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Abstract 

People often remember visual information over brief delays while actively engaging with 
ongoing inputs from the surrounding visual environment. Depending on the situation, one 
might prioritize mnemonic contents (i.e., remembering details of a past event), or 
preferentially attend sensory inputs (i.e., minding traffic while crossing a street). Previous 
fMRI work has shown that early sensory regions can simultaneously represent both 
mnemonic and passively viewed sensory information. Here we test the limits of such 
simultaneity by manipulating attention towards sensory distractors during a working 
memory task performed by human subjects during fMRI scanning. Participants 
remembered the orientation of a target grating while a distractor grating was shown during 
the middle portion of the memory delay. Critically, there were several subtle changes in 
the contrast and the orientation of the distractor, and participants were cued to either 
ignore the distractor, detect a change in contrast, or detect a change in orientation. 
Despite sensory stimulation being matched in all three conditions, the fidelity of memory 
representations in early visual cortex was highest when the distractor was ignored, 
intermediate when participants attended distractor contrast, and lowest when participants 
attended the orientation of the distractor during the delay. In contrast, the fidelity of 
distractor representations was lowest when ignoring the distractor, intermediate when 
attending distractor-contrast, and highest when attending distractor-orientation. These 
data suggest a trade-off in early sensory representations when engaging top-down 
feedback to attend both seen and remembered features and may partially explain 
memory failures that occur when subjects are distracted by external events.  
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Introduction 

Interacting with a dynamically changing environment routinely requires the temporary 
mental storage of relevant information over short periods of time to guide adaptive 
behaviors – a process that is often referred to as working memory (WM). Depending on 
task demands, priority can be shifted between maintaining internal representations of 
recent experiences in memory, and processing new sensory inputs from the outside 
world. For example, if you’re meeting a date for the first time, you may want to hold an 
image of their face actively in mind as you enter the coffee shop, as not to accidentally 
miss them. However, it is also important to selectively attend your visual surroundings, so 
that you don’t crash into other coffee shop patrons who are moving about in their singular 
quest for caffeine. Strategically re-prioritizing either memories of recently viewed 
information, or directing attention to external visual inputs, is critical to successfully 
navigating everyday situations.   
The abilities to selectively attend to and remember sensory stimuli are thought to be 
mediated by top-down feedback signals. Specifically, feedback from anterior cortical 
regions such as the prefrontal cortex (PFC) can modulate neural activity in sensory areas 
such as early visual cortex (EVC). For instance, selectively attending to a relevant feature, 
such as the eye color of your new date, leads to enhanced firing rates in sensory neurons 
that are selectively tuned to that feature (along with modulations in neural variability and 
population covariance structure, (Martinez-Trujillo and Treue, 2004; David et al., 2008; 
Jehee et al., 2011; Liu et al., 2011; Rust and Cohen, 2022), and can improve visual 
sensitivity for the attended feature (Carrasco et al., 2004; Wolfe et al., 2011). In addition 
to supporting the prioritization of relevant sensory inputs, top-down modulations of EVC 
have also been implicated as a mechanism that supports WM in the absence of sensory 
inputs. When a relevant stimulus is no longer present in the environment, top-down 
signals can engage cortical areas specialized for processing sensory inputs to support 
detailed memories – an idea termed the sensory recruitment hypothesis. For example, 
auditory cortex can be recruited to remember an exact pitch (Czoschke et al., 2021; 
Deutsch et al., 2023), holding an object in mind can recruit object-selective inferotemporal 
(IT) cortex (Miyashita and Chang, 1988; Miller et al., 1991, 1993; Hirabayashi et al., 2013), 
and the short-term maintenance of simple visual features, such as particular colors or 
visual orientations, can involve recruitment of early visual cortex (Harrison and Tong, 
2009; Serences et al., 2009; Yan et al., 2023). Recruitment of early sensory areas could 
have functional relevance, as it associated with better memory recall performance (Ester 
et al., 2013; Iamshchinina et al., 2021).  
Although selective attention and working memory are thought to recruit the same general 
areas of early sensory cortex (Van Kerkoerle et al., 2017), it is unclear if they operate via 
similar or distinct mechanisms and the extent to which they compete. The degree of 
overlap and competition is unclear because selective attention and working memory have 
often been studied in isolation. For example, fMRI studies focused on WM typically use 
long delay periods that are free from other visual inputs and thus do not mimic real-world 
scenarios where new sensory inputs are constantly apprehended by the retina and may 
require your attention (Harrison and Tong, 2009; Serences et al., 2009; Christophel et al., 
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2012, 2018; Ester et al., 2015; Sprague et al., 2016; Kwak and Curtis, 2022). Of course, 
in real life there are many other disruptions such as saccadic eye movements, which often 
go hand-in-hand with attention. Indeed, it’s been argued that using the same cortical 
resources to concurrently encode new sensory inputs and store mnemonic information 
could lead to interference and confusion between seen and remembered stimuli (Xu, 
2020). Prior fMRI studies found that presenting irrelevant but behaviorally distracting 
stimuli during the delay period of a WM task interfered with representations of low-level 
stimulus features in EVC (Bettencourt and Xu, 2016; Rademaker et al., 2019). In addition, 
performing a concurrent visual search task can disrupt memory representations of high-
level objects such as faces in object-selective areas of ventral visual cortex (Kiyonaga et 
al., 2017). However, subsequent work found that when salient visual distractors failed to 
impair WM performance that interference at the level of EVC is not obligatory, 
demonstrating that both behavioral performance and EVC representations can be highly 
resilient to concurrent visual inputs (Rademaker et al., 2019). Thus, evidence for the 
degree to which EVC can simultaneously encode new sensory inputs and mnemonic 
information is mixed. It appears that only when people’s memory performance is 
negatively impacted, implying their attention was drawn away from their memory 
contents, interference arises at the level of EVC. This suggests that attention and memory 
may recruit overlapping cortical resources, eliciting a trade-off between these competing 
top-down demands.  
Here we test the hypothesis that interference may depend on how much priority is 
strategically allocated to sensory versus mnemonic information. We manipulate 
concurrent processing demands during the memory delay while using fMRI to measure 
activation patterns in EVC. We show that activation patterns support decoding of both 
perceived and remembered information, but that there is a trade-off: Ignoring new sensory 
inputs preserves behavioral performance and the integrity of mnemonic representations 
in visual cortex, whereas attending to new sensory inputs leads to lower behavioral 
performance and disrupted memory-related activation patterns. Together, the behavioral 
and fMRI results suggest that EVC plays a role in maintaining high-fidelity representations 
in WM and that disrupting these representations via the concurrent engagement of visual 
attention interferes with the successful retention of information in WM.  

Materials and Methods 

Participants. Nine volunteers (7 female) between the ages of 21 and 32 years (SD = 
3.67) participated in the experiment. Participants had varying amounts of experience with 
fMRI experiments, ranging from scanner-naïve (S03 and S08) to highly experienced (with 
> 10 hours in the scanner; S04, S05, and S07). Of our nine volunteers, only the first eight 
are included for further analyses, as data collection for S09 was stopped at the start of 
the Covid-19 pandemic. Each of the included volunteers participated in a behavioral 
training in the lab, and 4–5 testing sessions in the fMRI scanner. The study was conducted 
at the University of California, San Diego (UCSD), and approved by the local Institutional 
Review Board. All participants provided written informed consent, had normal or 
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corrected-to-normal vision, and received monetary reimbursement for their time ($20 an 
hour).  

Stimuli and procedure: Main fMRI task. All stimuli were projected on a 16 x 21.3 cm 
screen placed inside the scanner bore, viewed from ~40 cm through a tilted mirror. Stimuli 
were generated using Ubuntu 14.04, Matlab 2017b (Natick, MA), and the Psychophysics 
toolbox (Brainard, 1997; Kleiner et al., 2007). During the main experiment, memory 
targets were full contrast donut-shaped sinusoidal grating stimuli (0.75º inner and 10.5º 
outer radius) with smoothed edges (0.5º kernel with sd = 0.26º), spatial frequency of 2 
cycles/º, and mean luminance equal to the grey background. Distractor grating stimuli 
shown during the delay had the same specifications, with the exception that their contrast 
was 50% Michelson. Target and distractor grating orientations were pseudo-randomly 
chosen from one of six orientation bins to ensure a roughly uniform sampling of orientation 
space (Supp. Fig. 1). Importantly, the target and distractor orientations were independent 
and counterbalanced, such that there was no systematic relationship between them 
across trials. This counterbalancing was done across 9 consecutive runs of the main task. 
The recall probe consisted of two black line segments (each 9.25º long and 0.04º wide) 
such that together the segments spanned the same eccentricity from fixation as the 
donut-shaped grating stimuli. A central black dot (0.4º) aided fixation throughout. 
On every trial we randomly chose a spatial phase for the memory target and the distractor 
grating (both 0–2𝜋). Each initial grating stimulus was then toggled back and forth between 
its original and inverted contrast at 4Hz, without blank gaps in between, for as long as the 
grating was on the screen. Thus, the memory target (500 ms total duration) cycled through 
1 contrast-reversal (i.e., 250 ms per contrast), such that afterimages were minimized. 
Similarly, distractors (11s total duration) contrast-reversed for 22 cycles.  
Each trial of the main experiment (Fig. 1a) started with a 1.6s change in the color of the 
central fixation dot, indicating with 100% validity the attention condition during the delay 
(i.e., ignore the distractor, attend changes in distractor contrast, attend changes in 
distractor orientation). Cues could be blue, green, or red. The pairing of cue-colors with 
attention-conditions was randomized across participants. Following the cue, a memory 
target was shown for 500 ms and participants remembered its orientation over a 15 
second delay. A distractor grating was presented for 11 seconds during the middle portion 
of the delay. Irrespective of the attention condition, there would be 2–4 changes in the 
contrast of the distractor (lower or higher), and 2–4 changes in the orientation of the 
distractor (counterclockwise or clockwise) on every trial, with each such change lasting 
for 250ms. The total number of changes for each feature (contrast and orientation) was 
counterbalanced across all 3 attention conditions. After the delay, participants used four 
buttons to rotate a recall probe around fixation, matching the remembered orientation as 
precisely as possible. The left two buttons rotated the line counterclockwise, while the 
right two buttons rotated it clockwise. Using the outer- or inner-most buttons would result 
in faster or slower rotation of the recall probe, respectively. Participants had 3 seconds to 
respond before being presented with the next memory target 3, 5, or 8 seconds later. 
Each run of the main experiment consisted of 12 trials, and lasted 5 minutes and 3 
seconds. Data for 36 total runs (432 total trials, with 144 trials per condition) were acquired 
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across 4 separate scanning sessions for all participants (except for S07, for whom all data 
of the main experiment were collected within the span of 3 longer scanning sessions).  

Before starting the fMRI experiment, participants practiced the main task outside the 
scanner until they were comfortable using the response buttons to recall the target 
orientation within the temporally restricted response window; their mean absolute 
response error for the memory target was <10º; and they were >90% accurate for supra-
threshold changes on the distractor attention tasks (both contrast and orientation). 
Practice took between 5 and 28 blocks of trials, performed across 1–4 separate days. 
To equate the difficulty of the two distractor attention tasks, we measured each 
participant’s performance threshold for both the contrast and orientation attention tasks. 
This thresholding task was identical to the main experiment, with two exceptions: (1) The 
“ignore distractor” attention condition was skipped in the interest of time, and (2) a 
different ∆ contrast or orientation was used for every change of the distractor. Specifically, 
we used Quest (Watson and Pelli, 1983) to determine the magnitude of change (i.e., 
contrast increase or decrease; counterclockwise or clockwise orientation deviation) at 
which participant’s discrimination performance was ~75% correct. To get an initial 
threshold estimate, participants completed 1–4 thresholding runs in the lab, prior to 
scanning. Subsequently, participants also completed 1–2 additional runs in the scanner 
prior to each scan session (so while the scanner was still off). This was important for the 
contrast threshold in particular, since thresholds strongly depend on the specific screen 
that stimuli are presented on. Once established, these thresholds ensured identical visual 
inputs irrespective of the attention condition, as the magnitude of contrast and orientation 
changes was kept constant for each set of 9 consecutive runs of the main experiment. 
Across participants, the average ∆	contrast = 0.116 (SD = 0.075) and the average 
∆	orientation = 2.074º (SD = 0.547º). As intended, performance on the contrast task 
(71.85%; SD = 5.848%) and performance on the orientation task (71.56%; SD = 5.718%) 
did not significantly differ between tasks (t(7) = 0.157; p = 0.858; Fig. 1b).  

Stimuli and procedure: Localizer tasks. In addition to runs for the main task, we also 
collected data from an independent sensory localizer task, and an independent memory 
localizer task. The sensory localizer was used for voxel selection. Both sensory and 
memory localizer tasks were used for model training purposes (i.e., the analyses shown 
in Fig. 3).  
The sensory localizer task consisted of trials showing either a circle-shaped (0.75º radius) 
or donut-shaped (0.75º inner and 10.5º outer radius) full-contrast grating. On every trial, 
this grating was shown for 6 seconds (contrast-reversing as in the main experiment), 
followed by a 3, 5, or 8s inter-trial interval. During grating presentation, a small grey circle 
was superimposed on the stimulus occasionally (0–3 times per trial) for 250ms. These 
brief ‘blobs’ could be centered at any distance from fixation between 0.056º and 13.78º, 
and at any angle relative to fixation (1–360º). Blobs were scaled for cortical magnification 
such that all blobs stimulated roughly 1mm of cortex (i.e., blobs had radii between 0.18º 
to 0.75º of visual angle). No blobs were presented during the first 500ms or the last 500ms 
of a trial, or within 500ms of each other. The blobs functioned to keep participant’s 
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attention directed at the general spatial location occupied by the grating stimuli. 
Participants were instructed to indicate detection of a blob via a button press. Grating 
orientation was randomly chosen from one of 9 orientation bins on each trial, and equally 
often from each bin within a run. Participants completed 36 trials per run (18 circle-shaped 
grating trials, and 18 donut-shaped grating trials, randomly interleaved), and each run 
took 7 minutes and 5s. Participants completed between 12–23 total runs of this sensory 
localizer. These sensory localizer data were obtained in parallel with data collection for 
another study (Experiment 2 in Rademaker et al., 2019) and have therefore also been 
used in this previous work. 
The memory localizer task was used to estimate voxel responses while participants were 
remembering an orientation and not concurrently viewing any visual inputs (in the main 
task, memory is always concurrent with visual input from the distractor). During the 
memory localizer task, participants remembered a briefly presented grating (500 ms; 
11.5º radius; full contrast; contrast-reversing as in the main experiment; pseudo random 
orientation chosen from 1 of 6 bins) over a 12 second blank delay, after which they 
recalled the orientation by rotating a dial within a 4 s time window. Each trial was preceded 
by a 1.4s change in the color of the fixation dot (to alert subjects of the upcoming target 
and indicate the attention condition), and each trial was followed by a 3, 5, or 8s inter trial 
interval. For five participants (S01, S04, S05, S06, and S07), these data were collected 
as part of Experiment 2 in Rademaker et al. (2019), which included trials with and without 
visual distractors presented during the memory delay. For our current purposes, only the 
108 trials with a blank delay period were used (out of the original 324 total trials, collected 
across 27 total runs). The remaining three participants (S02, S03, and S08) completed 
108 total trials of this memory localizer task across a total of 9 runs, and only performed 
trials without any visual distractors presented during the delay period. Thus, for all 
participants we have 108 trials with a blank delay period that we use as our memory 
localizer.  

Magnetic resonance imaging. All scans were performed on a General Electric 
Discovery MR750 3.0T scanner located at the UCSD Keck Center for Functional 
Magnetic Resonance Imaging (CFMRI). High-resolution (1 mm3 isotropic) anatomical 
images were acquired during a retinotopic mapping session, using an Invivo eight-
channel head coil. Functional echo-planar imaging (EPI) data for the current experiment 
were acquired using a Nova Medical 32-channel head coil (NMSC075-32-3GE-MR750) 
and the Stanford Simultaneous Multi-Slice EPI sequence (MUX EPI), using nine axial 
slices per band and a multiband factor of eight (total slices = 72; 2 mm3 isotropic; 0 mm 
gap; matrix = 104 × 104; field of view = 20.8 cm; repetition time/echo time (TR/TE) = 
800/35 ms, flip angle = 52°; inplane acceleration = 1). At sequence onset, the initial 16 
TRs served as reference images critical to the transformation from k-space to image 
space. Un-aliasing and image reconstruction procedures were performed on local servers 
using CNI-based reconstruction code. Forward and reverse phase-encoding directions 
were used during the acquisition of two short (17 s) ‘topup’ datasets. From these images, 
susceptibility-induced off-resonance fields were estimated (Andersson et al., 2003) and 
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used to correct signal distortion inherent in EPI sequences, using FSL topup (Smith et al., 
2004; Jenkinson et al., 2012). 

Preprocessing. All imaging data were preprocessed using software tools developed and 
distributed by FreeSurfer and FSL (free to download at https://surfer.nmr.mgh. 
harvard.edu and http://www.fmrib.ox.ac.uk/fsl). Cortical surface gray-white matter 
volumetric segmentation of the high-resolution anatomical image was performed using 
the ‘recon-all’ utility in the FreeSurfer analysis suite (Dale et al., 1999). Segmented T1 
data were used to generate inflated surfaces on which to draw retinotopic ROIs for use in 
subsequent analyses. Segmented T1 data were also used for coregistration to the 
functional data: The first volume of every first functional run of a scanning session was 
coregistered to the anatomical image. Transformation matrices were generated using 
FreeSurfer’s manual and boundary-based registration tools (Greve and Fischl, 2009). 
These matrices were then used to transform each four-dimensional functional volume 
using FSL FLIRT (Jenkinson and Smith, 2001; Jenkinson et al., 2002), such that all 
across-session data from each single participant was spatially aligned. Next, motion 
correction was performed using the FSL tool MCFLIRT (Jenkinson et al., 2002) without 
spatial smoothing, a final sinc interpolation stage, and 12 degrees of freedom. Slow drifts 
in the data were removed last, using a high pass filer (1/40 Hz cutoff). No additional spatial 
smoothing was applied to the data apart from the smoothing inherent to resampling and 
motion correction. Signal amplitude time-series were normalized via Z-scoring on a voxel-
by-voxel and run-by-run basis. Z-scored data were used for all further analyses. Because 
stimulus onsets were jittered with respect to TR, we aligned the onset of every stimulus 
to the center of the nearest TR (such that stimuli that started at any time poit between -
400–400 ms are plotted as time = 0) for every trial (and for every task).  
To recover the univariate BOLD time courses for all three attention conditions in the main 
memory experiment (Fig. 1c; Supp. Fig. 2, top), and separately for the memory localizer 
task (Supp. Fig. 2, bottom), we estimated the hemodynamic response function for each 
voxel at each time point of interest (27 TR’s from memory target onset). This was done 
using a finite impulse response function model (Dale, 1999) consisting of a column 
marking the onset of each event (memory target onset) with a ‘1’, and then a series of 
temporally shifted versions of that initial regressor in subsequent columns to model the 
BOLD response at each subsequent time point. Estimated hemodynamic response 
functions were then averaged across all voxels in each ROI.  
To compute average voxel responses for each trial, to be used for subsequent 
multivariate analyses, we obtained average activity for the delay period of the main 
experiment by calculating the mean activation from 5.6–15.2s after target onset (i.e., TR’s 
8–20) for every voxel. For the independent sensory localizer, average responses were 
calculated over a time window of 3.2–9.6s after grating onset (i.e., TR’s 5–13), and for 
the independent memory localizer we took the average delay period activation from 5.6–
12s after memory target onset (TR’s 8–16).  

Identifying ROI’s. Standard retinotopic mapping procedures (Engel et al., 1994; Swisher 
et al., 2007) were employed to define eight a priori ROI’s in early visual (V1–V3, V3AB, 
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hV4), parietal (IPS0, IPS1–IPS3), and ventral visual (LO1-2) cortex. Retinotopic mapping 
data were collected during an independent scanning session, using both meridian (i.e., 
bowtie-shaped checkerboard stimuli shown at either the horizontal or vertical meridian) 
and polar angle mapping (a slowly rotating wedge-shaped checkerboard stimulus) to 
identify voxel’s visual field preferences (described in more detail in Sprague and 
Serences, 2013). Analyses to obtain retinotopic maps used a set of custom wrappers 
around existing FreeSurfer and FSL functionality. 
To identify voxels that were visually responsive to the part of the visual field where our 
donut-shaped grating stimuli were shown, a general linear model was applied to data from 
the sensory localizer using FSL FEAT (FMRI Expert Analysis Tool, v.6.00). Individual 
localizer runs were analyzed using the brain extraction tool (Smith, 2002) and data 
prewhitening using FILM (Woolrich et al., 2001). Predicted BOLD responses were 
generated for each sensory localizer run by convolving the stimulus sequence (of “donut” 
and “circle” stimuli) with a canonical gamma hemodynamic response function (phase = 0 
s, SD = 3 s, lag = 6 s). The temporal derivative was included as an additional regressor 
to accommodate slight temporal shifts in the waveform to yield better model fits and to 
increase explained variance. Individual runs were combined using a standard weighted 
fixed effects model. Voxels that were significantly more activated by the donut compared 
to the circle stimulus (P = 0.05; false discovery rate corrected) were defined as visually 
responsive. Only these visually responsive voxels from each ROI were used for 
subsequent analyses. Exact voxel counts for each participant in each ROI can be found 
in Supplementary Table 1. 

fMRI analyses. For decoding, we used an inverted encoding model (IEM). We chose this 
approach because it can be used to model continuous feature spaces, in this case 
orientation, and does not require discrete binning. For our main analyses (Fig. 2 and 
Supp. Fig. 3) model training and testing was performed using a 4-fold cross-validation 
procedure. Specifically, each observer participated in 36 runs of the main memory task, 
with complete counterbalancing of orientation bins and task conditions per set of 9 runs 
(a single session). Thus, for model training and testing on each fold, 27 runs served as 
the training set, and 9 runs were held out as the test set. Each set of 9 runs was held out 
once. Model training was done on the average pattern activity across delay period TR’s, 
and across all 3 attention conditions to ensure we use the same training data throughout. 
For the results in Fig. 3 we trained the model on data from independent localizers. 

The first step of the IEM estimates an encoding model by modelling the response in each 
voxel to 9 raised cosine orientation filters, or “channels”, to characterize the orientation 
sensitivity profile for each voxel based on training data. The encoding model for a single 
voxel has the general form:  

𝑅! =	&𝑤"𝑐"

#

"

 Equation (1) 
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Where 𝑅! is the response 𝑅 of voxel 𝑗, and 𝑐" is the channel magnitude 𝑐 at the 𝑖th channel. 
A voxel’s orientation sensitivity profile is captured by 9 weights 𝑤, one for each channel. 
Channels were modeled as: 

𝑐(𝑑) = cos((𝑑 − 𝜇) ∙ $
%&'
)&          Equation (2) 

Where 𝑑 is the distance in degrees from the channel center 𝜇. Channel centers were 
spaced 20º apart. Equation 1 can be expressed for matrices as: 

𝐵% = 𝑊𝐶%           Equation (3) 

Here, a matrix of observed BOLD responses 𝐵% (m voxels x n trials) is related to a matrix 
of modeled channel responses 𝐶% (k channels x n trials) by a weight matrix 𝑊 (m voxels 
x k channels). For each trial, 𝐶% is the pointwise product of a stimulus mask (i.e., “1” at 
the true stimulus orientation, “0” at all other orientations) by channels. 𝑊 quantifies the 
sensitivity of each voxel at each idealized orientation channel, and can be computed with 
least-squares linear regression: 

𝑊7 = 𝐵%𝐶%((𝐶%𝐶%())%                                                                    Equation (4) 

Estimating the sensitivity profiles concludes the first encoding step of the IEM. The 
second step of the IEM inverts the model, using the estimated sensitivity profiles of all 
voxels 𝑊7  (m voxels x k channels) in combination with a test set of novel BOLD response 
data 𝐵* (m voxels x n trials) to estimate the amount of orientation information at each 
channel 𝐶8* (k channels x n trials): 

𝐶8* = 9𝑊7 (𝑊7 :)%𝑊7 (𝐵*         Equation (5) 

This step uses the Moore-Penrose pseudoinverse of 𝑊7 , and uses the sensitivity profiles 
across all voxels to jointly estimate channel responses 𝐶8* for each trial of the test set.  
Grating orientations could take any integer value between 1º and 180º. To estimate 
channel responses 𝐶8* for each degree in orientation space, both the encoding (Equation 
4) and inversion (Equation 5) steps of the IEM were repeated 20 times. On each repeat, 
the centers of the 9 channels (Equation 2) were shifted by 1º, and we estimated the 
channel responses 𝐶8* at those 9 centers, until the entire 180º orientation space was 
estimated in 1º steps. After generating model-based channel-responses for each trial, all 
single trial channel-responses were re-centered either on the remembered orientation, or 
on the orientation of the distractor grating. 

Model-based channel-responses were quantified using a “vector mean” fidelity metric 
derived from trigonometry (Rademaker et al., 2019), and applied to the average of 144 
single-trial reconstructions per attention condition (for each condition, participant, and 
ROI). This vector mean fidelity metric was calculated by convolving the channel response 
with a cosine, which is equivalent to projecting the channel response at each degree in 
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orientation space onto the center of that space (0º) and taking the mean over all 180 
projected vectors. The vector mean reflects if there is modeled information about a 
remembered or perceived orientation in the channel response profile (it will be zero if not). 
Note that this metric, by design, gets rid of additive offsets. 

Statistical procedures. To compare participant’s behavioral recall performance across 
the 3 attention conditions we used a non-parametric 1-way ANOVA. Significant results 
were followed up with non-parametric two-sided t-tests to compare recall performance 
between each pair of conditions. The same t-test was used to compare performance on 
the contrast and orientation attention tasks. Specifically, non-parametric tests used 1000 
permutations. On each permutation we randomly shuffled the condition labels belonging 
to the mean performance from each participant, and calculated the appropriate test 
statistic (an F-value in the case of the ANOVA; a t-value in the case of the t-test) across 
all participants. Across all 1000 permutations we obtained a null distribution of shuffled 
test-statistics, against which we compared the test statistic calculated from the intact data 
to determine the significance level.  

To compare decoding performance across the 3 attention conditions and across our 8 
ROI’s, we performed a permutation-based 2-way ANOVA, which works similarly to the 1-
way ANOVA described above (condition labels are shuffled, and a test statistic is 
calculated across 1000 permutations). In the case of a significant 2-way interaction 
between condition and ROI, we also test for differences between the 3 attention 
conditions within each ROI (again using non-parametric t-tests). Note that while 
technically there was only one such interaction (for distractor decoding in Fig 2a, right), 
we also performed these post-hoc tests for memory decoding (Fig 2a, left) for consistency 
in the figure. To follow up on main effects of attention condition (Fig. 2a, Fig 3a), we 
tested for differences between conditions by taking the average vector mean for each 
participant across all ROI’s, and then performing pair-wise post-hoc tests between all 3 
conditions using a non-parametric t-test as already described above. Finally, to follow up 
on main effects of ROI, we checked for significant above-chance decoding in each 
condition and ROI (Fig. 3) by performing one-sided non-parametric t-tests against zero.   

To determine if univariate BOLD responses or decoding differed between the 3 attention 
conditions over time (i.e., TR’s within a trial), we used a non-parametric 1-way ANOVA 
cluster-based permutation test. Specifically, to verify at which timepoints there were 
significant differences between the 3 attention conditions, we used a threshold of p = 0.05 
(F = 2.73) and calculated the observed cluster mass (i.e., sum of F-values for adjacent 
timepoint that supersede the threshold) for every cluster in every ROI. Then, we 
generated a null-distribution of cluster mass sizes: Across 1000 permutations we shuffled 
the condition labels for the data in each ROI, while keeping the temporal structure of the 
data intact, taking the largest cluster mass on each permutation. We then compared the 
cluster mass at each real cluster in the data against this null-distribution. This cluster-
based permutation test is performed for each ROI separately.   
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Glitches. We re-measured the screen size and viewing distances in the scanner since 
the publication of Rademaker et al., 2019, which led to slightly different stimulus sizes 
reported here for our sensory localizer, compared stimulus sizes reported in reported in 
Rademaker et al., 2019 (where the same data were used as “second mapping task” in 
Experiment 2). Partway through data collection, the bulb in the projector burnt out and 
needed to be replaced. After replacing the bulb, contrast thresholding had to be re-done 
for affected participants as the new bulb was considerably brighter than the old one. 
Finally, for S06, we had to abort what was supposed to be the 3rd session after only 3 
runs of the main task. This entire session was re-run on another day so that S06 had a 
complete data set.   

 

Results 

First, we wanted to know if participant’s performance on the main working memory task 
was impacted by concurrent attention to a perceived distractor. Indeed, recall 
performance while subjects were in the scanner differed significantly between the 3 
attention conditions (F(2,14) = 5.889, p = 0.002), with higher absolute recall errors when 
participants attended orientation changes in the distractor, compared to when they 
attended contrast changes (t(7) = 2.623, p = 0.018) or ignored the distractor (t(7)=2.53, p = 
0.022). The absolute recall error did not differ significantly between trials during which 
participants attended contrast changes compared to when they ignored the distractor 
(t(7)=1.497, p = 0.182). 

Next, we looked at univariate responses in the main working memory task to see if 
distractor attention impacts BOLD time course. We show these univariate time courses 
for several ROI’s in Fig. 1c (for all ROI time courses see Supp. Fig. 2, top row). It is 
clear that the 11s distractor drives a large and sustained BOLD response, especially in 
early visual areas (and when compared to the memory localizer, where the delay was 
without visual input, see Supp. Fig. 2, bottom row). Towards the end of the trial in 
particular there appears to be a larger univariate response when distractor attention is 
required, compared to when the distractor is ignored. Note that in V1 this difference 
between conditions only emerges 12.8s after the onset of the distractor, meaning that 
differences in response preparation (memory recall) could also play a role. 
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Figure 1. (a) Experimental task design. Participants remember the orientation of a brief (0.5s) memory 
target over a 15s delay, after which they have 3s to rotate a black dial to match the orientation in memory 
as precisely as possible. On every trial, a distractor grating is shown for 11s during the central-most portion 
of the delay. And on every trial, this distractor is phase-reversing, and has several small changes to its 
contrast and orientation. Right before the memory target, participants see a 1.6s cue indicating with 100% 
validity the upcoming attention condition. Specifically, they need to either (1) ignore the distractor grating, 
(2) attend and report contrast changes, or (3) attend and report orientation changes. When attending the 
distractor, participants also report the direction of each change (i.e., whether there is an increase / decrease 
in contrast, or a clockwise / counterclockwise change in orientation). There is an equal number of trials in 
each condition, and conditions are randomly interleaved. (b) Behavioral data recorded while participants 
were in the scanner shows that performance on the distractor attention task is well-matched (t(7) = 0.157; p 
= 0.858), and participants perform similarly when detecting contrast (71.85% correct) or orientation (71.56% 
correct) changes (left panel). Recall of the memory target orientation did differ between conditions (F(2,14) = 
5.889, p = 0.002), and was generally worse when participants had to perform a concurrent orientation 
attention task on the distractor. Bars indicate average performance, and grey lines individual participants. 
Asterisks indicate significant post-hoc differences between conditions. (c) Deconvolved BOLD responses 
for a few example ROI. Distractors in all 3 attention conditions effectively drove univariate responses in 
early visual areas, with qualitatively higher responses when attention was deployed towards the distractor 
(shown in purple and pink for attention to distractor contrast or orientation, respectively). In IPS, responses 
seem more transient, with the strongest response occurring with attention to distractor orientation. Grey 
background-panels in each subplot indicate the time during which the memory target (0–0.5s, far left panel), 
the distractor (2.5–13.5s, middle panel), and the response-dial (15.5–18.5s, right most panel) were on the 
screen. Darker grey lines just above and parallel to the x-axis indicate clusters of consecutive TR’s during 
which the three attention conditions differ significantly from one another (as calculated with a cluster based 
permutation test, see Methods). 

Next, we tested if we could decode the orientation of the memory target that was held in 
working memory, while also concurrently decoding the orientation of the distractor grating 
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that was physically on the screen. Here, we used the average pattern response during 
the delay to train and test our decoder (an IEM, see Methods). The ability to decode the 
memory target orientation during the delay differed between attention conditions (main 
effect: F(2,14) = 10.814; p < 0.001) which was the case for all ROI’s (no condition x ROI 
interaction: F(14,98) = 1.024; p = 0.439, and no main effect of ROI: F(7,49) = 1.048; p = 
0.417)(Fig. 2a, left). Specifically, the remembered orientation was better decoded when 
the distractor was ignored, compared to when participants attended changes in distractor 
contrast (t(7)= 3.925; p < 0.001) or orientation (t(7)= 3.586; p = 0.012), without a significant 
difference between the contrast and orientation attention conditions (t(7)= 0.212; p = 
0.814). These decoding results from visual cortex mirror the differences we see in recall 
behavior, where performance is also best when the distractor can be ignored. 

The ability to decode the orientation of the distractor shown during the delay similarly 
differed depending on the attention condition (main effect: F(2,14) = 16.08; p < 0.001), but 
these differences were not the same in all ROI’s (condition x ROI interaction, F(14,98) = 
2.155; p = 0.008, and main effect of ROI: F(7,49) = 24.781; p < 0.001)(Fig. 2a, right). Post-
hoc tests in each ROI show that while we observed a difference between attention 
conditions in every ROI (all F > 4.5; all p < 0.024), all 3 attention conditions differed from 
one another in some ROI’s but not in others. In general, decoding of the distractor grating 
was highest when participants had to pay attention to orientation changes – both 
compared to when participants paid attention to contrast (t(7)= 3.34; p < 0.00) and when 
they ignored the distractor (t(7)= 3.34; p < 0.001). Also attention to contrast changes 
generally improved decoding compared to when the distractor grating was ignored (t(7)= 
2.961; p = 0.024).    

We subsequently evaluated how these differences evolve over time by looking at IEM 
decoding for each TR of the main working memory trial (Fig. 2b; Supp. Fig. 3). Despite 
the increase in noise of single TR data, we nevertheless observed time clusters during 
which the 3 attention conditions diverged, in line with the results in Fig 2a. Orientation 
decoding of both the memory target and distractor gratings differed depending on the 
attention condition, and these differences emerged around 6–8 seconds into the trial, 
likely reflecting the change in cognitive state at the onset of the distractor grating.  
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Figure 2. (a) Decoding of the target orientation that is held in memory (left) and of the distractor that was 
physically presented on the screen (right) during the delay period of the main working memory task. The 
remembered orientation is better decodable when the distractor is ignored (in teal), compared to when it is 
attended (in purple and pink). The perceived distractor orientation is least decodable when it is ignored (in 
teal), better decodable when its contrast is attended (in purple), and best decodable when its orientation is 
attended (in pink). Bars indicate mean orientation decoding averaged across all participants, while light 
grey lines indicate individual participants. Dark grey lines and asterisks indicate significant post-hoc 
differences (*p < 0.05; ** p< 0.01; ***p< 0.001) between attention conditions within each ROI (non-
parametric t-tests). Note that for decoding of the remembered target, some significance lines are missing 
an asterisk indicating significance from within-ROI post-hoc t-tests. Due to the lack of an interaction 
between condition and ROI, these post-hoc t-tests are not technically warranted, and may be prone to type 
II errors. Rather, these significance lines indicate the post-hoc tests that compare conditions across all ROI, 
which follow the main effect of attention condition. (b) Same decoding as in (a) for a few example ROI’s, 
but shown TR-by-TR throughout the trial of the main working memory task. For decoding time courses of 
all ROI’s, see Supp. Fig. 3. Grey background-panels in each subplot indicate the memory target (0–0.5s, 
far left panel), distractor (2.5–13.5s, middle panel), and the response (15.5–18.5s, right most panel) periods. 
Dark grey lines just above and parallel to the x-axis indicate clusters of consecutive TR’s during which the 
three attention conditions differ significantly from one another (as calculated with a cluster based 
permutation test, see Methods).  

In the previous analysis, we trained our decoder across all 3 conditions of the main 
working memory task to see how well we could retrieve information about remembered 
and perceived orientations under different attentional conditions. The benefit of this is that 
we were not biasing our decoder in favor of any one condition. But there are also 
downsides to such an approach. For example, the signal-to-noise (SNR) ratio may be 
worse when we ask participants to perform two competing top-down tasks (i.e., 
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remembering an orientation while also paying attention to concurrent visual input). By 
training our decoder on such data, we may not be able to uncover all possible differences 
between the 3 attention conditions. Another notable downside of training and testing a 
decoder within the same task is that we remain agnostic to the representational format 
used to remember or process visual inputs. We just know that activation patterns related 
to memory can predict the remembered orientation, but we do not know if those patterns 
are similar to memory representations under conditions without visual input. Similarly, we 
know that activation patterns related to perception can predict the perceived distractor 
orientation, but we do not know if those patterns are similar to sensory driven responses 
evoked under different circumstances. Thus, we next used data from two independent 
localizer tasks to see if response patterns generalize from other working memory and 
perception tasks to the patterns we measured in our main working memory task – when 
participants were concurrently remembering and perceiving two different orientations.  

Do working memory representations measured without concurrent visual input (i.e., 
during a blank delay period) generalize to the memory representations in our main task, 
where orientation was remembered concurrently with visual distraction on every trial? 
Also when we train on data from the independent memory localizer, decoding of the 
memory target orientation differed between attention conditions (main effect attention 
condition: F(2,14) = 41.248; p < 0.001), which was true for all ROI’s (no condition x ROI 
interaction, F(14,98) = 1.683; p = 0.061)(Fig. 3a). As before, ignoring the distractor resulted 
in better decoding of the orientation in memory compared to when distractor contrast (t(7)= 
6.66; p < 0.001) or orientation (t(7)= 6.803; p < 0.001) had to be attended. The 
remembered orientation was represented marginally better when participants attended 
contrast as opposed to orientation changes in the distractor (t(7)= 2.311; p = 0.054). 
Decoding performance also differed between ROI’s (main effect ROI: F(7,49) = 9.877; p < 
0.001), and was generally higher in IPS. While this may arise from less interesting factors 
such as SNR differences between ROI (e.g., due to differences in the underlying 
organization of orientation selectivity), it is noteworthy that such differences were not 
observed when training and testing a decoder within the same task (Fig 2a, left). Post-
hoc tests further showed above-chance memory decoding when distractor attention was 
required only in parietal cortex (IPS0 and IPS1–3) (Fig 3a). Thus, the ability to cross-
generalize from memory during a blank delay, to memory during a delay with visual 
distraction, implies a common format for remembering orientation under these different 
circumstances. Importantly, this common format appears only when the distractor input 
is ignored, with the exception of parietal cortex, where we see that this overlap in 
representational format exists irrespective of whether the visual distractor was ignored or 
attended.  

Second, we wanted to know if response patterns generalize from independently 
measured sensory driven responses, to sensory distractor representations measured 
under a concurrent working memory load and with different forms of distractor attention. 
During the sensory localizer, participants performed a behavioral task that was 
deliberately orthogonal to all 3 of the attention conditions in the main task. Specifically, 
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participants had to detect small gray blobs that could be superimposed anywhere on the 
sensory grating. This ensured that the localizer stimulus was not ignored, and also that 
neither contrast or orientation were attended. The ability to decode the distractor 
orientation during the delay did not differ between attention conditions (main effect 
attention condition: F(2,14) = 2.199; p = 0.133) (Fig. 3b). The most probable reason for this 
is the complete lack of decoding in parietal areas IPS0 and IPS1–3 (main effect ROI: 
F(7,49) = 19.574; p < 0.001). And while there is no significant interaction between attention 
condition and ROI (F(14,98) = 743; p = 0.741) differences between conditions can be harder 
to uncover when decoding is absent in some ROI’s (and cannot show any condition 
differences). It is interesting that, unlike in our main analysis (Fig 2a, right), there is no 
cross-generalization between the sensory localizer and the sensory distractor in IPS, 
consistent with a change in the representational format of different sensory inputs in IPS.  

 
Figure 3. (a) Decoding of the target orientation that is held in memory, when training a decoder on an 
independent memory localizer task. The remembered orientation is better represented when the concurrent 
visual distractor is ignored (teal) than when its contrast (purple) or orientation (pink) are attended. Only in 
parietal areas (IPS0 and IPS1–3) is there cross-generalization from memory without visual input (i.e., the 
memory localizer task) to memory with concurrent visual input that is also attended (i.e., the main memory 
task when the distractor is also attended). (b) Decoding of the sensory distractor in the main memory task, 
when training a decoder on an independent sensory localizer. Response patterns from the sensory localizer 
task (which used a blob detection task) generalize to responses to the sensory distractor in the main 
memory task in most ROI, but not in IPS areas. Possibly because of this, no significant differences between 
the 3 attention conditions are uncovered. Bars indicate mean orientation decoding averaged across all 
participants, while light grey lines indicate individual participants. Asterisks in matching condition colors 
indicate significant post-hoc decoding performance (*p < 0.05; ** p< 0.01; ***p< 0.001) compared to chance. 

 
 
Discussion 

Holding in mind relevant sensory information for future use is a critical cognitive function, 
and to be useful these memories must be insulated from being overwritten by new 
sensory inputs. Prior studies in humans using fMRI, and in animal model systems using 
invasive recordings, suggest that the same general areas of early sensory cortex that 
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support early perceptual processing are also involved in maintaining sustained memory 
representations (Harrison and Tong, 2009; Serences et al., 2009; Van Kerkoerle et al., 
2017; Yiling et al., 2024). This apparent multiplexing poses a computational challenge as 
it is unclear how remembered information interacts with new sensory inputs, especially 
those that are behaviorally relevant and require prioritization via top-down attentional 
modulations. Here we show that memory recall was relatively spared when an ignored 
distractor was presented during the delay period, similar to prior reports from our lab and 
others (Magnussen et al., 1991; Magnussen and Greenlee, 1992; Rademaker et al., 
2015, 2019). However, when new inputs were behaviorally relevant and participants 
engaged in a contrast or orientation detection task, there was a significant drop in both 
behavioral and neural markers of memory fidelity (Fig. 1b & 2a). Importantly, the decline 
in the precision of mnemonic representations was accompanied by higher fidelity 
representations of the distractors, suggesting that attended and remembered information 
directly competes in areas of early visual cortex (Fig. 2a & 3).  

The present results help reconcile prior conflicting reports that presenting distractors 
during a memory delay interferes with WM representations. For example, in one 
experiment Bettencourt and Xu (2016) found that activity in visual cortex associated with 
a remembered orientation was interrupted by the presentation of faces and buildings 
(gazebos) during the delay period. Rademaker et al. (2019) replicated this result using 
similar stimuli, but also found that presenting another oriented stimulus during the delay 
period did not always lead to interference. Based on the present observation that directly 
manipulating attention reveals graded levels of distractor interference, we speculate that 
some classes of stimuli – such as faces – may be inherently more interesting and thus 
more likely to attract attention compared to simple objects comprised of a low-level visual 
feature like an orientation (Davies and Hoffman, 2002; Langton et al., 2008; Hodsoll et 
al., 2011; Morrisey et al., 2019)  

This framework is also consistent with models of attentional control proposing that 
attended stimuli automatically gain access to WM and thus have the potential to interact 
with or disrupt pre-existing WM representations (Bundesen et al., 2005). That said, more 
recent work in the domain of attentional capture suggests that attended items do not 
always enter WM: irrelevant distractors can attract spatial attention but be gated out of 
WM whereas potentially relevant distractors attract spatial attention and are represented 
in WM (Hakim et al., 2019; Maxwell et al., 2021). For instance, Hakim et al (2021) 
demonstrated that markers of spatial attention, such as the amplitude of alpha oscillations 
measured with EEG, track the position of distractors irrespective of their potential 
relevance. In contrast, markers of encoding into WM, such as the contra-lateral delay 
activity (CDA) measured with EEG, indicate that only potentially relevant stimuli are gated 
into WM and thus have the potential to induce interference. These findings are generally 
consistent with the present results: the “ignored” distractor in our task was presumably 
spatially attended – at least to some degree – yet it did not interfere with WM because it 
was completely irrelevant and thus gated out of WM. However, as soon as a distractor 
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was both attended and task-relevant, we observed interference in both behavioral 
performance and in the fidelity of cortical representations.  

Both selective attention and WM are thought to be sustained by top-down feedback 
signals from areas of parietal and pre-frontal cortex (PFC) (Desimone and Duncan, 1995; 
Kastner and Ungerleider, 2000). Our observation of interference between maintaining 
WM representations and attending to new sensory inputs is consistent with destructive 
interference occurring between competing top-down modulatory signals, perhaps due to 
their convergence on common feedback layers in visual cortex (Van Kerkoerle et al., 
2017). Moreover, recent work on WM for both simple features and different classes of 
objects suggests that this feedback may not simply maintain a “sensory-like” 
representation in visual cortex (Chunharas et al., 2023; Xu, 2023). Instead, the geometry 
of mnemonic representations in visual cortex morphs over the delay period and along the 
early visual hierarchy to more closely resemble the geometry of categorical 
representations in parietal cortex. These geometric rotations towards a more parietal-like 
representation are consistent with other work in non-human model systems suggesting 
that dynamic WM codes may serve to insulate remembered information from sensory 
interference (Libby and Buschman, 2021). While Xu (2023) did not present distractors 
during the delay period so the functional significance of the observed rotations is not clear, 
Chunharas et al. (2023) did use data from a task with visual distraction during the delay. It 
could be beneficial if the brain (e.g., parietal cortex) applied a geometric rotation to 
remembered information irrespective of the visual input or attentional state dictated by 
the environment, as a continuous readiness to possible distractions could help ensure 
robustness of mnemonic contents. In the current data we see that only the 
representational format in parietal cortex, but not in other visual areas, is shared between 
memories in the absence of visual input, with ignored visual input, and with attended 
visual input. However, different continuously visible sensory stimuli – such as the sensory 
localizer stimuli and the distractor stimuli used in the present study – evoke different 
response patterns in parietal cortex. Together, this overall pattern of memory-general 
patterns and sensory-specific patterns is consistent with the idea that parietal cortex 
employs a stable format to maintain mnemonic information in working memory.  

In principle the current paradigm and dataset might be well-positioned to determine if the 
presence of distractors increases rotational dynamics (Degutis et al., 2024). However, the 
most common general approach to assessing rotational dynamics in neural codes is to 
learn a geometry at one timepoint in the delay period and then generalize that geometry 
to a later timepoint in the delay period. Critically, cross-generalization only yields 
interpretable results if the SNR is equated at both timepoints in the delay period because 
if it is not, then a failure to cross-generalize may simply reflect worse signal in one epoch. 
Similarly, apparent geometrical differences between conditions could also be driven by 
differences in SNR.  In our data set, we observed a precipitous drop-off of memory 
decoding accuracy – and thus SNR – in the presence of attended distractors, even using 
models trained on a timepoint-by-timepoint basis that are capable of learning new 
geometries at each point in the delay period (Supp Fig. 4). Thus, this drop in SNR – 
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which is our key finding of interest – unfortunately also renders cross-generalization 
analyses difficult to interpret with confidence.     

Collectively, our findings provide an explanation to reconcile prior reports of distractor 
resistance and distractor interference in early visual cortex during WM: distractors do not 
obligatorily interfere with WM representations, but simultaneously attending to 
behaviorally relevant new inputs does lead to interference. These results - in particular 
the joint drop in behavioral performance and in the fidelity of WM representations – further 
support a role for early visual areas in simultaneously supporting multiple cognitive 
functions via sustained top-down modulation signals that bias ongoing sensory 
processing.  

 

Data & Code Availability 

We have uploaded all behavioral data and all preprocessed fMRI data, from each 
participant and ROI, to the Open Science Framework (OSF) at https://osf.io/2wgrv. Code 
to generate the experimental stimuli used during data collection, and for the analyses 
used to generate the figures and statistics in our paper can also be found here, with an 
accompanying wiki to provide an overview of all data and code. 
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Supplementary Materials 
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Supplementary Table 1: For each subject, this table holds the number of voxels in each retinotopically 
defined ROI (numbers shown in bigger font), and the number of voxels within each ROI are visually 
responsive (numbers shown smaller font in brackets).  
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Supplementary Figure 1: There is no systematic relationship between the orientations of the memory 
targets and the distractors. For each subject, here we plot the distractor orientation (y-axis) against the 
target orientation (x-axis) on each single trial (dots) in the main working memory experiment. Colors reflect 
the three different attention conditions – ignore, attend contrast, and attend orientation trials are depicted 
in teal, purple, and pink, respectively. To ensure relatively uniform sampling of target and distractor 
orientations across orientation space, both orientations were drawn pseudo-randomly from one of six 
orientation bins (each bin spanning 30º). The boundaries between these bins are indicated with dashed 
grey lines. Importantly, orientations were drawn from each bin equally often. Thus, of the 144 total trials in 
each condition, the target orientation was randomly drawn from the first orientation bin (1º–30º) 24 times, 
from the second bin (31º–60º) 24 times, and so on. Similarly, distractor orientations were randomly drawn 
24 times from each bin. Importantly, draws from target and distractor orientation bins were counterbalanced, 
such that each bin combination (i.e., each square defined by the dashed-line grid) contains a total of 4 trials. 
We quantified the relationship between target and distractor orientations via circular correlation (rho), with 
mean correlations of –0.009 (SEM = 0.008), 0.0008 (SEM = 0.014), and 0.0104 (SEM = 0.013) for the 
ignore, attend contrast, and attend orientation conditions, respectively. For no subject in no condition was 
there ever a significant correlation between target and distractor orientations (all p-values > 0.44). 
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Supplementary Figure 2: Deconvolved univariate BOLD time courses measured during the main working 
memory experiment (top row), and for the working memory localizer (bottom row). For the main working 
memory task, distractors in all 3 attention conditions effectively drove univariate responses in early visual 
areas (V1–V4) and LO, with overall qualitatively higher responses when attention was deployed towards 
the distractor. When participants attended distractor contrast (shown in purple) or distractor orientation 
(shown in pink), BOLD responses were generally higher then when the distractor was ignored (shown in 
teal), especially towards the end of the trial. In parietal regions, responses seem more transient, with the 
strongest response occurring with attention to distractor orientation changes (conversely, attention to 
contrast changes appears to result in the lowest response). Grey background-panels in each subplot 
indicate the time during which the memory target (0–0.5s, far left panel), the distractor (2.5–13.5s, middle 
panel), and the response-dial (15.5–18.5s, right most panel) were on the screen. Darker grey lines just 
above and parallel to the x-axis indicate clusters of consecutive TR’s during which the three attention 
conditions differ significantly from one another (as calculated with a cluster based permutation test, see 
Methods). For the memory localizer task there is only a transient response to the memory target, which 
goes back to baseline in the blank space between target and recall (note the absence of a grey panel during 
the delay of this task, and an earlier response period from 12.5–16.5s). Lines are group-averaged BOLD 
responses, with shaded error-bars representing + 1 within-subject SEM (N=8 independent subjects that are 
identical for both tasks).  
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Supplementary Figure 3: Decoding time courses for remembered and distractor orientations throughout 
trials of the main working memory task. The orientation held in mind during the working memory delay is 
better represented in visual cortex when the distractor can be ignored (teal), compared to when the 
distractor is attended (purple and pink, see also Fig. 2a). Here we see that these differences between 
attention conditions (as indicated by the dark grey lines just above and parallel to the x-axis) become 
apparent about 7–8 seconds into the trial. Considering the delay in BOLD response, this means differences 
likely emerge around the time that participants start engaging with the distractor grating (in the contrast and 
orientation attention conditions). The orientation of the distractor grating is best represented when its 
orientation is attended, intermediate when its contrast is attended, and worst when the distractor is ignored 
(see also Fig. 2a). Here we see that the onset of these attention condition differences happens relatively 
early in the trial, around 6s, which likely coincides with the very onset of the distractor grating (taking the 
BOLD delay into account). Grey background-panels in each subplot indicate the memory target (0–0.5s, 
far left panel), distractor (2.5–13.5s, middle panel), and the response (15.5–18.5s, right most panel) periods. 
Significance clusters indicate consecutive TR’s during which the three attention conditions differ 
significantly from one another (as calculated with a cluster-based permutation test, see Methods).  
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Supplementary Figure 4: Cross-temporal decoding of the remembered orientation during the delay. Here, 
we train our decoder on every time point during the delay, and test it on every other timepoint. When the 
distractor is ignored, relatively high decoding (in yellow colors) can be seen between most timepoints during 
the delay, implying a sustained representation that can cross-generalize from one timepoint during the 
delay to many others. Under conditions where distractor contrast or orientation are attended, high decoding 
is more pronounced along the diagonal. However, given that decoding performance is lower in these 
conditions (see also Fig 2a & Fig. 3), this could also be a matter of lower SNR when attention is diverted 
away from the memory stimulus.  
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