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The ultralong strontium- (Sr-) substituted hydroxyapatite (SrHAp) whiskers were successfully prepared using acetamide as
homogeneous precipitation reagent. The effect of the Sr substitution amount on the lattice constants and proliferation of human
osteoblast cells (MG-63) was further investigated. The results showed that the SrHAp whiskers with diameter of 0.2–12 𝜇m and
ultralong length up to 200𝜇m were obtained and the Sr substitution level could be facilely tailored by regulating the initial molar
ratio of Sr/(Sr + Ca) in rawmaterials.The Sr2+ replaced part of Ca2+ and the lattice constants increased apparently with the increase
of the Sr substitution amount. Compared with the pure HAp whiskers, the Sr substitution apparently stimulated the proliferation
of MG-63 at certain extracted concentrations. Our study suggested that the obtained SrHAp whiskers might be used as bioactive
and mechanical reinforcement materials for hard tissue regeneration applications.

1. Introduction

The hydroxyapatite [Ca
10
(PO
4
)
6
(OH)
2
, HAp] bioceramics

are common bone graft materials and are widely used in
biomedical fields due to their excellent biocompatibility,
osteoconductive properties, and similarity to the inorganic
component of natural bones and teeth [1–3]. However, the
mechanical property of HAp materials is unsatisfactory,
especially for the toughness, which has severely hindered
their wider clinical applications [4, 5]. Moreover, the HAp
bioceramics are largely considered to be lacking in the
osteoinductive ability, which may impact repair capacity
for large bone defects, nonunions, and follow-up function
restoration [6]. So far, many strategies have been developed
to solve these problems, such as using ZrO

2
metals and

carbon nanotubes. as mechanical reinforcement [5, 7, 8].
However, these kinds of reinforcements are bioinert and/or
nonbiocompatible, which might reduce the bioactivity and
biocompatibility of the implants. It is realized that the
HAp whiskers might possess great prospect to be used as
the mechanical reinforcements because of their excellent

biocompatibility [4, 9–15]. It is considered that the traditional
HAp whiskers are also lacking in the ability to stimulate the
formation of new bone. It is well known that, as a trace
element in human body, the strontium (Sr) plays distinctly
dual roles in stimulating bone formation and inhibiting bone
resorption [2, 16, 17]. The mechanism is thought to lie in
Sr2+ ions, which not only can apparently promote osteoblast-
related gene expression and the alkaline phosphatase (ALP)
activity of mesenchymal stem cells (MSCs) but also can
decrease the differentiation of osteoclasts [18]. As a newly
developed drug to prevent osteoporosis, the Sr ranelate
has been confirmed to possess dual effects of stimulating
osteoblast differentiation and inhibiting osteoclast activity
and bone resorption, and ultimately reduce the incidence
of fractures in osteoporotic patients [18, 19]. Moreover, the
partial substitution of Ca by Sr can apparently improve the
biological properties of phosphate and silicate bioceramics
and bioglasses [16, 17, 20]. Therefore, compared with the
traditional HAp whiskers, the Sr-substituted HAp whiskers
(SrHAp) might possess excellent mechanical and biological
properties.
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The previous study suggested that the hydrolysis rate of
acetamide was apparently lower than that of the traditional
urea additive in the hydrothermal homogeneous precipita-
tion method, which might be of great benefit to the rapid
growth of whiskers at a low supersaturation [14, 15, 21]. In this
study, the ultralong SrHAp whiskers were hydrothermally
prepared using acetamide as homogeneous precipitation
reagent. Then the effect of Sr substitution on morphologies,
phases, lattice constants, and osteoblast proliferation of the
products was further studied.

2. Materials and Methods

2.1. Synthesis and Characterization of SrHAp Whiskers. The
SrHAp whiskers designed Sr/(Ca + Sr) molar ratios of
0.025, 0.05, and 0.1 were hydrothermally synthesized using
acetamide as homogeneous precipitation reagent. Aqueous
solutions containing 50mmol (Ca2+ + Sr2+) ions and 29.94
mmol HPO

4

2− were prepared by dissolving analytical grade
reagents of Ca(NO

3
)
2
⋅4H
2
O, Sr(NO

3
)
2
, and NH

4
H
2
PO
4
in

distilled water with 1mol/L acetamide. The 0.1mol/L HNO
3

solution was used to adjust the pH to around 2.75 to obtain
clear solutions. Then 85mL of the obtained solution was
transferred into 100mLTeflon autoclaves and heated at 180∘C
for 10 h, followed by cooling to room temperature naturally.
After hydrothermal reaction, the obtained suspensions were
filtrated and washed with distilled water and anhydrous
ethanol for 3 times, respectively, and then dried at 120∘C for
24 h.The pure HApwhiskers in the absence of Sr substitution
were prepared as the control sample via the similar method.

The obtained products were characterized by X-ray
diffraction (XRD: D/max 2550V, Rigaku, Japan) with mono-
chromatedCu-K𝛼 radiation.The lattice constants were calcu-
lated from the well-determined positions of the intense XRD
diffractions that were processed by MDI Jade 6.1 software
(Materials Data Inc., USA) [22]. The whiskers were also
characterized using the Fourier transform infrared spec-
troscopy (FTIR: Nicolet Co., USA).Themorphology and size
of the whiskers were observed on field emission scanning
electron microscopy (FESEM: JSM-6700F, JEOL, Japan), and
the chemical compositions of the powders were analyzed
by inductively coupled plasma atomic emission spectroscopy
(ICP-AES; VISTA AX, Varian Co., USA) after dissolving the
whiskers in 0.1mol/L hydrochloric acid aqueous solution.

2.2. Effect of Ionic Products from SrHAp Whiskers on MG-
63 Proliferation. The ionic extract method is a widely used
international standard to evaluate the effect of the chemical
compositions on cell biological responses, which can effec-
tively avoid the extra effects that came from the material
morphologies via directly incubating the materials with cells
[2, 23]. Herein, the human osteoblast cells (MG-63, Cell bank,
Shanghai, China) were cultured in the medium consisting of
a-MEM (89%, GIBCO, Invitrogen, Grand Island, NY, USA),
fetal bovine serum (10%, FBS; Gibco, USA), and penicillin
streptomycin (1%, PS; Gibco, USA). To prepare the extracts,
a stock solution of 50mg/mL was first prepared by adding
the whiskers into DMEM (GIBCO Invitrogen, Grand Island,

NY) culture medium. After incubation at 37∘C for 24 h,
the mixtures were centrifuged and the supernatants were
collected. The serial diluted extracts (25 and 12.5mg/mL)
were prepared by diluting the stock solutions with serum-
free DMEM. Subsequently, these extracts were sterilized by
filtration through 0.2𝜇m filter membranes for cell culture
experiments. The ion concentrations of the extracts were
measured by ICP-AES.

The MG-63 was seeded in 96-well plates at a density of
5 × 103 cell/well and cultured by incubation at 37∘C for 5
days with 5% CO

2
and 95% air at 100% RH. The medium

in the well was then replaced by the prepared extracts. The
culture medium was changed every 2 days. After 5 days of
culture, 10 𝜇L (5mg/mL) of 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyl tetrazolium bromide (MTT, Dojindo, Kumamoto,
Japan) plus 100 𝜇L of DMEMwere added into each well. After
additional incubation for 4 h, theMTT solution was removed
and replaced with 100 𝜇L of dimethylsulfoxide (DMSO).
After 10min of slow shaking (Vibramax 100,Metrohm,USA),
the absorbance was read at 570 nm against the reference value
at 630 nm, and the results were expressed as optical density
(OD). All experiments were done in triplicate to obtain the
average data.

2.3. Statistical Analysis. Data were analyzed for statistical
significance using an analysis of variance. Differences at 𝑃
values of <0.05 were considered significant.

3. Results and Discussion

3.1. Characterization of SrHAp Whiskers. Figure 1 shows
the morphologies of the obtained products. It is clear to
see that all of the products were whisker-like morphology
with diameter of 0.2–12 𝜇m and ultralong length up to
200𝜇m. Almost none of the particles were observed. The
SEM observation suggested that the Sr substitution did not
alter the morphologies of the products. In the homogeneous
precipitationmethod, the reagent of urea is usually applied as
the additive to raise the pH value to drive the nucleation and
growth ofHAp crystals under hydrothermal treatment [1, 24].
Compared with the additive of urea, the acetamide possesses
a lower hydrolysis rate under the required hydrothermal
conditions, which allows better and easier control and gives
rise to rapid growth of whiskers at low supersaturation [21].
Moreover, the average of the diameters and lengths of the
SrHAp whiskers were almost 1.47–1.85 and 0.46–0.61 times
higher than those of the HAp whiskers, respectively. The
results suggested that the Sr-substitution might increase the
size of the whiskers. However, the mechanism needs to be
further investigated in detail.

Figure 2 presents the XRD patterns of the obtained HAp
and Sr-substituted HAp whiskers. The results showed that all
of the products could be well identified as pure HAp phase
(JCPDS card: NO. 09-0432). Compared with the pure HAp
whiskers, the small angle XRD scanning results (Figure 2(b))
clearly showed that the corresponding peaks of the obtained
Sr-substituted HAp whiskers shifted to lower degree. More-
over, with the increase of the Sr substitution level, the shifting
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Table 1: Lattice constants, 2𝜃 value for (3 0 0) diffraction, chemical composition, and size of the synthetic HAp and Sr-substituted HAp
whiskers.

Samples
Lattice constants 2𝜃 (∘) for (3 0 0)

reflection

Chemical composition Size of the whiskers

a (Å) c (Å) Ca replacement
by Sr (mol.%)

(Ca + Sr)/P
moler ratio Length (𝜇m) Diameter (𝜇m)

HAp 9.423 6.915 32.900 0 1.62 33.64 ± 19.10 2.19 ± 1.84

Sr2.5HAp 9.439 6.883 32.841 1.37 1.65 83.09 ± 46.24 3.21 ± 1.58

Sr5HAp 9.445 6.912 32.821 2.72 1.63 86.36 ± 43.28 3.53 ± 1.37

Sr10HAp 9.451 6.964 32.800 5.83 1.61 95.76 ± 37.65 3.45 ± 1.26

(a) (b)

(c) (d)

Figure 1: SEM images of the obtained HAp (a), Sr2.5HAp (b), Sr5HAp (c), and Sr10HAp (d) whiskers; Bar = 30 𝜇m.

extent increased apparently, suggesting the increase of the
lattice constants (Table 1) [2]. The calculated lattice constants
based on the XRD determination results validated that the
lattice constants of the prepared Sr-substituted HAp whiskers
were larger than those of the pure HAp whiskers (Table 1).
The increase of the lattice constants was attributed to the
replacement of the Ca2+ ions by bigger diameter of Sr2+ ions
[2]. The shifting of the patterns and the deviation of lattice
constants suggested that the Sr2+ ions replaced and occupied
the Ca2+ crystal positions of the HAp [2, 3]. However, the
peak intensities of the (2 1 1) and (3 0 0) reflections were
different from the standard values, which was attributed to
the preferential orientation growth of the HAp whiskers.

Figure 3 reveals the FTIR spectra of the obtained HAp
and Sr-substituted HAp whiskers. The spectra accord well
with the reported FTIR data for HAp. The peaks at 473,

563, 603, 962, 1031, and 1095 cm−1 were the characteristic
bands for PO

4

3− [1–3].The peaks at 3442 and 1637 cm−1 were
assigned to the bending mode of the absorbed water. The
peak at 868 cm−1 was attributed to the carbonate ion in the
B-site, which might come from the dissolved carbon dioxide
in aqueous solution [16]. The peaks at 3570 and 633 cm−1
were the characteristic OH bands of HAp [3]. The FTIR
results further confirmed that the positions of the peaks were
not affected by Sr substitution and the products were HAp
crystals.

The ICP-AES analytic results of the obtained whiskers are
presented in Table 1.The results showed that the prepared Sr-
HAp whiskers contained the substituted ions of Sr and the
substitution amount of Sr in the obtained Sr-HAp whiskers
increased obviously with the increase of the initialmolar ratio
of Sr/(Sr + Ca) in raw materials. In addition, the (Ca + Sr)/P
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Figure 2: XRD patterns of the obtained HAp and Sr-substituted HAp whiskers.
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Figure 3:The FTIR spectra of the obtained HAp and Sr-substituted
HAp whiskers.

molar ratio of the obtained Sr-substituted HAp whiskers was
between 1.61 and 1.65, which was slightly deviated from the
stoichiometric HAp (Ca/P = 1.67).

3.2. Effect of Ionic Products from SrHAp Whiskers on MG-
63 Proliferation. Compared with pure HAp, a stimulatory
effect of the ionic products from Sr-substitutedHApwhiskers
at appropriate concentrations on MG-63 proliferation was
observed (Figure 4).The stimulatory effects of the ionic prod-
uct from Sr5-HAp whiskers on MG-63 proliferation were
apparently higher than other materials between the extract
concentrations of 12.5 and 50mg/mL. The results indicated
the better therapeutic potential of Sr5-HApwhiskers for bone
regeneration. Previous studies suggested that the effects of
Sr on bone cells were dose-dependent [25]. The ICP-OES
analysis showed that the Sr ion concentrations of the Sr5-
HAp whisker extracts (12.5–50mg/mL) for cell culture were
2.88 × 10−3–1.15 × 10−2mmol/L. The study of Bonnelye et al.
confirmed that Sr ranelate with Sr2+ concentrations around

∗

∗

∗

∗

∗

∗

1.4

1.3

1.2

1.1

1.0

0.9

0.8

O
D

 v
al

ue

Pu
re

 H
Ap

5
0

Pu
re

 H
Ap

2
5

Pu
re

 H
Ap

1
2
.5

Different concentrations (mg/mL)

Sr
2
.5

-H
Ap

5
0

Sr
2
.5

-H
Ap

2
5

Sr
2
.5

-H
Ap

1
2
.5

Sr
5

-H
Ap

5
0

Sr
5

-H
Ap

2
5

Sr
5

-H
Ap

1
2
.5

Sr
1
0

-H
Ap

5
0

Sr
1
0

-H
Ap

2
5

Sr
1
0

-H
Ap

1
2
.5

Figure 4: The effect of ionic products from HAp and Sr-substituted
HAp whiskers on proliferation of MG-63 after 5 days of culture. ∗
indicates the experimental group compared with the control group
of HAp whiskers at the same concentration, ∗𝑃 < 0.05.

0.1–1mmol/L could promote osteoblast formation [26]. In
addition, the concentration of Sr in normal serum varied
between 1.14 × 10−4 and 2.48 × 10−3mmol/L [27], which
was much lower than those in our study and the reported
references. Moreover, the amount of Sr in bone tissue is
apparently higher than that in blood, and almost 99% of the
absorbed Sr is deposited in bone (36–140mg/kg) [25, 28].
Therefore, it can be indicated that a certain high dose of Sr
may stimulate the proliferation of osteoprogenitor cells and
benefit new bone regeneration [25].

4. Conclusions

In this study, the ultralong SrHAp whiskers with 0–5.83mol
% of Ca substituted by Sr and length up to 200𝜇m have been
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successfully hydrothermally prepared using acetamide as
homogeneous precipitation reagent. The Sr substitution level
of the whiskers could be well facilely regulated by tailoring
the initial molar ratio of Sr/(Sr + Ca) in the raw materials.
In addition, the Sr2+ ions replaced part of Ca2+ ions, and the
lattice constants increased apparently with the increase of the
Sr substitution amount. The cell culture results showed that
the ionic products of SrHAp whiskers apparently promoted
the proliferation of MG-63 at certain concentrations of Sr2+
ions. Particularly the Sr5-HAp component was optimal for
cell activity. Our study suggests that the Sr-substituted HAp
whiskers might be a potential candidate as a new bioactive
material in biomedical field.
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