065 RNA-binding, nucleic acid-binding,
nucleotide-binding, poly-pyrimidine
tract-binding

5

INPP5A Inositol
polyphosphate-5-phosphatase A

NM_183144 PH domain-binding, inositol-polyphosphate
5-phosphatase activity

5

List of genes predicted as targets for mmu-miR-142-3p were downloaded from the five miRNA target data bases (Diana, Targetscan, PicTar, micrornaorg and mirDB).

of N-Wasp protein was drastically reduced (∼50% compared to
miRNA control). This additive effect, however, was not observed
during challenge with M. smegmatis (either alive or heat-killed)
(Figure 2C). Unlike the treatment with mimics, Mϕs transfected
with inhibitors of miR-142-3p and subsequently challenged with
these mycobacterial strains showed no significant change in the
protein levels of N-Wasp, implying that a compensatory effect was
occuring (Data not shown).

miR-142-3p ACTIVITY CORRELATES WITH A REDUCTION OF THE
AMOUNT OF INTERNALIZED MYCOBACTERIA PER Mϕ

The reduction of N-Wasp expression by the treatment mimick-
ing miR-142-3p of Mϕs infected with either mycobacterial strain,
prompted us to investigate for a possible role for this miRNA
in controlling the early stages of phagocytosis. To assess this, we
again employed the use of either “mimics” or “inhibitors” of
miR-142-3p activity. Our hypothesis predicted a decrease in bac-
terial intake with the use of the mimics and an increase in the
presence of inhibitors. As depicted in Figure 3A, confocal anal-
ysis confirmed that Mϕs treated with the mimics resulted in a
reduced amount of intracellular M. smegmatis at 4 hpi when com-
pared to the negative control (scrambled miRNA). By contrast,
Mϕs treated with the inhibitors led to a dramatic increase in the

amount of intracellular M. smegmatis. This effect was accompa-
nied by distinct morphological changes in terms of cell size and
large numbers of phagocytic cups, as compared to Mϕs treated
with the mimics (Figure 3B). The quantification analysis of the
confocal analysis is illustrated in Figure 3C. Furthermore, the
bacterial intake under these conditions was also measured at
1 or 4 hpi by CFU assays; this alternative quantitative method
revealed similar effects to those obtained by confocal microscopy
(Figure 3D). In the case for Mtb, Mϕs treated with the miR-142-
3p mimics resulted in a significant reduced amount of intracel-
lular Mtb when compared to the miRNA control at 4 hpi, thus
confirming our previous results with M. smegmatis challenge
(Figure 4A). However, we were surprised that treatment of Mϕs
with the inhibitors did not lead to a significant increased level of
intracellular Mtb, as it was the case for M. smegmatis (Figure 4B).
The quantification analysis of the confocal analysis is provided in
Figure 4C.

Mtb INDUCES miR-142-3p EXPRESSION WHILE DECREASING THAT OF
N-WASP IN HUMAN PRIMARY Mϕs
MiR-142-3p is highly conserved across species (Kozomara and
Griffiths-Jones, 2011). Our findings in the murine model sug-
gest that Mtb induces the timely expression of miR-142-3p in
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FIGURE 2 | N-Wasp is a target of miR-142-3p. (A) Luciferase assay
showing the specific targeting of the 3′UTR of the mRNA of Wasl by the
miR-142-3p. Data are represented as the mean fold change per sample ±
SD (∗P ≤ 0.01). (B) Relative expression of miR-142-3p in J774A.1
macrophages infected with M. smegmatis or M. tuberculosis (MOI 10), as
measured by the EXIQON (DK) microRNA qPCR services. Data is
represented as the mean fold change per sample ± SD at 1, 4, and 24 h
post-infection (∗P ≤ 0.05 relative to control). (C) Relative protein levels by
western blot in J774A.1 macrophages transfected with mimics of
miR-142-3p or not, and that of internalized mycobacteria (MOI 10) after a 1-h
challenge. N-Wasp levels are relative to that of α/β-Tubulin. A representative
blot from three independent experiments is shown with the densitometry
quantification: quantification of the relative levels of N-Wasp in infected
macrophages, treated with either mimics of miR-142-3p or scramble
(∗P ≤ 0.01; ∗∗P ≤ 0.001).

order to down-modulate the function of N-Wasp protein, and
therefore, modulate the uptake by phagocytic cells. Given the
Mtb is the etiological agent of TB in humans, and that human
Mϕs are the primary replication site for this obligate intracellu-
lar pathogen, we used primary human monocyte-derived Mϕs in
order to investigate whether the expression of miR-142-3p leads
to a subsequent reduction of N-Wasp and alter the rates of phago-
cytosis. Human Mϕs were exposed to latex beads (to induce a
“sterile” phagocytosis process), or challenge with either M. smeg-
matis or Mtb, and the miR-142-3p expression was quantified by
qPCR analysis. Our results indicate that while Mtb infection of
human Mϕs specifically induces the expression of miR-142-3p,
challenge with M. smegmatis or exposure to latex beads failed to
do so (Figure 5A, left).

Next, we measured whether the difference in miR-142-3p
expression obtained from the challenge with either mycobacte-
rial strain at 1 hpi is sustained throughout infection. Indeed, we
observed that it became more pronounced at 4 hpi, with an even-
tual decline at 24 hpi, but remaining always above the expression
level of non-infected cells (Figure 5A, right). Coincidently, the
protein levels of N-Wasp were slightly, but significantly reduced
(∼20%) at both 1 and 4 h upon Mtb infection, while remain-
ing unaffected by the challenge with M. smegmatis or exposure to
latex beads (Figure 5B). These results, along with those obtained
in the mouse model context, prompted us to examine whether
the decrease in N-Wasp expression had any functional con-
sequence for the phagocytosis process of Mtb. To accomplish
this, we used a siRNA-based protocol that we have adapted and
improved to effectively inactivate the gene expression in pri-
mary human Mϕs (Lefèvre et al., 2013). Using this protocol, we
obtained a significant reduction (on average ∼54%) of N-Wasp
protein levels in human Mϕs (Figure 5C). This partial inacti-
vation of N-Wasp protein resulted in a decrease of Mtb intake
as measured either by flow cytometry (Figure 5D, left), or by
CFU assays at 4 hpi (Figure 5D, left inlet); this pattern contin-
ued over a time course of 1 week (Figure 5D, right). Altogether,
these results suggest that the modulation of N-Wasp function via
miR-142-3p might contribute to the phagocytosis process of Mtb
in human cells.

DISCUSSION
TB is still one of the major causes of death due to a single
infectious agent (Mtb) with 1.7 million cases in 2009. There is
an urgent need for scientific research that may improve treat-
ment, diagnoses and prevention of TB. A better understanding
of how Mtb subverts host cells and hijacks cellular mecha-
nisms is necessary. A case in point is the inhibition by Mtb of
phagolysosome biogenesis in Mϕs, in which the regulation of
actin-mediated events plays a central role. For these reasons, we
decided to investigate the role of miRNAs as a potential novel
mechanism in the regulation of actin-mediated events influencing
the process of phagocytosis within the context of mycobacte-
ria infection. Taken all our observations together, we believe
this study makes three significant contributions to this emerging
field.

The first major contribution is our description of miRNA
modulation upon mycobacterial challenge. To our knowledge,
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FIGURE 3 | miR-142-3p activity correlates with a reduction of the

amount of internalized M. smegmatis per Mϕ. Confocal microscopy
showing quantitative and qualitative analysis of J774A.1 macrophages treated
with miR-142-3p mimics (A) or miR-142-3p inhibitors (B), and challenged with
M. smegmatis (MOI 10) for 4 h. Arrows indicate phagocytic cups. Blue (DAPI),
green (M. smegmatis GFP), and light red/orange (Rhodamine-Phalloidin). Bar:
20 μm. (C) Quantification of the relative amount of bacteria per macrophage

treated with mimics or inhibitors of miR-142-3p. Data is represented as the
mean area of bacteria per macrophage, per sample ± SEM at 4 h post
infection (∗P ≤ 0.05; ∗∗P ≤ 0.01). Data was analysed using ImageJ macros
(http://www.formatex.info/microscopy4/614-621.pdf). (D) Colony forming
units assay (CFU) of M. smegmatis-infected macrophages (MOI 0.1) either
for 1 (top) or 4 (bottom) h, and under the treatment with mimics or inhibitors
of miR-142-3p (∗P ≤ 0.05).

this is the first study to undertake the assessment of miRNA
expression patterns during the early stages of the mycobacteria-
Mϕ interaction. Our global transcriptomic approach revealed
that 36 miRNAs are significantly modulated, of which 27 up-
regulated and 9 down-regulated. Beyond the identification of

miR-142-3p as a key candidate, and its implications (discussed
below), there are 9 miRNAs (i.e., miR: 29, 93, 101, 181, 207, 329,
451, 574, and 684) in our list that are reported to be similarly
modulated in multiple mycobacterial infection contexts (Fu et al.,
2011; Ma et al., 2011; Sharbati et al., 2011; Wang et al., 2011; Yi
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FIGURE 4 | miR-142-3p activity correlates with a reduction of the

amount of internalized M. tuberculosis per Mϕ. Confocal
microscopy showing quantitative and qualitative analysis of J774A.1
macrophages treated with miR-142-3p mimics (A) or miR-142-3p
inhibitors (B), and challenged with M. tuberculosis (MOI 10) for
4 h. Blue (DAPI), green (H37Rv-eGFP), and Light red/orange

(Rhodamine-Phalloidin). Bar: 20 μm. (C) Quantification of the relative
amount of bacteria per macrophage treated with mimics or
inhibitors of miR-142-3p. Data is represented as the mean area of
bacteria per macrophage, per sample ± SEM at 4 h post infection
(∗P ≤ 0.05). Data was analysed using ImageJ macros (http://www.
formatex.info/microscopy4/614-621.pdf).

et al., 2012). Of special interest is the miR29 family, since its mem-
bers are known to play a major role in human diseases (Wang
et al., 2008; Park et al., 2009; Xiong et al., 2010). Not only are there
different reports about the up-regulation of miR-29a in patients
with active TB (Fu et al., 2011; Yi et al., 2012), but also its role
in the innate and adaptive immune responses to mycobacterial
infection has been recently described (Ma et al., 2011; Sharbati
et al., 2011). Indeed, miR-29 inhibits the production of IFNγ, a
crucial cytokine for the microbiocidal response against intracel-
lular pathogens. The fact that Mtb upregulates miR-29 expression

during the course of the infection suggests that it also modulates
IFNγ production to tilt the immune response in its favor (Ma
et al., 2011). Therefore, the case of miR-29 best illustrates the
potential of using microRNA modulation as microbial strategy
to circumvent the immune system (Eulalio et al., 2012b), and it
validates the exclusive list of miRNAs obtained in this study.

The second major contribution of this study is identification
of miR-142-3p as a key candidate involved in the regulation of
actin dynamics required in phagocytosis. The induction of miR-
142-3p as detected by our microarray analysis was confirmed by
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FIGURE 5 | Continued
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FIGURE 5 | Expression of miR-142-3p and N-Wasp levels in infected

human primary macrophages. (A) Left: relative expression of miR-142-3p
under M. smegmatis, M. tuberculosis or latex beads, exposure (1 h) of
macrophages, as measured by qPCR analysis. Right: relative expression of
miR-142-3p in human macrophages infected with M. smegmatis or M.
tuberculosis as the indicated time points, as measured by EXIQON (DK)
microRNA qPCR services. (B) Relative protein levels by western blot
analysis. N-Wasp levels relative to α/β-Tubulin either at 1 h post-infection with
20% reduction (upper left) or 4 h post-infection with 40% reduction (upper
right). A representative blot (bottom) from three independent experiments is
shown with densitometry quantification for each time point; data are
represented as the mean fold change per sample ± SD (∗P = 0.05). (C) The
siRNA-mediated inactivation of N-Wasp (WASL) was performed as described
in materials and method. Transfection of the siRNA SMARTpool targeting
N-Wasp (si-WASL) resulted in an average of about 54% reduction of the

protein level relative to that of the transfection with a non-targeting control
siRNA pool (si-CTL). A representative western blot analysis (right) illustrates
the gene inactivation obtained from four independent experiments (left); data
are represented as the mean fold change relative to control sample (set
arbitrarily at 1) ± SD (∗∗P ≤ 0.01). (D) Left: phagocytosis of H37Rv-eGFP by
human macrophages either inactivated for N-Wasp (si-WASL, gray) or
transfected with the non-targeting siRNA pool (si-CLT, black), was analysed
either by flow cytometry (histogram) analysis at MOI 10, or by CFU (inlet)
assay at MOI 0.1, after 4 h of infection. Red indicates the fluorescence
background of non-infected macrophages. The median fluorescence
intensities (MFI) are as follow: 36 (non-infected), 117 (si-WASL) and 189
(si-CTL). Right: H37Rv-eGFP proliferation as measured by CFU analysis for
different time points (days) for the same cellular conditions and donor as
described for left panel. The data are representative of two independent
experiments done in triplicates ± SD (∗P = 0.05; ∗∗P = 0.01).

qPCR analysis with both non-virulent and virulent mycobacterial
strains. In the murine Mϕs, the challenge with these mycobacteria
resulted in a similar short-lived up-regulation of this miRNA, but
only during the first hour in infection. In primary human Mϕs,
however, only the challenge with virulent Mtb resulted in rapid
high levels of miR-142-3p over background, peaking at 4 h and
declining thereafter. The discrepancy between the results from
different between species can be explained by the fact that Mtb has
co-evolved as with humans with predilection for Mϕs as primary
reservoirs, or by the well-known differences between cell lines
and primary cells (e.g., pathogen recognition receptor repertoire),
among other reasons.

The expression of miR-142-3p was first reported to be exclu-
sive to cells of the hematopoietic system, with aberrant dys-
regulation in T-cell and B-cell leukemia (Bellon et al., 2009). In
addition, this miRNA was observed during normal granulocy-
topoiesis (Careccia et al., 2009), and more recently, characterized
as a key regulator (along with miR-29) for normal myeloid
leukocyte differentiation (Wang et al., 2012). In fact, the down-
regulation of these two miRNAs is associated with acute myeloid
leukemia development (Wang et al., 2012). Bona fide targets for
miR-142-3p include RAC1, CD133, IL-6, and ADCY9 (Huang
et al., 2009; Bissels et al., 2011; Sun et al., 2011; Wu et al., 2011).
Of particular interest, the latter two gene targets are of relevance
to our study. In the case of IL-6, the high expression of miR-142-
3p in murine and human dendritic cells was demonstrated to be
essential to regulate the biosynthesis of this cytokine and pre-
vent endotoxin-induced mortality (Sun et al., 2011). In the case
for ADCY9, miR-142-3p was reported to target this gene, result-
ing in the regulation of cAMP that is crucial to the suppressive
effect enforced by in CD4(+) CD25(−) regulatory T cells during
the resolution of the inflammatory response (Huang et al., 2009).
Indeed, the control of these two gene targets indicates miR-142-3p
can influence both arms of the immune system, and that aberrant
expression of this miRNA (e.g., due to a microbial hijacking strat-
egy), could then result in a defective inflammation response that
is counter-productive to host fitness. Finally, while miR-142-5p
is generated along with miR-142-3p after maturation of the pre-
miR-142 (Wu et al., 2009), it ultimately failed to target the mRNA
sequence for Cdc42ep4 mRNA 3′-UTR, a Rho GTPase that reg-
ulates signaling pathways controlling diverse cellular functions

including endocytosis (Data not shown). As Cdc42ep4 was the
only potential predicted target (by miRDB and microrna.org)
with the potential to regulate ABP activity, we therefore ruled out
that miR-142-5p can influence the early events of phagocytosis in
concert with miR-142-3p.

The third contribution of this study is the suggestion that
a novel but general strategy in the context of mycobacteria
infection is the role of miRNAs in modulating mycobacterial
uptake by phagocytic cells, revealed by the partial and tempo-
ral inhibition of N-Wasp activity via miR-142-3p. Collectively,
we demonstrate that: (1) mycobacteria infection of Mϕs results
in a short-lived induction of miR-142-3p, and in the case of
Mtb, accompanied by a partial decrease of N-Wasp protein lev-
els (2) N-Wasp mRNA (Wasl) is a direct target for miR-142-3p,
(3) miR-142-3p leads to a significant decrease of intracellular
mycobacteria intake by Mϕs, and (4) the siRNA-mediated inac-
tivation of N-Wasp in human Mϕs affects the initial rate of
phagocytosis of Mtb. Furthermore, an analysis of the 3′-UTR
sequence of the N-Wasp mRNA revealed that additional miR-
NAs might bind to this target. Based on the microRNA.org
tool (Betel et al., 2008), we identified miR-377, miR-32, miR-
410, miR-19b, and let-7f, as potential candidates to bind to
the 3′-UTR sequence of the N-Wasp mRNA, ultimately sug-
gesting that a group of different miRNAs might be directly
controlling the expression of a single target in a concerted
manner.

The regulation of N-Wasp activity is important, since this
protein is known to be involved in actin dynamics required dur-
ing the invasion of host cells by several pathogens. For instance,
salmonella induces actin assembly via N-Wasp and there-
fore bacteria uptake by non-professional phagocytes through a
type III secretion system (Unsworth et al., 2004). Additional
examples include the actin filament assembly and regula-
tion associated with the establishment of actin pedestals dur-
ing enteropathogenic E. coli EPEC (Kalman et al., 1999) and
Vaccinia virus invasion (Frischknecht et al., 1999), and the
actin tail-propulsion based invasion of host cells by shigella
(Suzuki et al., 1998) and listeria (Gouin et al., 1999). More
relevant for our study, actin tail based movement depen-
dent on N-Wasp during mycobacteria infection was also
described for Mycobacterium marinum, a close relative of
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Mtb (Stamm et al., 2003, 2005). Finally, a knock-out of N-
Wasp was associated with a defective immune response to M.
bovis BCG (Andreansky et al., 2005). All things considered, our
findings strongly suggest that effective modulation of N-Wasp
activity via miR-142-3p can influence the rate of bacterial intake
by Mϕs, and to our knowledge, this is the first description of
a microbial strategy employing the use of miRNAs to regu-
late actin-mediated events leading to phagolysosome biogenesis.
The central role of N-Wasp in this process is indeed supported
by the case of Yersinia pseudotuberculosis, which modulates the
activity of N-Wasp to control its internalization in host cells
(McGee et al., 2001).

As mentioned, one of the best strategies for an invading
microbe is to manipulate the early steps of the interaction
with Mϕs in order to avoid the activation of the microbicidal
mechanisms, as best illustrated by the ability of Mtb to inhibit
phagolysosome biogenesis in Mϕs (Deretic et al., 2004). A recur-
ring theme among the most successful intracellular microbes
is the targeting of the host cell’s cytoskeleton, implying that it
favors pathogenic entry into favored cells, movement within and
between target cells, influence in vacuole formation and remod-
eling, and control of phagocytosis. We argue that the miRNA
list provided in this report have potential roles in these activ-
ities, all in some way relying on the host cell cytoskeleton,
as evidenced by the role of miR-142-3p in partially control-
ling N-Wasp in activity in the process of phagocytosis. All in
all, this study promotes the concept of miRNA modulation as
a new venue for Mtb to shift the Mϕ response in its favor,
adding yet another chapter in the arms race of host-microbe
coevolution.
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