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Abstract

Background:  Cognitive integration of sensory input and motor output plays an important role in balance. Despite this, it is not clear if specific 
cognitive processes are associated with balance and how these associations change with age. We examined longitudinal associations of word 
memory, verbal fluency, search speed, and reading ability with repeated measures of one-legged balance performance.
Method:  Up to 2 934 participants in the MRC National Survey of Health and Development, a British birth cohort study, were included. At 
age 53, word memory, verbal fluency, search speed, and reading ability were assessed. One-legged balance times (eyes closed) were measured 
at ages 53, 60–64, and 69 years. Associations between each cognitive measure and balance time were assessed using random-effects models. 
Adjustments were made for sex, death, attrition, height, body mass index, health conditions, health behaviors, education, and occupational 
class.
Results:  In sex-adjusted models, 1 SD higher scores in word memory, search speed, and verbal fluency were associated with 14.1% (95% CI: 
11.3, 16.8), 7.2% (4.4, 9.9), and 10.3% (7.5, 13.0) better balance times at age 53, respectively. Higher reading scores were associated with 
better balance, although this association plateaued. Associations were partially attenuated in mutually adjusted models and effect sizes were 
smaller at ages 60–64 and 69. In fully adjusted models, associations were largely explained by education, although remained for word memory 
and search speed.
Conclusions:  Higher cognitive performance across all measures was independently associated with better balance performance in midlife. 
Identification of individual cognitive mechanisms involved in balance could lead to opportunities for targeted interventions in midlife.

Keywords:   Birth cohort, Cognitive aging, Epidemiology, Life course, Physical performance

Age-related declines in cognitive and physical capability from 
midlife onwards are common, with increasing recognition of the 
interdependency of these 2 domains; this includes theories of an 
underlying common cause of aging (1) and evidence that declines in 
one domain may contribute directly to declines in the other (2–6). 
Emerging evidence suggests that performance on cognitive tests may 
provide early indications of changes in physical capability (6–9). 
Balance is one of the physical capability measures most closely 
linked to cognitive ability, given the crucial neural integration of sen-
sory input and motor response required to maintain balance (10). 

Recent analyses from our group provided evidence of an association 
between midlife word memory and subsequent balance performance 
and identified research gaps which need addressing to further under-
stand this association (5).

Although better overall cognition is associated with better 
balance performance (3,11–14), the role of specific cortical processes 
in maintaining balance is not well established. Given the complexity 
of neural circuits involved in balance and gait tasks (10), specific cog-
nitive processes may play independent roles in maintaining balance. 
For example, poor functioning in areas of the brain responsible for 
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memory, executive function, or processing speed could partially ex-
plain poor balance (10,15,16). Existing evidence suggests that there 
are conflicting patterns of association between different cognitive 
processes and balance performance (12–14,17), lending support to 
the involvement of distinct cognitive pathways.

Most evidence on individual cognitive measures (eg, memory, 
subcomponents of executive function) and balance has relied 
on cross-sectional data, small sample sizes, and/or older, age-
heterogeneous samples (≥65 years) (3,11–14). Furthermore, studies 
have not investigated if specific cognitive processes have independent 
roles in maintaining balance nor assessed alternate pathways that 
may explain the association such as socioeconomic position (SEP), 
health status, or health behaviors.

Previous findings from the MRC National Survey of Health and 
Development (NSHD) have identified positive associations between 
general cognitive performance in childhood and one-legged balance 
performance over 3 time points in midlife (18) and between indi-
vidual cognitive measures in adulthood with balance at age 53 (17). 
In our most recent analyses, we found an association between word 
memory and subsequent balance performance, but no evidence of 
association in the opposite direction (ie, balance performance and 
subsequent word memory). This association weakened between ages 
53 and 69 years and other cognitive measures were not examined 
(5). Investigating longitudinal cognitive–balance associations across 
multiple cognitive measures could have important implications for 
understanding age-related decline in balance performance. For ex-
ample, single cognitive tests could identify individuals at risk of poor 
balance, providing opportunities for both screening and interven-
tions. Understanding these associations earlier in midlife, either be-
fore or in the early stages of decline, is particularly important to 
prevent or mitigate loss of independent mobility.

To address important limitations within the current evidence 
base, our primary aim was to examine longitudinal associations 
between 4 cognitive measures (word memory, verbal fluency, 
processing speed, and crystallized cognitive ability) at age 53 and 
one-legged balance performance at ages 53, 60–64, and 69. Given 
limited and conflicting evidence in this area, we also sought to test if 
these associations differed by (i) age using repeated balance assess-
ments or (ii) sex, and if they remained after (iii) mutual adjustment 
for other cognitive measures and (iv) adjustment for education, other 
indicators of SEP, health status, and health behaviors. We hypothe-
sized that higher cognitive performance on all tests would be as-
sociated with better balance performance at all ages. We expected 
associations with crystallized cognitive ability to attenuate after ad-
justment for other cognitive measures, but to remain for the fluid 
cognitive measures (eg, memory, verbal fluency, processing speed). 
Finally, we expected associations to weaken after adjustment for 
SEP, health status, and health behaviors.

Methods

Study Sample
Data from the MRC NSHD were used. NSHD is a birth cohort of 
5 362 individuals born in England, Scotland, and Wales in 1 week 
in March 1946. Study members have been followed up to 24 times 
from birth to the most recent data collection in 2015 (age 69). The 
cohort profile, participation rates, and characteristics of those lost to 
follow-up have been previously detailed (19–21). As the main focus 
of the analyses is on cognitive measures at age 53, we considered 
participants who had participated in a nurse home visit at this age. 

By age 53, 469 of the original cohort had died, 580 had emigrated or 
were temporarily living abroad, 610 were unable to be traced, 668 
refused to participate, and 47 responded to a questionnaire only. Of 
the 2 988 study members who participated at age 53, 32 (1.1%) in-
dividuals were missing cognitive data at this age and 22 (0.7%) had 
no balance data at any age. The final analytical sample (n = 2 934) 
consisted of those who had cognitive data at age 53 and at least one 
balance score at ages 53, 60–64, or 69 (see Figure 1).

Assessment of Balance and Cognition
One-legged balance performance was assessed at ages 53, 60–64, 
and 69 using a standardized protocol to assess static balance and 
postural control. Individuals were instructed by a research nurse to 
cross their arms, close their eyes, and stand on one leg and maintain 
this position for as long as possible up to a maximum of 30 seconds. 
Time was recorded in seconds at age 53 and to the nearest 0.01 
second at ages 60–64 and 69. Timing stopped when the suspended 
leg touched the ground or after the maximum time was reached. If 
participants fell over straight away or were unable to complete the 
test due to health reasons, they were allocated a score of 0 for the 
purpose of these analyses (n = 335 scores in 277 individuals). The 
one-legged balance test is a reliable measure of balance, with high 
interrater and test–retest reliability (22–27).

Short-term memory was assessed at age 53 using a word memory 
recall task. Participants were presented with 15 words at a rate of 1 
word every 2 seconds. They were then immediately asked to write 
down all of the words that they could recall. Three trials were ad-
ministered with the total score representing the number of words 
correctly recalled across all trials (maximum score: 45).

Verbal fluency, a component of executive function, was as-
sessed at age 53 using an animal naming task, in which study 
members were asked to name as many animals as possible within 
1 minute. Species (eg, bird, snowy owl, blue jay, etc.), sex, and 
generation-specific names (eg, bull, cow, calf) were considered 
as different names, while repetitions and redundancies (eg, black 

Figure 1.  Derivation of analytical sample in MRC National Survey of Health 
and Development.
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cow, brown cow) were not. The score was the number of different 
animals named.

Processing speed was assessed at age 53 using a visual search 
speed task. Study members were given a grid of letters and, starting 
at the top left corner of the grid, were asked to go through each line 
and cross out as many “P’s” and “W’s” as they could, as quickly and 
as accurately as possible, in 1 minute. The score represents the total 
number of letters searched (maximum: 600).

Crystallized cognitive ability was assessed at age 53 using the 
National Adult Reading Test (NART), a test of general verbal know-
ledge that is commonly used to assess premorbid intelligence levels 
(28). Study members were asked to pronounce a set of 50 words and 
responses were scored as correct or incorrect (maximum score: 50). 
These words are all atypical in grapheme–phoneme correspondence, 
such that they are only likely to be pronounced correctly if the study 
member has previous knowledge of the word. Examples include 
“hiatus,” “syncope,” and “placebo.”

The psychometric properties of all 4 cognitive tests have been 
extensively investigated and described elsewhere. In both healthy 
community-dwelling samples and those with cognitive impairment, 
all tests have high interrater (.90–.98) and test–retest reliability (.68–
.98) (29–32). 

Assessment of Covariates
Health status, health behaviors, height, and body mass index (BMI) 
were each assessed at ages 53, 60–64, and 69 and thus were treated 
as time-varying covariates. Measures of health status included binary 
indicators of diabetes, knee pain, history of cardiovascular events 
and respiratory symptoms, and a continuous measure of symptoms 
of depression and anxiety (28-item General Health Questionnaire; 
range: 0–84). Health behaviors included self-reported leisure time 
physical activity (never, 1–4 times/mo, 5+ times/mo) and smoking 
status (never, past smoker, current smoker). Height (cm) and BMI (kg/
m2; derived from height and weight measurements) were ascertained 
by research nurses. Adult occupational class was recorded at age 53 
using the Registrar General’s Social Classification (I Professional/II 
Intermediate, III Skilled nonmanual or manual, IV Partly skilled/V 
Unskilled manual). Highest level of educational attainment (degree 
or higher; advanced secondary qualifications generally attained at 
18  years; ordinary secondary qualifications generally attained at 
16 years; below ordinary secondary qualifications; none) was self-
reported at age 26.

Statistical Analyses
Mann–Whitney U and t tests were used to examine sex differences 
in median (interquartile range) balance and mean (SD) cognitive 
scores. Pearson’s correlation coefficients assessed correlations be-
tween scores on each of the different cognitive tests. Due to its right 
skew, balance times were log-transformed for all regression analyses 
and all estimates are presented as sympercents (% change) (33). One 
second was added to all balance times prior to log-transformation to 
circumvent log values of zero.

Associations between each cognitive score at age 53 and balance 
performance at ages 53, 60–64, and 69 were assessed with random-
effects models which account for repeated balance scores at 3 dif-
ferent ages nested within individuals. The intercept represents 
balance performance at age 53, with the intercept and the slope 
modeled as random effects. Age-by-cognitive test interaction terms 
were included to assess if the associations between cognitive scores 
and balance performance changed with age. Interactions between 

sex and each cognitive measure were also assessed and models were 
stratified by men and women where significant (at p < .05). Quadratic 
cognitive terms were tested for all scores (also at p < .05) to check for 
evidence of deviation from linearity. First, sex-adjusted (or stratified) 
models were used to investigate the association between cognition 
at age 53 (word memory, search speed, verbal fluency, and NART) 
and balance performance in 4 individual models. Next, all cognitive 
scores were included in a mutually adjusted model to assess inde-
pendent associations with balance performance. Finally, covariates 
were added in 5 stages (anthropometric measures, health status, 
health behaviors, adult occupational class, education), with a final 
model that was fully adjusted for all covariates. At each stage, quad-
ratic covariate terms, sex by covariate, and age by covariate inter-
actions were included where significant at p <.05. Binary indicators 
of death and attrition between ages 53 and 69 were included in these 
analyses to minimize bias that may have been introduced by loss to 
follow-up in those with poorer balance performance (21,34).

Characteristics of those with missing cognitive scores or covariate 
data at age 53 were compared with the main analytical sample and 
cognitive scores were compared between individuals with missing 
balance data at any age. Sensitivity analyses replicated the initial sex-
adjusted (or stratified) models using the maximal available sample 
for each cognitive test. Sensitivity analyses were also undertaken in 
the final fully adjusted model, where nonsignificant Age × Cognitive 
terms were removed from the model. All analyses were conducted 
in Stata 15.1.

Results

Descriptive Characteristics
Median (Q1, Q3) balance times and mean (SD) cognitive scores 
are shown in Table 1. Balance times were heavily right-skewed (5); 
60%, 74%, and 80% of individuals had a balance time between 
0 and 5 seconds at ages 53, 60–64, and 69, respectively. Balance 
times declined with age in both men and women, although men had 
better balance times than women at all ages (p < .001 for all ages). 
Women performed better than men on the visual search speed and 
word memory tests (both p < .001). There were no sex differences in 
verbal fluency (p = .3) or NART scores (p = .7). In men and women, 
NART and word memory scores were the 2 most highly correlated 
tests (r = .53), while NART and search speed scores were the least 
strongly correlated (r  =  .15). Detailed characteristics of a larger 
sample from NSHD have been described elsewhere (35); the charac-
teristics at age 53 in men and women are described in Supplementary 
Table 1.

Individual Sex-Adjusted Models (Models 1–4)
In random-effects models, 2 549 individuals had complete balance 
and covariate data at one or more ages, contributing 5  466 
balance observations. There was no evidence of sex differences 
in associations between any of the cognitive tests and balance 
time (p > .15). In sex-adjusted models containing each cogni-
tive score separately, 1 SD higher scores in word memory, search 
speed, and verbal fluency were associated with 14.1% (95% CI: 
11.3, 16.8), 7.2% (4.4, 9.9), and 10.3% (7.5, 13.0) better balance 
times at age 53, respectively (Table 2, Models 1–3; Figure 2A–C). 
NART scores demonstrated a quadratic association with balance 
performance, such that better scores were associated with better 
balance but this effect plateaued above a certain score (Table 2, 
Model 4; Figure 2D).
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For all cognitive scores, the association decreased with age as illus-
trated by the weaker estimated association between cognitive score and 
balance at later ages in Figure 2. For example, 1 SD increase in word 
memory was associated with 9.2% (7.0, 1.4) better balance perform-
ance at age 60–64, decreasing further to 6.2% (3.3, 9.2) at age 69 (Table 
2, Model 1; Figure 2A). Similar changes in associations with age were 
observed for both search speed (Model 2, Figure 2B) and verbal fluency 
(Model 3, Figure 2C). The linear term for NART scores also decreased 
with age; however, the quadratic term remained constant (p = .95 for 
Age × NART2 interaction term); this suggests the association plateaued 
at lower scores with increasing age (Model 4, Figure 2D).

Adjusted Models (Models 5 + 6)
In a mutually adjusted model of all cognitive tests, estimates for each 
measure were attenuated by nearly half, although all cognitive scores 
remained associated with balance performance (Table 2, Model 5). 
Attenuation of age interaction terms suggests that associations for 
search speed and verbal fluency no longer became smaller at older 
ages. Figure 3 outlines the impact of adjustment for covariates at 
each stage (eg, B.  anthropometric measures, C. health status indi-
cators, D.  health behaviors, E.  occupational class, F.  education), 
demonstrating that associations between most cognitive tests and 
balance performance remained. Notably, adjustment for education 
largely explained the smaller NART coefficients and NART by age 
interaction terms.

In the fully adjusted model, 1 SD increases in search speed and 
verbal fluency at age 53 were associated with 2.2% (0.2, 4.1) and 
2.1% (−0.1, 4.2) better balance performance at all ages (53, 60–64, 
69 years) (Table 2, Model 6). One SD increase in word memory was 
associated with 5.0% (1.7, 8.3) and 2.6% (0.04, 5.2) better balance 
performances at ages 53 and 60–64, although was no longer associ-
ated by age 69. Finally, the association between NART and balance 
performance was weak in fully adjusted models and no longer 
present at ages 60–64 or 69.

Sensitivity Analyses
Compared with the main analytical sample (n = 2 934), those with 
missing cognitive data (n = 32) had worse balance performance at 
age 53 (p < .001) and those with missing balance data at all ages 
(n = 22) performed worse on all 4 cognitive tests (p < .05 for all). 
Individuals with complete covariate data (n  =  2  445) performed 
better on the balance, word memory, and verbal fluency tests than 
those missing one or more covariates (n = 429), although there were 
no differences in search speed (p = .15) or NART scores (p = .18).

In separate cognitive models, associations did not change when 
examined in the maximal available sample (Supplementary Table 
2, Models 1–4) compared with the complete cases (as presented in 
Table 2). Sensitivity analyses in the final model removed both NART 
× Age and Word memory × Age interaction terms and then each 
term in turn; results demonstrated that each interaction was stronger 
when only one was included (Supplementary Table 2, Models A–C). 
This contrasted with the final fully adjusted model, which produced 
weaker evidence that associations attenuated with age.

Discussion

Higher cognitive performance in all 4 tests in midlife was associ-
ated with better one-legged balance performance. Associations 
were strongest cross-sectionally at age 53 and became smaller with 
increasing age. Changes in the associations of search speed and 
verbal fluency with balance by age were considerably attenuated 
after adjustment for covariates, while associations of word memory 
and reading scores with balance performance continued to weaken 
over time. Estimates were attenuated by approximately half when all 
cognitive scores were included in the model. Fully adjusted models 
suggested that memory, verbal fluency, and processing speed were as-
sociated with balance performance independent of each other and of 
all covariates, while associations between NART scores and balance 
were largely explained by educational attainment.

Table 1.  Mean Balance Performance and Cognitive Test Scores by Sex at Age 53 in Maximum Available Sample (up to n = 2 934)

Men Women Tests of Sex Difference (p value)

Balance time (eyes closed) (s) 
  Age 53 y, n 1 405 1 468 <.001a

    Median (Q1, Q3) 5 (3, 10) 4 (3, 7)
  Age 60–64 y, n 982 1 107 <.001a

    Median (Q1, Q3) 3.57 (2.34, 5.50) 3.17 (2.16, 4.78)
  Age 69 y, n 956 1 043 <.001a

    Median (Q1, Q3) 2.99 (1.89, 4.88) 2.72 (1.67, 4.15)
  Range at all ages (min–max) 0–30 0–30  
Word memory, n 1 367 1 442  
  Mean (SD) 23.0 (6.2) 24.9 (6.2) <.001b

  Range 4–40 3–41
Search speed, n 1 396 1 454  
  Mean (SD) 272.9 (75.7) 289.9 (75.6) <.001b

  Range 91–591 64–591
Verbal fluency, n 1 400 1 466  
  Mean (SD) 23.8 (6.7) 23.5 (7.1) .27b

  Range 1–47 1–62
NART, n 1 330 1 419  
  Mean (SD) 34.5 (9.6) 34.3 (9.4) .72b

  Range 2–50 1–50

Notes: NART = National Adult Reading Test; Q1 = quartile 1; Q3 = quartile 3.
aMann–Whitney U test. 
bt-Test for comparison of mean (SD).
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Comparison With Other Studies
No previous study has investigated age-related changes in associ-
ations between specific cognitive processes and balance in midlife 
or considered mutual adjustment of multiple cognitive measures. As 
such, several of the study findings are novel and comparisons with 
other studies are limited. However, findings are generally consistent 
with evidence showing that individuals with higher overall cogni-
tive ability have better balance performance (12,14,36,37). Fewer 
studies have examined specific cognitive measures, with mainly 
cross-sectional studies demonstrating different patterns of associ-
ations with balance across different processes (12–14,38).

Associations between higher scores on both processing speed and 
verbal fluency tasks and better balance performance are consistent with 
other studies (2,12–14,39). Conversely, the results for word memory 
are inconsistent with existing evidence. Although previous analyses of 
cross-sectional or lagged associations between memory and balance 
at ages 43 and 53 in NSHD are consistent with findings shown here 
(5,17), other studies have either reported no associations (2) or found 
evidence of an association for visual but not word memory (13). Only 
one non-NSHD study has examined crystallized cognition (measured 
with the Wechsler Adult Intelligence Scale-III), reporting no association 
with balance performance (13). This is consistent with our findings that 
suggest that fluid cognitive measures may be more strongly associated 
with balance than crystallized measures.

Explanation of Possible Indirect and Direct 
Pathways
Differences in patterns of association support the hypothesis of direct 
and indirect pathways between cognition and balance. Attenuation 
of associations between NART (eg, crystallized cognitive ability) and 
balance, particularly at later ages, suggests an indirect pathway that 
may largely act via educational attainment. Intelligence, education, 
and SEP are all highly correlated; those with higher overall cogni-
tive ability are more likely to have higher educational attainment 
and a higher SEP, and vice versa (40,41). These individuals are also 
more likely to partake in healthy behaviors, have positive health 
outcomes, better psychosocial support, and fewer physical impair-
ments, including poorer balance performance (35, 42–44). Taken to-
gether, individuals with higher general cognitive ability may be better 
positioned to improve their health and maintain independent func-
tioning (45). This is consistent with evidence suggesting that positive 
associations between childhood cognitive ability and balance per-
formance in later life (18,46) are explained by socioeconomic, health 
and behavioral pathways (18).

Independent associations between all fluid cognitive measures—
memory, processing speed, and verbal fluency—suggests that balance 
relies on the integration of multiple cognitive processes. Short-term 
memory draws on a temporary storage system (47), which may 
allow selective utilization of cognitive resources needed to maintain 

Figure 2.  Sex-adjusted models showing associations between cognitive score and balance performance at ages 53, 60–64, and 69 (n = 2 549, obs = 5 466) for (A) 
word memory, (B) search speed, (C) verbal fluency, and (D) NART scores. NART = National Adult Reading Test.
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postural stability (48). Additionally, some memory tasks heavily rely 
on attention, which can play a large role in maintaining balance, 
depending on the complexity of the task. For example, selective at-
tention can be important to filter out unimportant stimulus informa-
tion (eg, distracting visual cues), while divided attention allows an 
individual to carry out more than one task at a time (eg, walking and 
talking) (49). Multiple dual-task paradigms, that include simultan-
eous physical and cognitive tasks, have demonstrated the importance 
of attention in balance (15,50). Differing contribution of attention 
to memory tasks could explain different patterns of association with 
balance performance (5,13,17,51).

Processing speed captures an underlying cognitive process that 
has an impact on the efficiency of all other cognitive operations 
(52). Slower processing speed is linked to reduced activity in the pre-
frontal cortex and dopamine deficiency, both of which are thought 
to impact balance and motor abilities (53–56). Individuals who are 
able to quickly process, react, and provide an integrated motor re-
sponse may demonstrate better balance abilities. Finally, several 
subcomponents of executive function involved in balance may ex-
plain positive associations between verbal fluency and balance per-
formance. For example, clustering and self-initiation occur when 
study participants generate a series of words that adhere to a specific, 
pre-existing theme (eg, first naming types of birds, then fish, etc.). 
Task switching occurs when subjects exhaust one theme and must 
switch their memory targets to a different cluster. Finally, action in-
hibition plays an important role in suppressing the tendency to re-
peat previously named animals or non-task specific words (57,58). 
Evidence from dual-task paradigms has shown that older adults are 
less able to divide their attention and memory between multiple 

tasks than younger adults (59); this could translate to difficulties 
maintaining balance in situations with competing cues.

Understanding Changes With Age
Associations between all cognitive measures and balance perform-
ance became weaker with increasing age in individual models. The 
relative contribution of cognitive mechanisms may decrease as more 
proximal physical factors associated with aging such as visual impair-
ment, muscular atrophy, and reduced vestibular functioning emerge. 
Previous NSHD research has shown that associations between knee 
pain and symptoms of depression and anxiety and balance ability 
grew stronger at older ages (35). Once all time-varying covariates, 
including health status indicators, were accounted for, associations 
between cognition and balance largely remained constant with age 
(as shown in Supplementary Table 2). This may suggest that the 
contribution of cognition to balance is similar throughout midlife. 
Further investigation of these associations in later life could allow 
better understanding of both mechanisms and implications of chan-
ging associations between cognition and balance with age.

Strengths and Limitations
The availability of longitudinal data in NSHD is a major strength 
of this paper. Ascertainment of multiple cognitive measures at age 
53, repeated measures of balance performance, and a range of pro-
spectively ascertained covariates enabled the role of different cogni-
tive processes to be examined, changes with age to be investigated, 
and allowed exploration of factors that could confound or mediate 
the associations. However, there are several limitations that should 

Figure 3.  (A) Mean percent difference in balance time for all cognitive scores at each stage of adjustment and (B) Cognitive × Age interaction terms indicating 
the decreasing association of both word memory and NART with balance score over time. NART = National Adult Reading Test.
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be considered. First, previous NSHD analyses have shown that in-
dividuals with missing data or those lost to follow-up have lower 
SEP across life and are more likely than those with complete data 
to participate in unhealthy behaviors and be in poor health (20,21). 
Thus, associations may be underestimated as the analytical sample 
may include those with higher levels of cognition and balance. This 
selection effect would be expected to increase with age as more 
participants are lost to follow-up. This could therefore partially 
explain why associations weakened slightly with increasing age. 
However, several analytical steps were taken to minimize potential 
bias introduced by loss to follow-up. This included the addition 
of death and attrition indicators, zero imputation of those unable 
to complete the balance test due to health reasons, and sensitivity 
analyses in the maximal available sample. Despite using established 
tests for each cognitive measure, it can be challenging to isolate 
single cognitive processes within a test. However, the differing 
associations in mutually adjusted models suggest that distinct fa-
cets of each process were appropriately captured within each test. 
Finally, repeated assessment of balance performance throughout 
midlife is a major strength of the study; however, there are limita-
tions to using the one-legged stand test. The range of balance scores 
was limited by floor effects, suggesting the test did not capture the 
full range of functional ability of the sample. More sensitive as-
sessments of balance and posture, using posturography, may allow 
better understanding of associations between cognitive processes 
and balance in future studies.

Conclusions and Implications

This study has shown evidence of associations of word memory, 
search speed, verbal fluency, and, to a weaker extent, crystal-
lized cognitive ability with one-legged balance performance that 
were not explained by other covariates or mutual adjustment of 
all cognitive measures. Research has begun to acknowledge the 
interactive nature of cognitive and physical domains in the aging 
process. Much of this research has focused on aggregate measures 
of physical and cognitive capabilities; however, it is important to 
consider individual mechanisms of associations. Given the evi-
dence of independent cognitive mechanisms involved in balance 
performance, further research should consider how distinct areas 
of cognitive aging may impact specific functional outcomes such 
as balance.

These findings could have widespread benefits across several 
areas of research including: understanding of biological mechanisms, 
identification of cognitive and physical impairments, and organiza-
tion of targeted interventions. Further research is needed to assess 
the potential value of interventions that target specific cognitive ex-
ercises in addition to a physical training program (60,61). However, 
our findings would suggest that this training could target multiple 
cognitive processes, including but not limited to memory, attention, 
processing speed, and executive function. Understanding that lower 
cognitive performance in midlife may be a risk factor for subsequent 
poor balance ability could also help identify at-risk individuals pro-
viding further opportunities for intervention.

Supplementary Material

Supplementary data are available at The Journals of Gerontology, 
Series A: Biological Sciences and Medical Sciences online.
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