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The interaction between human and exoskeletons increasingly relies on the precise

decoding of human motion. One main issue of the current motion decoding algorithms

is that seldom algorithms provide both discrete motion patterns (e.g., gait phases) and

continuous motion parameters (e.g., kinematics). In this paper, we propose a novel

algorithm that uses the surface electromyography (sEMG) signals that are generated prior

to their corresponding motions to perform both gait phase recognition and lower-limb

kinematics prediction. Particularly, we first propose an end-to-end architecture that uses

the gait phase and EMG signals as the priori of the kinematics predictor. In so doing,

the prediction of kinematics can be enhanced by the ahead-of-motion property of sEMG

and quasi-periodicity of gait phases. Second, we propose to select the optimal muscle

set and reduce the number of sensors according to the muscle effects in a gait cycle.

Finally, we experimentally investigate how the assistance of exoskeletons can affect the

motion intent predictor, and we propose a novel paradigm to make the predictor adapt to

the change of data distribution caused by the exoskeleton assistance. The experiments

on 10 subjects demonstrate the effectiveness of our algorithm and reveal the interaction

between assistance and the kinematics predictor. This study would aid the design of

exoskeleton-oriented motion-decoding and human–machine interaction methods.

Keywords: electromyography,motion decoding algorithm, kinematics prediction, gait recognition, long short-term

memory

INTRODUCTION

For the past few decades, with the development of human–machine interaction and human
motion-decoding methods, an advanced technology was developed to bridge the gap between the
human and robots (Bonato, 2010). This robotic technology, known as the wearable robot, directly
interacts with the human body to enhance the mobility of healthy people (exoskeletons), to treat
muscles or skeletal parts which are injured or after the operation (orthosis), or to replace themissing
limbs of disabled people (prostheses) (Viteckova et al., 2013; Chadwell et al., 2020).

As an important branch of wearable robots, the lower-limb exoskeletons run in parallel to the
human lower-limbs, with representative applications to daily assistance, medical rehabilitation,
and other areas (Kazerooni, 2008; Sankai, 2010; Awad et al., 2017). In recent years, with the
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development of human-machine interaction technology and
advanced wearable sensors, the exoskeletons have been able to
decode the human motions based on physiological or kinematic
signals, meanwhile autonomously and promptly assist the user’s
locomotion at the critical timing, which has enhanced the
initiative and intelligence of the system (Yan et al., 2015).

Surface electromyography (sEMG), one of the commonly used
neural signals for motion-decoding, integrates the spatial and
temporal information of the muscles (Joshi et al., 2013). The
amplitude of sEMG is highly related to the level of muscle
activation, owing to which sEMG is widely used in control
strategies of exoskeletons (Yang et al., 2008; Fan and Yin, 2009).
The traditional and practical control strategy for exoskeletons
and prostheses is known as the ‘direct myoelectric control’
approach. The strategy collects the sEMG signals to control the
motors of the mechanical joints (Williams, 1990). Although this
control strategy has achieved considerable reliability, it becomes
non-intuitive when the number of mechanical joints increases.
The user training process also tends to be quite time-consuming
and cumbersome (Resnik et al., 2018).

As a potential solution to the problem, sEMG-based pattern
recognition methods have been developed for motion-decoding
and myoelectric control, which seeks the synergistic relationship
between muscles based on multichannel sEMG signals, and then
matches it with the defined patterns (Scheme and Englehart,
2011). For lower-limb exoskeletons, the motion pattern that is
necessary for achieving the mode switching of the control system
is the gait phase, which may help to provide a more proper
assistant force on human movement (Vu et al., 2018). One of
the commonly used gait phase definitions for exoskeletons is
shown in Figure 1, which segments the gait cycle based on several
significant events, such as the initial contact or the toe off (Taborri
et al., 2016).

As a general rule, the sEMG-based phase classification process
includes extracting the temporal or spatial-temporal features
from window-segmented sEMG signals, followed by a classifier
to align the features to the pre-defined phases (Novak and
Riener, 2015). Compared with the non-stationary raw sEMG
signals, the feature-extraction process maximally separates the
desired output classes, with an impressive performance in
pattern recognition (Hudgins et al., 1993). However, the feature
representation will lead to the increased dimension of data, which
may increase the burden to the limited computing equipment
of the exoskeleton. Dimension-reduction plays an important
role in the related research, with representative methods such
as principal component analysis (PCA) (Englehart et al., 2001),
linear discriminant analysis (LDA) (Chu et al., 2007), and profile
likelihood maximization (Naik et al., 2018). Although various
methods were proposed to deal with the ‘curse of dimension’
problem in the feature space, few studies focused on the source
data space, i.e., the selected muscles in the studies. Dealing with
the muscle redundancy problem, i.e., removing the muscles that
have less effect on phase recognition, will reduce not only the
dimension of the input data but also the number of sensors.

Due to the motion continuity, the kinematics of the lower-
limb joints is time-varying in a gait phase. In addition, the mode

switching of the control system may diminish the continuity and
smoothness of assistance during the transition of different phases
(Kim et al., 2019). Thus, continuous decoding of lower-limb
kinematics is beneficial to provide additional knowledge for more
precise exoskeleton control. So far, extensive work has been done
to estimate the joint kinematics, such as joint angles (Ngeo et al.,
2014) of trajectories (Xia et al., 2018). However, when considering
the limited computing power of the exoskeletons, the application
of these methods may cause a time delay between the estimated
kinematics and the actual occurrence of the motion event, which
may reduce the effectiveness of the exoskeleton and even cause a
potential injury to the subject (Tanghe et al., 2020). In order to
compensate for this time delay, our previous work achieved the
ahead-of-time prediction of kinematics (Yi et al., 2021). However,
the study did not consider the simultaneous classification of the
gait phases, which would be beneficial for kinematics prediction
because of the common quasi-periodicity.

For exoskeletons, there exists another problem in applications
of sEMG-based motion-decoding methods. According to Sylos-
Labini et al. (2014), the assistive forces provided by an
exoskeleton may result in a change of the muscle coordination
manners (i.e., muscle synergies). Similar conclusions were also
given by the related studies that investigated the effect of
robotic gait assistance on the muscle function of the subjects
(Moreno et al., 2013; Li et al., 2019). The altered muscle
functions would cause an unknown distribution change of sEMG,
therefore cause adverse effects on the sEMG-based motion-
decoding methods. However, there is still a lack of investigation
of how the exoskeleton affects the sEMG-based motion decoding
methods, which matters a lot for the applications of the methods
to exoskeletons.

In this study, we propose a novel motion-decoding method
that combines the recognition of gait phases and the prediction
of lower-limb joint angles. The main contributions of this paper
are integrated as follows:

• We propose an sEMG and gait phase-based continuous
lower-limb kinematics predictor, which leverages not only
the ahead-of-motion property of sEMG but also the quasi-
periodicity of gait phases to present the ahead-of-time joint
kinematics prediction.

• We propose a muscle selection scheme in view of the effects of
muscles on the classification of gait phases.

• We experimentally quantify how the assistance of an ankle
exoskeleton affects themotion-decodingmethods and propose
a fine-tuning scheme to adapt to the performance degradation
caused by exoskeleton assistance.

The structure of the paper is as follows. In Related Works
section, the related works are briefly described. Materials
and Methods section details the data acquisition process,
the experimental design, and the structure of the proposed
motion-decoding method. The evaluation metrics validating the
effectiveness of our method are also described in this section.
The experimental results are detailed in Results section and
analyzed in Discussion section. The conclusion underlines the
performance of the proposed method in Conclusion section.
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FIGURE 1 | The gait phase definition in a gait cycle.

RELATED WORKS

Phase Recognition and Dimension
Reduction
The gait phase recognition is a non-trivial problem for
exoskeleton and prosthesis, which is used to permit the control
system to work with more initiative and precision (Ferris
et al., 2007). Joshi et al. presented a method that combined
the Bayesian information criterion and LDA to recognize eight
phases based on four-channel EMG signals (Joshi et al., 2013).
With an average accuracy of 76.12%, the recognized phases were
applied in an exoskeleton orthosis. The study in (Ryu and Kim,
2014) implemented fractal analysis to analyze the change of
vibroathrographic signals. Based on four-channel EMG signals,
the support vector machine (SVM) classifier could recognize four
phases with an average accuracy of 91%.

In recent years, deep learning has revolutionized the fields
correlated with machine learning and pattern recognition
(LeCun et al., 2015). Compared with other machine learning
methods, deep learning is better at searching for the relations
of the source data with the labels. In addition, the change of
the gait phase is quasi-periodic, which means the temporal-
contextual data is beneficial for phase recognition. Because of
the reasons described above, we adopted the Long-Short Term
Memory (LSTM) to design the phase classifier.

For exoskeleton systems, the motion-decoding algorithms
usually run on an onboard microcomputer, which means the
source data need to be carefully selected to avoid the control
system hysteresis caused by high computational complexity.
Moreover, the feature extraction process increases the dimension
of the input data by multiples, which may add another layer
of complexity. Thus, dimension reduction usually plays an
important role in exoskeleton systems. The study in Chu et al.
(2007) compared different feature projection methods, such

as LDA and PCA, and evaluated through Sammon’s stress
and Fisher’s index. A study by Naik et al. (2018) introduced
a screen-plot-based statistical technique for feature reduction.
With the implementation of the Fisher score, themethod reduced
the feature dimension from 28 to 13.

Although various dimension reduction methods have
been proposed to avoid the model overfitting and reduce
computational complexity, few studies have analyzed the
selected muscles. In their works, the muscles were mostly
determined by related works or experiences. In this study, we
propose a muscle selection scheme that analyzes the effects
of muscles on phase classification. Through this scheme, the
redundant muscles will be discarded in order to both reduces the
dimension of the data and the number of the sensors.

Continuous Decoding of Joint Kinematics
Because most of the lower-limb exoskeletons are located at
the joints, such as the knee or the ankle, it is beneficial to
obtain the kinematic parameters of the joints, which provide
more continuous and detailed knowledge for smooth control.
See et al. solved the joint axis using the numerical optimization
method, established the limb coordinate system, and calculated
the lower limb joint angle based on the IMU signals (Seel et al.,
2014). Ameri et al. proposed a real-time upper limb wrist joint
trajectory decoding method based on support vector regression
(SVR). They implemented this method for proportional control
based on EMG signals (Ameri et al., 2014). In the study of Xia
et al. (2018), a deep architecture-based model was proposed to
estimate the limb trajectory, which combined the convolutional
neural network (CNN) and recurrent neural networks (RNN).
The results showed that the accuracy and robustness of the
proposed method are much higher than those of SVR and CNN.

Although the above studies have shown considerable
performance, the time delay in control hinders their application
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to exoskeleton systems. In order to deal with this problem and
enhance the control of exoskeleton, the future joint kinematics
are required. Kevin et al. proposed a probabilistic model to
present the future prediction of the current kinematics and
gait events, which leveraged the quasi-periodicity of lower-limb
motions (Tanghe et al., 2020). The method presented a pioneer
frame for kinematic prediction, and it can be enhanced by
physiological knowledge. According to the previous studies,
there exists a time delay between the onset of the sEMG and the
occurrence of the movement (Hioki and Kawasaki, 2012). This
phenomenon, known as the electromechanical delay (EMD), can
be helpful for the ahead-of-time prediction of kinematics. Thus,
we propose an LSTM-based lower-limb kinematic predictor,
which leverages the quasi-periodicity of phase and EMD to
present the ahead-of-time lower-limb joint angles.

Effects of Exoskeletons on Muscle
Functions
How the exoskeletons affect the muscle functions of the subjects
have been investigated for many years (Steele et al., 2017). Prior
studies have revealed that external forces that were provided by
the exoskeletons would alter the activity-level and recruitment
patterns of the muscle groups (Sylos-Labini et al., 2014; Li
et al., 2019). The study (Sylos-Labini et al., 2014) recorded
the sEMG activity of six healthy individuals during overground
walking with a lower-limb exoskeleton. The result revealed
that the activity of some muscles increased in the exoskeleton-
assisted condition compared with the normal walking condition,
while the other muscles did not change significantly. Pearson
correlation coefficients were implemented as another metric to
compare the sEMG waveforms in these two conditions, and a
significant difference was found. In Steele et al. (2017), muscle
synergy and muscle activity were implemented to evaluate the
changes in muscle recruitment and coordination patterns. The
result revealed that the subjects could selectively modulate the
activity of individual muscles and were not constrained to
synergistic patterns of muscle coordination.

The related studies designed complete experiments to
investigate the effects of exoskeleton on muscle functions, and
concluded that exoskeletons could alter the muscle recruitment
patterns (Li et al., 2019). However, there is still a lack of
research on the investigation of the exoskeleton effect on
sEMG-based motion-decoding methods. Such effect is worthy of
investigation since sEMG has obvious advantages in application
to exoskeletons, such as the EMD and information of kinematics,
dynamics, and personal identity. Thus, we experimentally
quantified the effect of an ankle exoskeleton on the proposed
motion-decoding model. Also, we implemented a fine-tuning
scheme to allow the model to adapt to the change of data
distribution caused by exoskeletons’ assistance.

MATERIALS AND METHODS

Data Acquisition and Experimental
Protocol
This study was conducted under the approval of the Chinese
Ethics Committee of Registering Clinical Trials, and all

the subjects signed the consent form corresponding to the
experiments, who could decide to stop the experiment at any
time. The subjects include 10 healthy males with an average
height of 178 ± 5 cm and an average weight of 77.6 ± 10 kg.
The data collection was performed using the EMG acquisition
equipment (Delsys Trigno, IM type and Avanti type), a designed
foot pressure acquisition device, and an optical motion capture
system (VICON). At the beginning of the data collecting process,
the signals from various acquisition devices were synchronized
by a trigger device.

In this study, we constructed two datasets for the experimental
protocol. In the first dataset, ten subjects were involved to
performed the level-walking on a treadmill with a constant
walking speed of 4.5 km/h. As shown in Figure 2, nine
quadrupolar EMG electrodes were mounted on the lower-limb
muscles, some of which have proved the validity in lower-limb
motion decoding, corresponding to rectus femoris (RF), vastus
lateralis (VL), vastus medialis (VM), tibialis anterior (TA), soleus
(SL), biceps femoris (BF), semitendinosus (ST), gastrocnemius
medial head (GM) and gastrocnemius lateral head (GL), with
a sampling frequency of 1111.11Hz. In order to decode the
lower-limb kinematics of the subjects, 16 reflective markers were
attached to the lower-limb, following the experimental scheme
of the VICON user guide, and the lower-limb joint angles were
collected with a sampling frequency of 100Hz. In addition, two
FSR sensors were attached to the heel and first metatarsal bone of
the subject for phase labeling, foot pressure signals were collected
with a sampling rate of 500 Hz.

In the second dataset, four of the ten subjects were
recruited to participate in the experiments. With an ankle
exoskeleton, the subjects performed the level-walking on a
treadmill with a speed of 4.5 km/h. Based on the proposed
muscle selection scheme described in Ankle Exoskeleton
Frame section, a subset was selected from nine muscles
to collect the EMG signals. The attachment of VICON
markers and FSR sensors are the same as the first dataset.
In both datasets, each subject was instructed to complete
at least two trials of level-walking. Each trial lasted for 8
mins, and 15-min rest followed with each trial to avoid
muscle fatigue.

Ankle Exoskeleton Frame
In this study, an ankle exoskeleton was implemented,
which was shown in Figure 3. The designed ankle
exoskeleton comprised a waist textile belt, two thigh
textile belts, a shank textile belt, and an ankle end-effector
mounted on the boot. The exoskeleton was actuated by a
powerful motor, with the mechanical power transmitted
through a flexible Boden cable tether which terminated at
the heel.

The electronic control strategy of the exoskeleton was
compiled in LabVIEW software and deployed to the Sbrio-9636
controller through a shared local area network, which was a single
task mode control. At the event of heel-off, the motor pulled
up on the end-effector through the Borden cable to provides an
upward force of 100N beneath the subject’s heel, which assisted
in reducing the plantarflexion forces provided by the subjects.
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FIGURE 2 | Sensor attachment of the subjects.

FIGURE 3 | The exoskeleton frame implemented in the second dataset.

Muscle Subset Selection
sEMG signals are generated by nerve signals stimulating muscle
activation, which contain massive human motion information.
The amplitude and pulse duration of sEMG is highly correlated
with the extent and duration of muscle activation, which varies

in different phases. Figure 4 shows the sEMG amplitude of the
tibialis anterior from different subjects, which was magnified
10,000 times. From the figure, a phenomenon can be found that
the tibialis anterior is mainly activated in the fourth phase among
the three subjects, which means that the muscles may not play a
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FIGURE 4 | The EMG amplitude of tibialis anterior among different subjects.

role in walking all the time. Instead, they activate at a certain time
of the gait cycle. Moreover, although the sEMG amplitude and
vibration frequency are different among the subjects, the timings
of sEMG pulses in a gait cycle are roughly the same, which means
different subjects may share a similar pattern of muscle activation
(Chvatal et al., 2011).

Based on the assumption, a muscle-activation-based muscle
selection scheme was proposed, which evaluated the effects
of the muscles on phase recognition. Firstly, a standard
manipulation was implemented to remove the motion artifact
and other interference (Ngeo et al., 2014). Then, the signals
were processed by full-wave rectification and normalized by
dividing by the peak rectified EMG. A low-pass filter was
carried out for the processed signal, as the frequency of
muscle activation was much lower than that of EMG signals
(Ding et al., 2011).

After the above manipulation, the neural activation u(i) of the
ith processed EMG sample e(i) with TE sampling interval was
calculated as follows:

u (i)=α×e

(

i−
d

TE

)

−β1×u (i− 1) − β2×u (i− 1) (1)

where α, β1 and β2 are the recursive coefficients that maintain the
stability of u(i), d is the time delay. Based on the neural activation
derived from sEMG signal, the corresponding muscle activation
a(t) was calculated by a simplified model (Lloyd and Besier,
2003). In equation (2), A is the nonlinear shape factor that varies
between −3 and 0, with −3 represents highly exponential and

0 represents a linear relationship. This factor and the recursive
coefficients can be determined by minimizing a mean-square
error cost function (Ngeo et al., 2014). In this study, A is equal
to−2.

a (t)=
eAu(t)−1

eA−1
(2)

Muscle activation sequence was calculated from EMG signals
of each channel. Then, data of a gait cycle was extracted and
segmented by different phases. After that, the average area Ai of
muscle activation a(t) in phase i was calculated by:

Ai=

∫ Tp

tp

a (t) dt i = 1, 2, 3, 4 (3)

Through the above calculation, Ai corresponding to four
phases was obtained. In order to compare the activations of
muscles in different phase more intuitively, a normalization
operation was implemented to obtain the effect Ei of muscle
to the ith phase. We would then evaluate the muscles based
on the muscle effects, following the rule that at least four
muscles should be selected, which have the highest activation
in the corresponding four phases, and the muscles with similar
activations in at least three phases would be discarded.

Ei=
Ai

max(A)
i = 1, 2, 3, 4 (4)
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FIGURE 5 | The structure of the phase classifier and ankle angle predictor.

Data Processing
After the optimal muscle subset was determined, the multi-
channel EMG and joint angle streams were segmented by
a continuous sliding window scheme, with a window length
of 180ms and a window increment of 40ms (Englehart and
Hudgins, 2003). In order to facilitate the phase classification
and consider the time efficiency, the following time-domain
features were extracted from each EMG segment, which were
mean absolute value (MAV), zero crossing (ZC), slope signal
change (SSC), and waveform length (WL). The effectiveness and
the real-time capability of these features had already been verified
in the related studies (He et al., 2011; Zhang et al., 2020). The
feature vector x of a sliding window with the dimension of 4n
is presented in the form of equation (5), where n represents the
number of muscles and f denotes the extracted features from
each muscle.

x =
[

f1, f2, · · · , f n
]

(5)

Phase Classifier and Angle Predictor
For the classification of gait phases, options abound of machine
learning, such as HMM (Evans and Arvind, 2014), LDA (Joshi
et al., 2013), SVM (Ryu and Kim, 2014), etc. However, despite the
verified effectiveness of these classifiers, they did not utilize the
previous context of the gait phase, which was also an important
element because of the quasi-periodicity of the changing phase
state. Thus, we designed an LSTM-based phase classifier. The
structure of the classifier was shown in Figure 5, consisting of
an input layer with the dimension equal to the input features,
two LSTM hidden layers of 40, a fully connected layer of 20, and
a softmax layer of four corresponding to the gait phases. ReLU
activation function was used to connect the LSTM layer, the fully
connected layer, and the output layer. In order to prevent model
overfitting, dropout regularization was applied after every fully
connected hidden layer with probabilities of 0.5.

For the ahead-of-time prediction of ankle angles, LSTM
was also implemented to leverage the quasi-periodicity of the
changing ankle angles and gait phases. Different from the studies
of phase classification, few feature extraction methods have been
verified to be efficient for angle regression. Thus, as shown in
Figure 5, a deep structure was designed, which combined a four-
layer LSTM-based feature extractor (30-30-30-5) and a three-
layer LSTM-based angle predictor (30-30-60-1). ReLU activation
function was also implemented to connect the LSTM layer and
the fully connected layer.

The models were tested on Nvidia Xavier Module Interface,
with the overall running time for a time window was <30ms. As
the window increment was 40ms, the prediction time of the angle
predictor was set to 40ms to compensate for the time delay and
match the kinematics with the next incoming data stream.

Evaluation Metrics
Several quantitative metrics were used to evaluate the
performance of our method. The motion-decoding method
we proposed is subject-specific. Thus, to improve the reliability
of classification results while avoiding the problem of cross-
subject, a modified leave-one-out cross-validation was carried
out. Each time, one trial from a subject (defined in Data
Acquisition and Experimental Protocol section) was regarded as
the testing data, and the other trial from the same subject with
all trials from other subjects were regarded as the training data.
The procedure continued until each trial from each subject was
tested. For all the evaluation processes, one-way ANOVA was
implemented to validate the significant effect of a single variable
on the results.

In order to verify the performance of the proposed classifier,
the SVM classifier with the radial basis function kernel and the
LDA classifier with the singular value decomposition solver were
compared, which were implemented from the scikit-learn library.
The feasibility of these classifiers have already been proved in the
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related research (He et al., 2011; Naik et al., 2018). In addition,
classification accuracy (ACC) was used for the visualization of
the performance.

SVR has been implemented to estimate the simultaneous
DOFs of the joints in the related study, and outperformed
ANN in myoelectric control tasks (Ameri et al., 2014). Thus, to
verify the effectiveness of the proposed method, SVR was also
implemented for angle prediction tasks in this study. The output
of the predictor was a continuous time series of joint angles. Thus,
the Pearson correlation coefficient (R-value) was implemented
to quantify the linear relationship between the predicted and
reference ankle angles:

R =
cov(θpre, θref )

σpre σref
(6)

where θpre and θref are defined as the predicted knee angles and
reference knee angles, respectively. σ is the standard deviation,
and cov represents the covariance. In addition to the similarity
evaluation of the signals, the deviation and residual variance
between the predicted and reference angles were estimated by
the root mean square error (RMSE) and the normalized RMSE
(NRMSE), where n denotes the total number of sampled data,
and θ of equation (8) represents the predicted knee angles.

RMSE =

√

1

n

∑

(

θpre−θref
)2

(7)

NRMSE =
RMSE

θmax− θmin
(8)

RESULTS

To begin with, the effect of each muscle described in Ankle
Exoskeleton Frame section was calculated, which was shown

in Table 1. In order to avoid the error caused by abnormal
phases, the whole procedure was repeated three times, and the
corresponding Ei were averaged to obtain the result. Based on the
muscle selection scheme, RF, TA, ST, GM, and GL were selected
since they contained the muscles with the highest activation level
in different phases, and each of them also had a discriminative
activation level in another phase (shown in bold values), which
might be beneficial for the phase classification task.

Based on the selected muscles, the phase classification
accuracy is shown in Figure 6, where MA represents the
proposed muscle selection scheme. In order to verify the validity
of the proposed method, the exhaustive method (EX) was
compared. This method searched for optimal muscle subsets
based on the classification accuracy, which was a time-consuming
way. The result of nine muscles (ALL) was also presented to
quantify the loss of information caused by muscle selection.
In the figure, the average accuracy of MA (93.15% of LSTM)
was a little lower than that of nine muscles (93.59% of LSTM),
which meant that the excluded muscles contained some effective

TABLE 1 | Effects of nine muscles on different phase patterns.

Muscle Muscle effects on different gait phases

IC FF HO TO

RF 1 0.49 0.25 0.29

VM 1 0.35 0.27 0.33

VL 1 0.54 0.56 0.53

TA 0.81 0.18 0.21 1

SL 0.21 0.94 1 0.21

ST 0.74 0.24 0.23 1

BF 1 0.88 0.96 0.87

GM 0.16 0.61 1 0.16

GL 0.44 0.78 1 0.18

FIGURE 6 | The classification results of gait phases: (A) The results of the different muscle sets, where MA represents the proposed muscle selection scheme, EX

represents the exhaustive method and ALL represents all the nine muscles; (B) The representative results of the three classifiers.
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FIGURE 7 | The classification results of the optimal muscle subsets based on

different muscle numbers. * indicates a statistically significant difference

(one-way ANOVA, P < 0.05).

information, but no statistically significant difference was found
(P > 0.05). In addition, the accuracy of MA was almost the same
as that of EX (93.29% of LSTM, P > 0.05). When comparing the
muscle subsets obtained by MA and EX, we discovered that the
muscle subsets of six subjects were the same, while those of the
other four were a little different, largely due to the error caused
by muscle palpation and sensor location.

As shown in Figure 6B, the error mostly occurred in the
transition of the phases, largely due to the ambiguity of the phase
boundaries. As shown in the figure, the average classification
accuracy of LSTM (93.15%) was significantly higher than that
of SVM (88.63%) and LDA (85.69%). The same inference was
also given when comparing the phase boundaries deduced by the
classifiers. Thus, LSTM was implemented as the classifier in the
following experiments.

Figure 7 shows the classification results of the optimal
muscle subsets based on different muscle numbers. The result
of five muscles was based on the muscle selection scheme,
while the results of other muscle numbers were based on the
exhaustive method. From the figure, a phenomenon could be
found that the average accuracy of nine muscles (93.59%) was
lower than that of eight muscles (94.02%) and seven muscles
(93.98%), which was largely due to the muscle redundancy.
In addition, the result of five muscles (93.15%) was not
significantly different from that of nine muscles (P > 0.05),
while that of four muscles was the opposite (P < 0.05). It
meant that the selected muscle subset contained the minimum
number of muscles while retaining the classification accuracy as
much as possible.

Figure 8 depicts the representative results of the angle
predictor based on different data inputs. In the figure, Angle Only
represent the inputs of one-channel current angles, while EMG
and Phase-based represents those of five-channel sEMG, one-
channel phases and one-channel current angles. As SVR is not

able to extract features from sEMG, the feature set of Muscle

Subset Selection section was implemented. As shown in the
figure, the proposed LSTM-based predictor outperformed SVR
in both Angle Only and EMG and Phase-based conditions.

In Figure 9, the results of different data inputs were evaluated
by the three metrics, where EMG-based represents the inputs of
five-channel sEMG and one-channel current angles. As shown
in the figure, the predicted angles of LSTM were significantly
better than those of SVR (RMSE, 1.89◦ versus 6.51◦; NRMSE,
20.07 versus 5.83%; R-value, 0.97 versus 0.41). For LSTM, it is
shown that the results of EMG and Phase-based outperformed
those of EMG-based, and a significant difference was found in
the comparison of the results (P < 0.05). Thus, the data stream of
sEMG and phases, and LSTM-based predictor were implemented
in the following experiments.

The effects of exoskeletons on phases have been quantified in
Figure 10, where wo to w Exo represents that the model was
trained in wo Exo (without exoskeleton) condition and tested
in w Exo (with exoskeleton) condition. When the classifier was
trained and tested in a single condition, the accuracy is quite high
and stable, exhibiting that the muscle recruitment pattern of w
Exo is as stationary as that of wo Exo. However, when the training
and testing sets came from different conditions, the accuracy
declined significantly. The most influenced phases were the IC
(92.63–56.61%) and HO (93.91–77.12%), which corresponded
to the difference in phase duration. A possible reason for this
significant decline is that the alteredmuscle function significantly
affects the distribution of sEMG, which have been reported in the
related studies (Sylos-Labini et al., 2014; Li et al., 2019).

As shown in Figure 11, the results of angle prediction also
supported the above view. In order to control the number of
variables, the input phases of the predictor were the labels. Similar
to the phase classifier, the angle predictor performed quite well
in the single condition, but the accuracy declined significantly
when the training and testing set came from different conditions
(RMSE, 1.89◦-5.68◦; NRMSE, 5.83–17.52%; R-value, 0.97–0.84).

In order to investigate the difference in muscle function
in the two conditions and pursue a potential solution to the
decline of accuracy, we adopted the fine-tuning method to
update the classifier. Each time, 1min w Exo data was added
to update the model, which had already been trained by wo
Exo data. The rest of the w Exo data was regarded as the
testing set. As shown in Figure 12, the accuracies of phase
IC and HO significantly increased (IC, 55.61–79.81%; HO,
77.12–87.13%) when the model was updated by 1-min data.
In addition, the accuracy gradually stabilized when 4-min data
was added, and the accuracy was roughly the same as that in
the single w Exo condition (IC, 92.87 versus 92.63%; FF, 93.45
versus 93.91%).

The results of fine-tuning-based angle prediction are shown in
Figure 13. The accuracy was also significantly increased when 1-
min data was added (RMSE, 5.68◦-3.05◦; NRMSE, 17.41–9.33%;
R-value, 0.84–0.90), and gradually stabilized when 2-min data
was added. Although the performance was not as good as that of
only w Exo condition (RMSE, 2.52◦ versus 1.89◦; NRMSE, 7.51
versus 5.83%; R-value, 0.95 versus 0.97), it was accurate enough
to perform the ahead-of-time angle prediction.
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FIGURE 8 | The representative results of different ankle angle predictors.

FIGURE 9 | Comparison of different angle predictors based on two evaluation metrics. * indicates a statistically significant difference (one-way ANOVA, P < 0.05).

FIGURE 10 | The duration and phase classification results involving the exoskeleton.
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FIGURE 11 | The prediction results involving the exoskeleton.

DISCUSSION

As noted in the study, we proposed a novel sEMG and phase-
based angle predictor and compared the contributions akin to
ours. Through the muscle selection scheme, we reduced the
number of muscles from nine to five, and the changes have little
effect on the accuracy. The proposed method, which combined
phase recognition and ankle angle prediction, significantly
outperformed the related methods. In addition, through the fine-
tuning scheme, the feasibility of the method was also verified
in the exoskeleton condition, which effectively counteracted the
signal distribution changes caused by exoskeleton assistance.

For data dimension reduction tasks, related studies either
directly projected the data to the lower-dimensional space
or selected the features that would best discriminate various
movements via source estimates (Chu et al., 2007; Naik et al.,
2018). Based on evaluating the muscle effects in each gait phase,
we both reduced the dimension of data and the number of
sensors. In addition, a surprising result is shown in Figure 7,
exhibiting that the accuracy of nine muscles is slightly lower than
that of eight and seven muscles. It indicated that some muscles
might be not beneficial or even adverse to phase classification.
In general, a viewpoint can be summarized that for phase
classification, it is preferable to construct a muscle set with the
activation of the muscles that are discriminative in different
phases, rather than add as many muscles as possible to allow the
classifiers to search for a complete muscle-phase relationship.

Various studies have been proposed for motion-decoding
tasks, such as the discrete locomotion and gait phase recognition
(Godiyal et al., 2018a,b), or continuous kinematic and dynamic
estimation (Lloyd and Besier, 2003; Yi et al., 2018). However,
the control of an exoskeleton can be enhanced if information
in the future is available. Recently, Tanghe et al. proposed
an IMU-based kinematics predictor, which was oriented to
exoskeletons (Tanghe et al., 2020). Compared with their work,
we leveraged the prior knowledge of the gait phase and EMD for

FIGURE 12 | The change of classification accuracy when more data of w Exo

was added to update the fine-tuning-based classifier.

kinematics prediction. In addition, transfer learning can be easily
applied to the proposed data-driven method, especially when
data distribution changes due to the intervention of exoskeletons.
As shown in Figure 8, the results of sEMG and phase-based
were significantly better than those of angle-based. The possible
reason is twofold. Firstly, the EMD property of sEMG provides
the ahead-of-time information for the prediction of the incoming
ankle angles, which has been extracted by the deep LSTM-
based feature extractor. Secondly, the joint training process both
optimize the feature extractor and angle predictor, and reinforces
the correlation between sEMG signals, phases, and ankle angles.
In addition, the effect of phase priori for angle prediction was
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FIGURE 13 | The change of prediction performance when more data of w Exo was added to update the fine-tuning-based predictor.

also tested. The results shown in Figure 9 suggested that besides
sEMG, the gait phase also provided the prior knowledge for angle
prediction, thus further improved the prediction accuracy.

In this study, we investigated and quantified how the
exoskeleton affected the sEMG-based motion decoding methods.
As shown in Figures 10, 11, the results significantly declined
when the training and testing data came from different
conditions. The interference of the exoskeleton was considered to
be the main reason for this phenomenon. First, the exoskeleton
disturbed the walking patterns, which was shown in Figure 10A

and was also reported in Tanghe et al. (2020). Second, the
exoskeleton altered the muscle recruitment patterns, exhibiting
that the muscles were not restricted to the fixed synergistic
patterns. They will selectively modulate the activity given the
external interference, instead (Steele et al., 2017).

In order to seek a potential solution to this problem, the
fine-tuning scheme was implemented to update the model. As
shown in Figures 12, 13, when adding 1-min w Exo data into
the training set, the performance of the phase classifier and angle
predictor significantly increased. This phenomenon suggested
that a correlation might exist between the altered muscle synergy
and the original one, thus enabling the fine-tuning of the model
with a small size of data. In addition, the performance of the
models that were updated through 4-min data was close to that of
the models based on whole data of the trials with the exoskeleton,
which validated the feasibility of the proposed scheme.

Despite the LSTM-based angle predictor achieved good
performance in ahead-of-time ankle angle prediction,
there is still room to improve the validity of the method.
Since the phases were inputs of the angle predictor, the
error caused by phase misclassification would affect the
performance of angle prediction. Therefore, the proper post-
processing procedure is beneficial to reduce the occurrence
of the accumulated error. In addition, even though the fine-
tuning scheme was validated to be efficient for the accuracy
decline of the model caused by exoskeleton interference,
the need for data of trials with the exoskeleton is still
inconvenient. The adaption of motion-decoding methods
from normal walking to exoskeleton-involved walking
would be an important pointer for future research, which

necessitates a larger dataset with sufficient subjects and
more investigation of the effects of the exoskeleton on
muscle functions.

CONCLUSION

In this study, we proposed a novel ankle angle predictor, which
presented the prediction of kinematics. First of all, a reduced set
of muscles was selected by the proposedmuscle selection scheme,
which was meant to reduce the data dimension in the muscle
level. Secondly, An LSTM-based phase classifier was designed to
assign the sEMG to four phases. Finally, with the aid of sEMG and
phases, the proposed angle predictor presents the ahead-of-time
prediction based on the measured ankle angles.

In order to investigate the perturbance of the exoskeleton
to the proposed method, the method was trained on a dataset
for normal walking and tested on a dataset for walking with
an exoskeleton. From the result, we showed that the method is
effective for both phase classification and angle prediction on
the training set, while the accuracy significantly declined on the
testing set. In order to compensate for the decline of accuracy,
a fine-tuning scheme was implemented. After the model update
manipulation, the accuracy of phase classification and angle
prediction on the testing set had significantly increased and close
to that on the training set.

The method enabled the quantitative compensation for the
time delay of the exoskeletons, which offers opportunities
to achieve a more accurate and smooth control system. In
addition, the study enabled us to comprehend the inherent
limitations for the applications of the motion-decoding method
to the exoskeletons. Being cognizant of these factors, our
future work objective is to explore the physiological mechanism
of human-exoskeleton interaction and seek for a solution to
allow the exoskeletons to adapt to a new subject without the
pretraining procedure.
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