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ABSTRACT
Tobacco smoking causes DNA damages in epithelial cells and immune dysfunction in the lung, which
collectively contribute to lung carcinogenesis and progression. However, potential mechanisms by which
tumor-infiltrating immune cells contribute to lung cancer survival and their differential contributions in ever-
smokers and never-smokers are not well studied. Here, we performed integrative analysis of 11 lung cancer
gene-expression datasets, including 1,111 lung adenocarcinomas and 200 adjacent normal lung samples.
Distinct pathways were altered in lung carcinogenesis in ever-smokers and never-smokers. Never-smoker
patients had a better outcome than ever-smoker patients. We characterized compositional patterns of 21 types
of immune cells in lung adenocarcinomas and revealed the complex association between immune cell
composition and clinical outcomes. Interestingly, we found two subsets of immune cells, mast cells and
CD4+ memory T cells, which had completely opposite associations with outcomes in resting and activated
status. We further discovered that several chemokines and their associated receptors (e.g., CXCL11-CX3CR1
axis) were selectively altered in lung tumors in response to cigarette smoking and their abundances showed
stronger correlation with fractions of these immune subsets in ever-smokers than never-smokers. The status
switched from the resting to activated forms in mast cells and CD4+ memory T cells might manifest some
important processes induced by cigarette smoking during tumor development and progression. Our findings
suggested that aberrant activation of mast cells and CD4+ memory T cells plays crucial roles in cigarette
smoking-induced immune dysfunction in the lung, which contributes to tumor development and progression.
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Introduction

Lung cancer is one of the most frequently diagnosed cancers and
the leading cause of cancer-related death worldwide.1 Despite
recent advances in therapy, the overall 5-year survival has changed
little in the last several decades and remains at 18.1% in theUnited
States; outcomes are, on average, even worse in the developing
countries. Approximately 10%-15% of patients with lung cancer
are lifelong never-smokers; active cigarette smoking accounts for
the majority of lung cancer.2 Among all types of lung cancer,
adenocarcinoma is one of the most frequent subtypes of non-
small cell lung carcinoma (NSCLC), accounting for about 40%
lung cancers, which is also the most common type seen in never-
smokers. Compared to other types of lung cancer, adenocarcino-
mas tend to form metastases widely at an early stage, and the
response to radiation therapy is not as effective as it is in small cell
lung carcinoma. Most lung cancer results from multiple changes
in the genome of susceptible pulmonary cells caused by exposure
to carcinogens found in tobacco smoke, the environment, and the
workplace. Patients exposed to a smoking environment had more

frequent gene mutations, such as the epidermal growth factor
receptor (EGFR) gene,3 the K-ras gene,4 and the p53 gene.5,6

In addition to higher-frequency gene mutations, cigarette
smoking also plays an important role in the immunological
homeostasis. The impact of smoking is not identical on dif-
ferent immune cells, and the adverse effect can be summar-
ized as follows: inflammatory cells are recruited into the lungs
but weaken the ability of those cells, and cell populations of
some subtypes decrease and switch the immune response to a
more harmful pattern.7 On the other hand, immune cells play
an important role in shaping the tumor microenvironment,
which interacts with the tumor cells and can be involved in
carcinogenesis, development, invasion, and metastasis of
tumors.8 Some antibody-based anticancer drugs that target
immune-related receptors improve patients’ survival time to
some extent, for example, ipilimumab targets cytotoxic
T-lymphocyte-associated antigen 4 (CTLA-4), and nivolumab
and lambrolizumab target the Programmed Death 1 (PD1)
receptor and the PD1 ligand (PD-L1).8
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Tobacco smoking causes DNA damage in epithelial
cells and impacts the immune system in the lung, which
collectively contribute to lung carcinogenesis and disease
progression in smokers. Considerable epidemiological and
genetic analysis of lung tumors suggests that alternative
mechanisms of lung carcinogenesis and tumor microen-
vironments are also important in never-smokers, and
these alternative mechanisms remain unclear.9–11 The spe-
cific recognition of the mechanisms by which tumor-infil-
trating immune cells contribute to the metastatic cascade
in lung cancer and their differential contributions in ever-
smokers and never-smokers is the important first step
toward successful cancer immunotherapy.

In this study, we collected 11 lung cancer microarray
datasets, including 1,111 lung adenocarcinomas and 200
adjacent normal lung samples (Figure S1). A recently devel-
oped machine-learning method, CIBERSORT,12 was applied
to characterize the composition of leukocytes in these lung
tumor and normal tissues using their gene expression pro-
files. To investigate tissue-specific tumor microenviron-
ment, we refined a new signature gene matrix as a
benchmark for CIBERSORT to sort and enumerate leuko-
cytes. Another in silco approach, xCell,13 which is based on
single-sample gene set enrichment analysis (ssGSEA), was
also used to verify our results. We determined distinct
pathways involved in lung carcinogenesis in ever-smokers
and never-smokers and substantial influences of composi-
tional differences in immune cells on patients’ clinical out-
come. In particular, we found two subsets of immune cells,
mast cells and CD4+ memory T cells, which had completely
opposite associations with outcomes in resting and acti-
vated states. Several chemokines and their associated recep-
tors (e.g., CXCL11-CX3CR1 axis) were selectively altered in
response to cigarette smoking and their abundances showed
stronger correlation with fractions of these two immune

subsets in ever-smokers than never-smokers. These findings
provided a therapeutic opportunity for modulating cancer
immunity to prevent tumor invasion and metastasis in lung
cancer patients.

Results

Expression and function of dysregulated genes in tumors

We analyzed 160 tumor samples and their corresponding
adjacent normal samples across the four datasets (GSE19188,
GSE10072, GSE31547, and GSE7670) to investigate lung ade-
nocarcinoma-associated dysregulation of gene expression
(Figure 1A). We found that 3,100 genes were consistently
differentially expressed between tumor and normal samples
among the four datasets. These included 1,720 and 1,380
genes upregulated and downregulated in tumors, respectively,
accounting for 16.73% and 11.42% of all genes shared among
the four datasets. To characterize the function of these dysre-
gulated genes, pathway enrichment was performed on the
upregulated and downregulated gene sets separately. Most of
pathways enriched by upregulated genes were involved in cell
cycle regulation, cellular stress, and injury functions, whereas
pathways enriched by downregulated genes were related to
cellular immune response function (Figure 1B). Together,
these results revealed aberrant expression and function of
signaling pathways in tumor tissues, and there might be
different inflammatory response patterns between tumor and
normal tissues.

Cigarette smoking causes immune dysfunction and
influences clinical outcome

Smoking is a major risk factor for the development of lung
cancer. We made use of six datasets (GSE30219, GSE31210,

Tumor Normal
-6  -2   2    6
      Value GSE19188                                       GSE10072

GSE31547                                         GSE7670

Cell Cycle Control of Chromosomal Replication
Role of BRCA1 in DNA Damage Response

BER pathway
Role of CHK Proteins in Cell Cycle Checkpoint Control

Mitotic Roles of Polo-Like Kinase
Colanic Acid Building Blocks Biosynthesis

Mismatch Repair in Eukaryotes
tRNA Charging

Glycolysis I
Cell Cycle: G2/M DNA Damage Checkpoint Regulation

Th1 and Th2 Activation Pathway
NF-κB Signaling

Thrombin Signaling
Granulocyte Adhesion and Diapedesis

Phagosome Formation
Signaling by Rho Family GTPases
Leukocyte Extravasation Signaling

Tec Kinase Signaling
IL-3 Signaling

Production of Nitric Oxide and
Reactive Oxygen Species in Macrophages

10                 5                   0                 5                 10
-logP

Genes up-regulated in tumor              Genes down-regulated in tumor
←               →

A B
Cellular Immune Response
Cell Cycle Regulation
Others

Cellular Stress and Injury
Intracellular and Second Messenger Signaling

Category of pathways

Figure 1. Dysregulated genes and their associated altered pathways in lung adenocarcinoma. (A) Heatmaps for dysregulated genes across four datasets. There
are distinct gene expression patterns between tumor and normal tissue samples. (B) Pathway enrichment by dysregulated genes across four datasets. P-values of
Fisher’s exact test for pathway enrichments were calculated by Ingenuity Pathway Analysis (IPA).
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GSE50081, GSE14814, GSE31547, and GSE68465), which con-
tained both smoking status and survival information. In our
survival analysis, we integrated patient samples in the above
datasets to increase statistical power, but patients with radio-
therapy or chemotherapy were excluded in the analysis. In
addition, past-smokers and current-smokers were pooled
together as ever-smokers because their gene expression pro-
files are similar [6]. We can conclude from the Kaplan-Meier
survival curves that never-smoker patients had a better out-
come in overall survival (Figure 2A) and recurrence-free
survival (Figure 2B) than ever-smoker patients. This survival
difference remains significantly after accounting for patients’
age, gender and mutation status (Figure S2).

To investigate the mechanism underlying the difference in
clinical outcome between smoking and nonsmoking lung
cancer, we further analyzed differentially expressed genes
(DEGs) between tumor samples exposed to tobacco and
those from never-smokers. We detected 2,275 DEGs, includ-
ing 1,298 and 977 genes upregulated and downregulated in
smoking patients, respectively. Similarly, pathway enrichment
was applied to these DEGs; we observed that most of the
enriched pathways were associated with the cell cycle regula-
tion, proliferation, and development categories (Figure 2C).

To further evaluate the effects of smoking on lung tumor-
igenesis and progression, we performed a comparison of
genes dysregulated in tumor samples from never-smokers
and ever-smokers. We identified 1,108 genes as DEGs
between tumor and adjacent normal tissues in never-smokers,
and 1,732 genes as DEGs between tumor and adjacent normal
tissues in ever-smokers. Only 3 of 20 pathways were com-
monly altered in both never-smokers and ever-smokers,
including two pathways related to immune response and a
growth signaling pathway by Rho Family GTPase. In particu-
lar, IL-3 signaling and Phagosome formation pathways that
are involved in cellular immune response were specifically
enriched in never-smokers (Figure 2D). Taken together,
these results suggested that lung tumors in ever-smokers
and never-smokers show distinct alteration of pathways, and
that cigarette smoking has dramatic effects in altering cancer
signaling pathways and the tumor microenvironment.

Compositional differences in tumor immune cells in ever-
and never-smokers

In the preceding sections, all of the results pointed to a key
element, the immune system, which may play a pivotal role in
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Figure 2. Survival analyses and pathway enrichments for lung cancer patients in ever- and never-smokers. (A) Overall survival of lung adenocarcinoma
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tumor development and progression. To better understand the
relationship of immune cell infiltration with cancer progression,
we identified a relative fraction of immune cell subtypes in sam-
ples with different tissue types and smoking status using
CIBERSORT.12 CIBERSORT requires an input matrix of refer-
ence gene expression signatures (with a total of 547 genes), which
are collectively used to estimate the relative proportions of each
cell type of interest. This leukocyte signature matrix (termed
LM22) that can distinguish 22 different human immune cell
subsets was initially constructed as a benchmark for
CIBERSORT across cancer types. To make the signature gene
matrix more applicable for lung adenocarcinoma, genes which
were overexpressed in lung adenocarcinoma cell lines compared
to other cancer cell lines were excluded. As the expression of
CD138, a marker of plasma cells, is common in human lung
cancers,14 which might lead to overestimation of the fraction of
plasma cells, we removed genes specifically associated with plasma
cells from the signature and only made estimation for the other 21
cell subtypes. To evaluate the robustness and reliability of the
refined signature gene matrix, we applied to deconvolution of
1,000 simulated datasets of gene expression profiles generated
from LM22 reference samples. Simulations showed an extremely
high accuracy for prediction of 21 leukocyte types, suggesting the
validity of our refined signature gene matrix for leukocyte decon-
volutions (Figure 3A). We then evaluated the comparability of all
11 datasets by calculating the mean value of the relative fraction of
each immune subtype. The result confirmed that these datasets
had similar tumor immune cell infiltration levels, indicating the
homogeneity of tissue collection, process, and storage across these
microarray studies (Figure 3B).

We further estimated the absolute immune infiltration scores
in tumor and adjacent normal tissues using CIBERSROT. A
significantly higher immune cell content was observed in normal
tissues compared to tumor tissues among different datasets
(Figure 4A), which showed high degree of concordance with
immune scores estimated by xCell13 (Figure S3). Combined with

the pathway enrichment results as described above, these findings
support that there are different patterns of immune response
between tumor and normal tissues. Finally, we estimated the
relative fraction of immune cell subtypes and determined their
prognostic values among these datasets. We identified 14 kinds of
immune cell subtypes that had significantly different fractions
between tumor and normal specimens, which were consistent in
at least two datasets. Five kinds of immune cells are significantly
associated with patient survival, among which resting mast cells,
M0 macrophages, activated mast cells and activated CD4+ mem-
ory T cells are in accordance with tumor-normal comparisons
(Figure 4B). In other words, resting mast cells that were down-
regulated in tumors as compared with adjacent normal tissues
were predictive of favorable outcome, whereas macrophages M0
and activated mast and CD4+ memory T cells that tended to be
upregulated in tumors were predictive of adverse outcome.
Interestingly, the same compositional differences in these two of
three immune cell subtypes were also observed between ever-
smokers and never-smokers (Figure 4C). More importantly, rest-
ing mast cells and resting CD4+ memory T cells had lower frac-
tions in ever-smokers than never-smokers and were significant
predictors of favorable survival outcome, whereas activated CD4+

memory T cells and activated mast cells had higher factions in
ever-smokers than never-smokers and were significant predictors
of adverse survival outcome.

Chemokine/receptor networks are selectively altered in
smokers

To further explore the heterogeneity of tumor immune
infiltration under different smoking statuses, we conducted
linear regression analyses between the fraction of tumor-
infiltrating leukocytes and the expression of their related
chemokines. In general, both mast cell and CD4+ memory
T cell populations show stronger correlations with several
chemokines and their associated receptors in ever-smokers
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than in never-smokers (Figure 5). For instance, the fraction
of mast cells appeared to be related to an abundance of
CCR1/CCR5 and their corresponding chemokine ligands in
ever-smokers. Conversely, these relationships were much
less frequently observed in never-smokers. Likewise, the

fraction of CD4+ memory T cells appeared to be related
to an abundance of CCR1/CXCR3 and their corresponding
chemokine ligands in ever-smokers, whereas these relation-
ships were much less evident in never-smokers. These
results suggested that these chemokines were selectively
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altered as a response to cigarette-smoke exposure and sub-
sequently led to activation of mast cells and CD4+ memory
T cells in tumor microenvironments.

Discussion

Previous studies have investigated the relationship between
immune cells and clinical outcomes of lung cancer patients,
and the impact of cigarette smoking on the host immunity.
Recently, several computational methods have been devel-
oped to make use of existing gene expression profiles of
complex tissues to estimate tumor infiltrating leukocyte
subtypes, including various innate and adaptive immune
cells. By incorporating clinical outcome of patients, charac-
terization of immune cell compositions of tumor and adja-
cent normal tissues could provide new insights into tumor-
immune interactions. In this study, we integrated 11 lung
cancer microarray studies conducted on GPL570 and GPL96
platforms including 1,111 lung adenocarcinoma and 200
adjacent normal samples, making it one of the largest lung
cancer immunological studies. Using the recently developed
machine-learning method CIBERSORT and the refined tis-
sue-specific signature gene matrix, we estimated the relative

proportion of 21 immune cell subtypes from gene expres-
sion profiles in these samples. We discovered the immune
compositional patterns in tumor and normal tissues, and in
smoking and nonsmoking tumor samples of lung
adenocarcinoma.

Hierarchical clustering of dysregulated genes demonstrated
a dramatic variation in gene expression in lung tumors com-
pared with adjacent normal tissues (Figure 1). Interestingly,
overexpressed genes were enriched in different pathways
between tumors and adjacent normal tissues, with most path-
ways related to cell cycle control in tumors and cellular
immune responses in normal lung tissues. Lung is the organ
that has the largest surface in contact with external environ-
ment, which not only works for gas exchange, but also plays
an important role in immunity 15. As expected, a significantly
higher immune cell content was observed in normal tissues
compared with tumor tissues among different datasets
(Figure 4A). Taken together, these results revealed aberrant
expression and function of signaling pathways in tumor tis-
sues, and there are different inflammatory response patterns
in lung tumor and normal tissues.

We also found that lung tumors in ever-smokers and
never-smokers showed distinct pathway alterations
(Figure 2). Only 3 of 20 pathways enriched by DEGs were
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Figure 5. Chemokine-receptor networks differ between ever- and never-smokers. Nodes in green are chemokine ligands and nodes in red are corresponding
chemokine receptors; edges indicate existing molecular interactions between a chemokine and its receptor. For each study, the association between the gene
expression of the chemokine/receptor and tumor-infiltrating immune cell fractions was calculated using a linear regression analysis for mast cells (A and B) and CD4+

memory T cells (C and D) separately, under smoking status (left) and nonsmoking status (right). If and only if both the chemokine ligand and receptor in a pair were
significantly associated with the infiltrating immune cell levels, a colored dot representing the study was placed on the edge connecting the chemokine and receptor.
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commonly altered in both ever- and never-smokers. IL-3
signaling and phagosome formation pathways that are
involved in cellular immune response were specifically
enriched in never-smokers. These results suggested that the
molecular pathways involved in the differential pattern of
lung carcinogenesis according to smoking status, and cigarette
smoking have dramatic effects in altering cancer signaling
pathways and the tumor microenvironment.

Never-smokers have markedly better outcomes than ever-
smokers (Figure 2). To reveal this prognostic difference, we
determined the relative fraction of immune cell subtypes in
samples with different tissue types and smoking status using
CIBERSORT. We observed compositional differences in 14
kinds of immune subsets between tumor and adjacent normal
samples (Figure 4B). The fractions of most of these subsets
were reduced in tumor samples, except for regulatory T cells,
gama delta T cells, T cells follicular helper, M1 macrophages,
activated CD4+ memory T cells, and M0 macrophages. We
then investigated the relationship between these immune cell
fractions and survival outcomes. To make a more credible
conclusion, we also employed another computational method,
xCell, for cell types enrichment analysis using ssGSEA.13 We
made a comparison of the influence of leukocyte subtypes on
patients’ outcomes between xCell and CIBERSORT. Our com-
parisons showed high concordance in the association of
patients’ outcome with the overlapped leukocyte subtypes
(Figure S4).

M0 macrophages and total macrophages were strongly
associated with poorer outcomes. A dichotomy has been pro-
posed for macrophage activation: classic vs. alternative, and
M1 and M2, respectively. M1 macrophages are activated
through interferon (IFN)–γ or lipopolysaccharide (LPS),
whereas M2 macrophages are activated through type 2 cyto-
kines including IL-4, IL-13, and IL-10.16 M2 macrophages
express chemokines CCL17, CCL22, and CCL24, and their
corresponding receptors, which are present on Th2 cells, a cell
linked to adverse prognosis in our analysis, and thus partici-
pate in amplification of polarized Th2 responses,17 leading to
a suppression of immunity. However, we did not observe a
significant link between M2 macrophages and patients’ out-
comes in our datasets, and further studies are needed to
examine M2 macrophage functions in NSCLC. In addition,
the immune score of CD8 + T cells was associated with better
outcome of NSCLC patients in the analysis with xCell,
whereas the similar tendency remained but was not significant
in the analysis with CIBERSORT. CD8 + T cells were pre-
viously reported to associate with favorable prognosis in col-
orectal cancer, ovarian cancer and breast cancer,18 but it
seems that the impact of CD8 + T cells on NSCLC patients
was controversial. In stage IV NSCLC patients with che-
motherapy, CD8+ T cells in cancer nest link to a favorable
outcome,19 but some other studies suggested that they could
not demonstrate an influence on survival of lung adenocarci-
noma patients.20–22 A recent study using in silico analysis of
tumor immunity also underpinned this conclusion, when
taking patient age and stage into consideration.23

In addition to macrophages, we caught identified two
subsets of immune cells, namely mast cells and CD4+

memory T cells, which had completely opposite

associations with outcomes in resting and activated status.
The fractions of activated mast cells and CD4+ memory T
cells were higher in ever-smokers than in never-smokers,
whereas the resting status of these two were exactly oppo-
site of activated status. The activated forms are adverse
predictors of prognosis, whereas the resting forms are
favorable predictors of prognosis. Our findings suggested
that aberrant activation of these two immune subtypes
plays a crucial role in cigarette smoking-induced immune
dysfunction in the lung, which might contribute to tumor
development and progression. Regarding the impact of
mast cells on lung cancer patient outcomes, both adverse
and favorable, several contradictory reports have been
published.24,25 This is perhaps due to the mixture of resting
and activated mast cells in the previous studies.
Interestingly, when resting and activated mast cells were
combined together, they were significantly correlated with
prolonged survival of NSCLC patients (Figure S3).
Therefore, separating these two types of mast cells is neces-
sary for more credible conclusions, otherwise, the function
of activated mast cells might be masked by resting mast
cells. Our survival analysis confirmed the potential dual
role of mast cells in tumor progression and metastasis.
The most well-known activation method for mast cells is
engagement of the high-affinity receptor for IgE immuno-
globulins (FcεRI).26 Upon activation, mast cells can pro-
duce and release a vast array of mediators. These mediators
lead to crosstalk with immune cells and tumor cells, and
separately contribute to the formation of an immunosup-
pressive environment, and enhance tumor cell activity.27

Furthermore, an association of cigarette smoking with a
rise of mast cells was observed.28 Increasing evidence now
implies that mast cells promote expression of pro-inflam-
matory chemokines.29 Taken together, the existing evidence
and our results support a link between cigarette smoking
and the activation of mast cells and their involvement in
tumor progression and metastasis. Although our findings
also revealed that CD4+ memory T cells were strongly
associated with patients’ survival, such associations have
rarely been reported. Future studies are required to further
confirm this finding and investigate the mechanisms of
CD4+ memory T cell activation in tumor microenviron-
ments under smoking status.

We also found that both mast cell and CD4+ memory T
cell levels were significantly associated with an abundance of
CCL5-relevant chemokine receptors. This relationship was
much more evident in ever-smokers compared with never-
smokers. CCL5 is released in the lung in response to many
noxious stimuli,30 and an increase of CCL5 expression was
found in smoking status.31 By interacting with certain recep-
tors on memory T cells,18 CCL5 might induce recruitment
and activation of particular memory T cells. CCR5 is the most
well-known receptor for CCL5. Previous studies also demon-
strate that the CCL5-CCR5 axis plays an active role in tumor
development, acts as a growth factor, stimulates angiogenesis,
and participates in immune evasion mechanisms.32

Furthermore, the CXCL11-CX3CR1 axis performed differ-
ently between smoking and nonsmoking status in our analy-
sis, which related to angiogenesis and metastasis of tumors in
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previous experiments.33 Considering all the evidence above,
smoking has the potential to affect the expression of certain
chemokines, thereby leading to activation of CD4+ memory T
cells and promoting the development and progression of
tumor.

Lastly, several caveats for our findings should be
acknowledged. Firstly, an important assumption made by
CIBERSORT and other in silico approaches is that the gene
expression profiles of pure primary immune cells extracted
from peripheral blood mononuclear cells (PBMC) do not
significantly differ from that in tumor tissues. However, in
silico approach is a valuable approach to study tumor infil-
tration and can make use of existing historical datasets
which includes thousands of patients. In the present
study, we performed integrative analysis of 11 lung cancer
gene-expression datasets, including 1,111 lung adenocarci-
nomas and 200 adjacent normal lung samples. This repre-
sents the largest study of tumor infiltration in lung cancer.
Secondly, the immune system is extremely complex and
contains various innate and adaptive immune cells.
Although our refined signature gene matrix showed high
robustness and reliability of inferring immune cell compo-
sitions of complex tissues, the number of leukocyte types
that can be distinguished by this signature matrix is rather
limited (only 21). Further studies are required to develop a
new robust signature gene matrix to include as many
immune cell types as possible.

In summary, this study characterized compositional
patterns of immune cells in lung adenocarcinomas in
different tissue types and smoking status, and revealed
the complex association between immune composition
and clinical outcomes. The status of these cells switched
from resting to activated in mast cells and CD4+ memory
T cells might manifest some important processes induced
by cigarette smoking, which subsequently contributes to
tumor development and progression. These immune

subsets are not only valuable prognostic biomarkers, but
are also potential targets for anti-cancer immunotherapy.

Methods

Sample collection and data processing

This study made use of public online lung cancer data. To
reduce tumor heterogeneity, we focused on lung adenocarci-
noma, a common subtype of non-small cell lung cancer. We
queried Gene Expression Omnibus (GEO) with the keyword
“lung” and with the platform set to “GPL570” or “GPL96,” and
then selected datasets with a sample size of more than 30. As a
result, we got six datasets on platform GPL570, including
GSE10245 (n = 40),34 GSE19188 (n = 110),35 GSE30219
(n = 83),36 GSE31210 (n = 224),37,38 GSE37745 (n = 91),39

and GSE50081 (n = 128),40 and five datasets on platform
GPL96, including GSE10072 (n = 107),41 GSE14814
(n = 71),42 GSE31547 (n = 50),43 GSE68465 (n = 353),44 and
GSE7670 (n = 54).45 Detailed information about the datasets is
presented in Table 1; the sample numbers are the result of
removing patients treated with chemotherapy or radiotherapy.

Raw CEL files and SOFT files were obtained from GEO
datasets. Each dataset was converted to MAS5 normalized
and fRMA normalized data by the R package “affy,” and
mapped to NCBI Entrez gene symbols by a custom CDF
(Chip Definition File; Brainarray version 20.0.0; http://brai
narray .mbni .med.umich.edu/Brainarray/Database/
CustomCDF/20.0.0/entrezg.asp) according to the
CIBERSORT method.12 When more than one probes
mapped to the same gene symbol, the highest average
expression probe was incorporated. Clinical data was
extracted from the SOFT file using the R package
“GEOquery.” Samples with adjuvant radiotherapy or che-
motherapy were excluded in the following analysis, and

Table 1. Clinical summary of patients in the analyzed studies.

GSE10245 GSE19188 GSE30219 GSE31210 GSE37745 GSE50081 GSE10072 GSE14814 GSE31547 GSE68465 GSE7670

Platform
GPL570 GPL570 GPL570 GPL570 GPL570 GPL570 GPL96 GPL96 GPL96 GPL96 GPL96

Sample size
Total 40 110 83 224 91 128 107 71 50 353 54
Tumor 40 45 83 204 91 128 58 71 30 334 27
Normal 0 65 0 20 0 0 49 0 20 19 27

Mean age (range)
65 (48–83) NA 61 (44–84) 60 (30–76) 63 (47–83) 69 (40–86) 66 (45–81) 59 (35–77) 61 (46–79) 65 (33–87) NA

Gender
Male 27 25 64 95 40 65 35 37 8 177 NA
Female 13 15 19 109 51 63 23 34 22 157 NA

Stage
I 22 NA 79 162 65 92 22 42 17 230 NA
II 14 NA 3 42 13 36 21 29 8 61 NA
III-IV 4 NA 1 0 13 0 15 0 5 42 NA

Smoking status
Ever-smoked 30 NA 75 99 NA 92 42 NA 19 208 NA
Never-smoked 1 NA 7 105 NA 23 16 NA 9 34 NA

Mean follow-up (days)
Total OS 862 1464 2301 1765 1820 1464 NA 1665 1098 1643 NA
Alive 1068 2584 3151 1885 3461 1781 NA 2167 1320 2089 NA
Dead 611 717 1548 1067 1163 1001 NA 979 581 1132 NA
Total RFS 759 NA 2109 1569 1699 1282 NA NA NA 1398 NA
No recurred 1007 NA 2616 1859 2268 1533 NA NA NA 1095 NA
Recurred 485 NA 1059 762 916 789 NA NA NA 653 NA
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only tissue types with lung adenocarcinoma were included
in the analysis.

Gene expression analysis and pathway enrichment

We used the R package “limma” to find differentially
expressed genes (DEGs) associated with smoking status
(ever-smoked/never-smoked) and tissue type (tumor/adjacent
normal). Bonferroni correction was used to adjust p-values.
GSE19188, GSE10072, GSE31547, and GSE7670 were used for
identifying DEGs between tumor and normal tissues, whereas
GSE30219, GSE31210, GSE50081, GSE10072, GSE31547, and
GSE68465 were used for identifying DEGs between ever-
smoked and never-smoked groups. Dysregulated genes refer
to either up-regulated or down-regulated DEGs with adjusted
p value < 0.05. In the analysis, samples with current smokers
or former smokers were assigned to the ever-smoked group,
because their gene expressions were similar [6].

Overlapped significant DEGs (adjusted P-value ≤ 0.05)
were divided into adverse and favorable groups on the basis
of their expression profile. Specifically, in the tumor-normal
comparison, DEGs upregulated in tumor tissues were
assigned to the adverse group, whereas those upregulated in
normal tissues were assigned to the favorable group. In the
comparison of ever-smoked and never-smoked, DEGs upre-
gulated in tumor tissues from smoking patients were assigned
to the adverse group, whereas those upregulated in tumor
tissues from nonsmoking patients were assigned to the favor-
able group. We then performed pathway enrichment analysis
on these DEGs separately using Ingenuity Pathway Analysis
(IPA) through Fisher’s exact test, and compared outcomes of
adverse and favorable DEGs. In order to investigate different
functions between these two groups of DEGs, we only dis-
played the pathways which were enriched differently between
these two situations.

Inference of infiltrating immune cells from gene
expression profiles

To determine the fraction of immune cells in tumors, we
applied a linear support vector regression-based method,
CIBERSORT,12 to estimate the relative ratios of 21 leukocytes.
At the same time, CIBERSORT produces an empirical P-value
for each sample and tests the null hypothesis that there are no
cell types in the tested sample. Samples with a P-value ≥ 0.05
were eliminated in the following analysis. We performed
CIBERSORT in R and the source code of CIBERSORT (R
version 1.03) was downloaded from the CIBERSORT website
(https://cibersort.stanford.edu). The absolute infiltration score
was defined as the median expression level of all genes in the
signature gene matrix divided by the median expression level
of all genes in the mixture.12 A permutation test was then
applied to evaluate differential distribution of these inferred
immune cell subtypes in groups using the R package “per-
mute”. To make a more credible conclusion, we also used
another computational method, xCell,13 which provides
immune scores for 64 cell subtypes, spanning multiple innate
and adaptive immune cells. xCell is a method for cell types
enrichment analysis using ssGSEA, and it employs a spillover

compensation technique to reduce dependencies between clo-
sely related cell types. Immune scores of xCell were obtained
by R package “xCell” for each sample.

Construction of a new signature gene matrix

To generate a lung adenocarcinoma specific signature gene
matrix, we removed genes that were overexpressed in lung
adenocarcinoma cell lines compared to other cancer cell lines.
Expression data of cell lines were downloaded from Cancer Cell
Line Encyclopedia (CCLE)46,47 and were normalized by Robust
Multiarray Averaging (RMA) method. Probesets annotation
and differential gene expression were carried out as described
above. The overexpressed genes were defined as adjusted
p-value ≤ 0.05, and log2(Fold-change) ≥ 1. In our preliminary
estimation, we observed an overestimation on plasma cells. We
thus removed differentially expressed genes which only contrib-
uted to deconvolution of plasma cells. In addition, we made
adaptive changes for these datasets, and genes absent in the
custom CDF were excluded from the signature gene matrix.

We generated gene expression profiles from 21 immune
cell profiles by randomly assigning a fraction for each kind of
cells, and applied CIBERSROT to these simulated gene
expression profiles to estimate the relative ratio of these
immune cells. The performance of the refined new signature
gene matrix was assessed by accuracy, which was defined as
follows: accuracy ¼ Ratiosimulated�Ratioestimatedj j

max Ratiosimulated ;Ratioestimatedð Þ .

Survival analysis

The association of survival with each type of immune cell was
evaluated using the univariate Cox proportional hazards model.
P-values and hazard ratios with a 95% confidence interval and
z-scores were estimated. Survival distributions in different groups
were visualized using Kaplan-Meier curves, and the significance
was assessed by a log-rank test. The events of overall survival were
defined as death, while recurrence-free survival was ended by any
disease recurrence or death. Survival analyses were performed
using the R package “survival.”

To generate a stable outcome for survival analysis, we
incorporated meta-z-scores to access the influence of each
type of immune cell on all datasets for CIBERSORT and
xCell. Z-scores for each immune subtype were summarized
in a single meta-z-score using Lipták’s weighted average; the
formula is as follows:

meta� z ¼
P

iziwiffiffiffiffiffiffiffiffiffiffiffiffiP
iw

2
i

p

where zi is the z-score of the i-th study and wi is the square
root of sample size of the i-th study.

Linear regression analysis

We performed a linear regression analysis with the fraction of
immune cell as a dependent variable and with expression levels of
chemokine receptor/ligand as independent variables. The signifi-
cant association of the fraction of immune cell with expression
levels of chemokines meets the following criteria: 1) Benjamin-
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Hochberg correction for p-value of the regression model ≤ 0.05,
and 2) raw P-value for both ligand and receptor in the
model ≤ 0.05.
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