
RESEARCH ARTICLE

Tumor tissue protein signatures reflect

histological grade of breast cancer

Petter Skoog1, Mattias Ohlsson2, Mårten Fernö3, Lisa Rydén4, Carl A. K. Borrebaeck1,
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Abstract

Histological grade is one of the most commonly used prognostic factors for patients diag-

nosed with breast cancer. However, conventional grading has proven technically challeng-

ing, and up to 60% of the tumors are classified as histological grade 2, which represents a

heterogeneous cohort less informative for clinical decision making. In an attempt to study

and extend the molecular puzzle of histologically graded breast cancer, we have in this pilot

project searched for additional protein biomarkers in a new space of the proteome. To this

end, we have for the first time performed protein expression profiling of breast cancer tumor

tissue, using recombinant antibody microarrays, targeting mainly immunoregulatory pro-

teins. Thus, we have explored the immune system as a disease-specific sensor (clinical

immunoproteomics). Uniquely, the results showed that several biologically relevant proteins

reflecting histological grade could be delineated. In more detail, the tentative biomarker pan-

els could be used to i) build a candidate model classifying grade 1 vs. grade 3 tumors, ii)

demonstrate the molecular heterogeneity among grade 2 tumors, and iii) potentially re-clas-

sify several of the grade 2 tumors to more like grade 1 or grade 3 tumors. This could, in the

long-term run, lead to improved prognosis, by which the patients could benefit from

improved tailored care.

Introduction

More women are diagnosed with breast cancer than any other cancer form, affecting one in

eight women during their lives [1] [[https://seer.cancer.gov/]. For patients diagnosed with

breast cancer, histological grade is one of the most commonly used prognostic factors [2, 3].

Histological grade describes the aggressive potential of the tumor, and is a combined score

based on microscopic evaluation of the tubule formation, mitotic count, and nuclear plea-

morphism [2, 3]. While grade 3 tumors are the most aggressive (highly proliferative) and

poorly differentiated, grade 2 tumors are moderately differentiated, and grade 1 tumors are

the least aggressive (slow growing) and well-differentiated [3].
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However, concerns have been raised regarding the prognostic value of histological grade [4,

5]. These concerns reflect the shortcomings associated with conventional grading of breast

cancer tumors using methods based on visual evaluation [4–8]. The patient cohort with grade

2 classified tumors, representing 30 to 60% of all patients, are in particular difficult to manage,

as these tumors are very heterogeneous and less informative for clinical decision making [9].

Hence, new improved means to perform histological grading of breast cancer, and especially

grade of grade 2 tumors, would thus be of significant clinical value.

Several attempts have been made to subgroup breast cancer based on predominantly

genetic signatures (e.g. reflecting prognosis and treatment outcome) [10–14], but also prote-

omic biomarker signatures [15–21]. Noteworthy, the genetic biomarker signatures have not

only highlighted the heterogeneity of grade 2 tumors, but also indicated that it might be pos-

sible to re-classify this cohort into one subgroup more similar two grade 1 tumors and one

subgroup more similar to grade 3 tumors [9, 12]. The potential subdivision of grade 2

tumors have also been indicated targeting the proliferation marker Ki-67 using immunohis-

tochemistry [8, 22]. Despite the success, additional high-performing biomarkers must be

deciphered in order to pave the way for grading of breast cancer tumors based on molecular

portraits.

Using a mass spectrometry-based affinity approach [23], we have deciphered a 49-plex

candidate protein signature discriminating between histological grade 1, 2, and 3 classified

breast cancer [24]. These findings have recently been extended and further refined using a

targeted mass spectrometry approach (Olsson et al, submitted). While grade 1 tumors were

found to express higher levels of extra cellular matrix associated proteins and stromal pro-

teins, indicating a more conserved structure, grade 3 tumors expressed higher levels of pro-

teins associated to proliferation and mitosis, at the same time losing the structural

properties. Notably, the grade 2 tumors were found to be heterogeneous, indicating that

many of them could be re-classified as being more similar to grade 1 or grade 3 tumors,

respectively.

In an attempt to further study and extend this molecular puzzle of histologically graded

breast cancer, we have in this pilot project searched for additional protein biomarkers in a new

space of the proteome. To this end, we have for the first time performed protein expression

profiling of breast cancer tissue, using recombinant antibody microarrays, targeting mainly

immunoregulatory proteins [25–28]. Thus, we have explored the immune system as a disease-

specific sensor (clinical immunoproteomics) [29] to reflect histological grade of breast cancer.

The results showed that novel candidate biomarker signatures, based on immunoregulatory

proteins, reflecting histological grade of breast cancer, and in particular the heterogeneity of

grade 2 tumors, could be delineated, adding new key pieces to the underlying molecular

puzzle.

Material and methods

Clinical samples

This study was approved by the regional ethics board at Lund University, Sweden (LU240-01).

Fifty primary breast cancer patients were recruited from the South Sweden Breast Cancer

Groups tumor bank (Lund, Sweden). Freshly frozen breast tumor tissues were stored at -80˚C

until analysis. Full clinical records, including tumor size, steroid receptor status [30], and

lymph node involvement were at hand (Table 1). The breast tumor samples were subdivided

based on Nottingham histological grades 1 (n = 9), 2 (n = 17), and 3 (n = 24), by trained

pathologists at the Department of Pathology (Skane University Hospital).
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Extraction of proteins from solid tumors

Protein was extracted from solid breast cancer tumor tissue and stored at -80˚C until use.

Briefly, tissue pieces (about 50 mg/sample) were homogenized in Teflon containers with a

metal ball, pre-cooled in liquid nitrogen, fixating the bomb in a shaker for two 30s periods

with quick cooling in liquid nitrogen between the rounds. The homogenized samples were

weighted and transferred to a collection tube and stored at -80˚C until use. Extraction of pro-

teins from homogenized tissue followed previously described protocol [31, 32]. Briefly, 10 μl of

Extraction Buffer (100μg/ml Soybean trypsin inhibitor, 350 μg/ml PMSF, 0.01% (w/v) BSA

and 2% (w/v) Saponin) was added per mg of sample and incubated on a rocking table at 4˚C

o/n. Samples were centrifuged at 13,000g for 5 minutes, and supernatant was transferred to a

new tube and stored at -80˚C until use.

Sample extracts were thawed on ice, and buffer was changed to PBS using Zeba desalt spin

columns (Pierce Rockford, IL, USA). Protein concertation was determined using Total Protein

Kit, Micro Lowry (Sigma-Aldrich, St. Louis, MO, USA). Biotinylation of samples was done

using EZ-link Sulfo-NHS-LC Biotin (Pierce Rockford) according to a previously optimized

protocol [26, 27, 32]. Briefly, samples were diluted to approximately 2 mg/ml and biotin was

added at a molar ratio of protein:biotin of 1:15, with a final biotin concentration of 0.6 mM.

Reaction between biotin and protein was done at 4˚C for 2 hours, and excess biotin was

removed through dialysis against PBS for 72 hours at 4˚C. Biotinylated samples were aliquoted

and transferred to new tubes and stored at -20˚C until use.

Antibodies

In total, 293 human recombinant single-chain fragment variable (scFv) antibodies (Table 2)

were selected from large phage display libraries [33, 34]. Out of 293 antibodies, 262 were tar-

geted against 98 known serum antigens, reflecting mainly immunoregulatory proteins. Each

target had 1–9 clones directed against it to ensure antibody reactivity, even if the epitope for

one antibody clone was masked by the biotinylation. The remaining 31 antibodies were

directed against short peptide motifs, 4–6 amino acids in length (antibodies are denoted as

CIMS1-31) [35]. The scFv antibodies have previously been demonstrated to provide high on-

Table 1. Patient demographics and clinical parameters.

Parameter Histological grade 1 Histological grade 2 Histological grade 3

Number of patients 9 17 24

Age in years 55.8 (11.9)a 45.9 (4.0) 45.8 (5.2)

Tumor size [mm] 24.3 (5.9) 21.9 (10.9) 29.5 (9.2)

ER+/ER-b 9/0 14/3 10/14

PgR+/PgR- 9/0 13/4 11/13

Lymph node+ / Lymph node - 5/4 14/3 14/10

Her2+ / Her2-c 0/9 0/16§d 5/15

Ki67+/Ki67- 0/8 4/9 14/6

a) Values in parenthesis is standard deviation
b) Estrogen Receptor status (ER) and Progesterone Receptor status (PgR) were analyzed in cytosol samples with ligand binding assays (LBA) or enzyme

immunoassay (EIA) as previously described11. Samples with receptor content higher or equal to 10 (LBA) or 25 (EIA) fmol/mg protein were classified as ER

or PgR positive, and samples with values below these levels as ER or PgR negative
c) All patients with FISH (fluorescence in situ hybridization) amplified tumors and all patients with an immunohistochemical 3+, where FISH analysis could

not be evaluated, were considered HER2+
d) In cases where the sum is less than the number in the group, patient data are missing

https://doi.org/10.1371/journal.pone.0179775.t001
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Table 2. Antigens and number of clones against each.

Antibody clone (no) Full name Clone (no) Full name

Angiomotin (1–2) Angiomotin IL-8 (1–3) Interleukin-8

Apo-A1 (1–3) Apolipoprotein A1 IL-9 (1–3) Interleukin-9

Apo-A4 (1–3) Apolipoprotein A4 Integrin α10 (1) Integrin alpha-10

ATP-5B (1–3) ATP synthase subunit β, mitochondrial Integrin α11 (1) Integrin alpha-11

B-galactosidase (1) Beta-galactosidase JAK3 (1) Tyrosine-protein kinase JAK3

BTK (1–4) Tyrosine-protein kinase BTK Keratin 19 (1–3) Keratin, type I cytoskeletal 19

C1 inh. (1–4) Plasma protease C1 inhibitor KSYK (1–2) Tyrosine-protein kinase SYK

C1q (1) Complement C1q LDL (1–2) Apolipoprotein B-100

C1s (1) Complement C1s Leptin (1) Leptin

C3 (1–6) Complement C3 Lewis x (1–2) Lewis x

C4 (1–4) Complement C4 Lewis y (1) Lewis y

C5 (1–3) Complement C5 LUM (1) Lumican

CD40 (1–4) CD40 protein MAPK1 (1–4) Mitogen-activated protein kinase 1

CD40 ligand (1) CD40 ligand MAPK8 (1–3) Mitogen-activated protein kinase 8

CDK-2 (1–2) Cyclin-dependent kinase 2 MATK (1–3) Megakaryocyte-associated tyrosine-protein kinase

CHX10 (1–3) Visual system homeobox 2 MCP-1 (1–9) C-C motif chemokine 2

CIMS (1–31) MCP-3 (1–3) C-C motif chemokine 7

CT17 (1) Cholera Toxin subunit B MCP-4 (1–3) C-C motif chemokine 13

Cystatin C (1–4) Cystatin-C MUC1 (1–6) Mucin-1

Digoxin (1) Digoxin MYOM2 (1–2) Myomesin-2

DUSP9 (1) Dual specificity protein phosphatase 9 ORP-3 (1–2) Oxysterol-binding protein-related protein 3

Eotaxin (1–3) Eotaxin Osteopontin (1–3) Osteopontin

Factor B (1–4) Complement factor B P85A (1–3) Phosphatidylinositol 3-kinase regulatory subunit α
FASN (1–4) FASN protein PKB gamma (1–2) RAC-gamma serine/threonine-protein kinase

GAK (1–3) GAK protein Procathepsin W (1) Cathepsin W

GLP-1 (1) Glucagon-like peptide-1 Properdin (1) Properdin

GLP-1 R (1) Glucagon-like peptide 1 receptor PSA (1) Prostate-specific antigen

GM-CSF (1–6) Granulocyte-macrophage colony-stimulating factor PTK6 (1) Protein-tyrosine kinase 6

HADH2 (1–4) HADH2 protein PTPN1 (1–3) Tyrosine-protein phosphatase non-receptor type 1

Her2/ErbB2 (1–4) Receptor tyrosine-protein kinase erbB-2 RANTES (1–3) C-C motif chemokine 5

HLA-DR/DP (1) HLA-DR/DP RPS6KA2 (1–3) Ribosomal protein S6 kinase α-2

ICAM-1 (1) Intercellular adhesion molecule 1 Sialle x (1) Siallelewis x

IFN-γ (1–3) Interferon gamma Sox11a (1) Transcription factor SOX-11

IgM (1–5) ImmunoGlobulin M STAP2 (1–4) Signal-transducing adaptor protein 2

IL-10 (1–3) Interleukin-10 STAT1 (1–2) Signal transducer and activator of transcription 1-α/β
IL-11 (1–3) Interleukin-11 Surface Ag X (1) Unknown surface antigen

IL-12 (1–4) Interleukin-12 TBC1D9 (1–3) TBC1 domain family member 9

IL-13 (1–3) Interleukin-13 TENS4 (1) Tensin-4

IL-16 (1–3) Interleukin-16 TGF-b1 (1–3) Transforming growth factor beta-1

IL-18 (1–3) Interleukin-18 TM peptide (1) Transmembrane peptide

IL-1a (1–3) Interleukin-1 α TNF-a (1–3) Tumor necrosis factor

IL-1b (1–3) Interleukin-1 β TNF-b (1–4) Lymphotoxin-alpha

IL-1ra (1–3) Interleukin-1 receptor antagonist protein TNFRSF14 (1–2) Tumor necrosis factor receptor superfamily member 14

IL-2 (1–3) Interleukin-2 TNFRSF3 (1–3) Tumor necrosis factor receptor superfamily member 3

IL-3 (1–3) Interleukin-3 UBC9 (1–3) SUMO-conjugating enzyme UBC9

IL-4 (1–4) Interleukin-4 UBE2C (1–2) Ubiquitin-conjugating enzyme E2 C

IL-5 (1–3) Interleukin-5 UCHL5 (1) Ubiquitin carboxyl-terminal hydrolase isozyme L5

(Continued )
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chip funcationality [27, 36]. The specificity for several of the antibodies have been validated

and tested in ELISA, mass spectrometry, Meso Scale Discovery assay and spiking and/or

blocking experiments using standardized serum samples with known levels of the targeted

analytes [26, 27, 31, 37–39].

All scFv antibodies were produced in 15 mL E. coli cultures and purified from periplasm,

using MagneHis™ Protein Purification system (Promega, Madison, WI, USA) and a King-

Fisher96 robot (Thermo Fisher Scientific, Waltham, MA, USA). Elution Buffer from purifi-

cation was exchanged for PBS using Zeba 96-well desalt spin plates (Pierce). Protein

concentration for all antibodies were determined at 280 nm, using a NanoDrop-1000

(Thermo Scientific, Wilmington, DE, USA), and purity using 10% SDS-PAGE (Invitrogen,

Carlsbad, CA, USA).

Antibody microarrays

The antibody microarrays consisted of 293 scFv antibodies, printed on black polymer Maxi-

Sorp slides (NUNC, Roskilde, Denmark) using a non-contact printer (SciFlexarrayer S11,

Scienon, Berlin, Germany). Each slide was made up of 12 identical subarrays, each subarray

containing three identical segments, divided by rows of biotinylated BSA. Intermixed with the

antibodies, several negative controls (PBS) were spotted. In total, each subarray constituted of

31x33 spots. The slides were printed o/n, and subsequently used for analysis the following day.

Each slide was mounted in a hybridization gasket (Schott, Jena, Germany), creating individ-

ual well over each array. The array surface was blocked using PBSMT (1% (w/v) milk, 1% (v/v)

Tween-20 in PBS) for one hour at room temperature (RT). During blocking, samples were

thawed on ice and diluted 1:10 in PBSMT. Next, the slides were washed four times using PBST

(1% (v/v) Tween-20 in PBS), followed by addition of 100 μl of sample, and subsequently incu-

bated for 2 hours at RT on a rocking table. The slides were washed four times with PBST, and

incubated with 1 μg/mL Streptavidin-Alexafluor647 (Invitrogen, Carlsbad, CA, USA) in dark

conditions on a rocking table for one hour at RT, and subsequently washed four times using

PBST. Next, the slides were dismounted from the gaskets, and slowly dipped in dH2O where

after slides were directly dried under a stream of nitrogen gas. Thereafter, the slides were

immediately scanned in a confocal scanner (PerkinElmer Life and Analytical Sciences, Welles-

ley, MA, USA) at 10 μm resolution, using 60% PMT gain and 90% laser power. The resulting

signal intensities were quantified using ScanArray Express Software version 4.0 (Perkin Elmer

Life and Analytical Sciences), using the fixed circle method. Intensity values with local back-

ground subtraction were used in the subsequent data analysis steps.

Data preprocessing

The mean value was calculated for each target protein using the three scFv replicate spots. In

those cases, where one replicate CV deviated more than 15%, the mean of the two remaining

signals was used. The average replicate CV was 7.2% (±5.5%). Setting the cut-off value for CV

at 15%, 81.7% of data points were obtained using three replicates, and the remaining data

points was obtained using the remaining two replicates.

Table 2. (Continued)

Antibody clone (no) Full name Clone (no) Full name

IL-6 (1–8) Interleukin-6 UPF3B (1–2) Regulator of nonsense transcripts 3B

IL-7 (1–2) Interleukin-7 VEGF (1–4) Vascular endothelial growth factor

https://doi.org/10.1371/journal.pone.0179775.t002
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Next, three scFv were discarded as their mean signal intensities were below the limit of

detection (LOD) cut-off (defined as meanPBS+2(SDPBS) in >70% of the samples), leaving 290

scFvs in the dataset.

Using QluCore Omics Explorer 3.0 (Qlucore, Lund, Sweden), a 3D principle component

analysis (PCA) plot on log2 raw data, an initial exploration of the dataset was performed. This

approach was combined by visual inspection of microarray digital images. As a result, one

sample was removed from the data analysis, since it was regarded as an outlier in the PCA

plot. With the PCA plot, it could also be determined that neither position on the slide, hor-

monal status, nor grading had introduced any observable difference or influence.

Next, the array-to-array variations were handled by using a semiglobal normalization

approach [25, 38, 40, 41]. Thus, the coefficient of variation (CV) was calculated for each ana-

lyte and ranked. Fifteen percent of the scFvs displaying the lowest CV values over all samples

were identified, corresponding to 44 analytes. These analytes were used to calculate a normal-

izing factor [42]. The normalization factor, Ni, for each sample i, was calculated by the formula

Ni = Si/μ, where Si is the sum of the signal intensities for the 44 analytes for each sample i and

μ is the average of all Si. Each dataset generated from one sample was divided with the normali-

zation Ni. For the intensities, log2 values were used in the analysis.

Data analysis

All statistics and data analysis was performed in the program R (www.r-project.com) [43]. The

Support Vector Machine (SVM) is a supervised learning method in R [43–45] used to classify

the samples. The supervised classification was performed using a linear kernel, and the cost of

constraint set to 1 to avoid overfitting. The SVM was trained using a leave-one-out cross-vali-

dation procedure (LOOC SVM). Briefly, training sets were created excluding one sample. The

SVM was asked to classify the excluded sample as belonging to either group, and assign a deci-

sion value, i.e. the distance from a hyperplane. Unfiltered data, i.e. all analytes, were used in

the process. This process was iterated for all samples, and a receiving operator characteristic

(ROC) curve was constructed using the decision values, and the area under the curve (AUC)

was calculated. Significantly up- or down-regulated proteins (p< 0.05) were identified using

Wilcoxon signed-rank test.

In an attempt to further stratify samples from grade 2 into two groups, one more similar to

grade 1 samples, the other more similar to grade 3, the dataset was divided into a training set

with only grade 1 and 3 tumors, and a test set with only grade 2 tumors. A SVM-based Back-

ward Elimination algorithm previously described described [41] was applied using the training

set. The Kullback-Leibler (K-L) error in the classification was plotted against the number of

eliminated antibodies. Based on the K-L error, a signature was defined as the 20 last remaining

antibodies, and a classification model was built using the training set, and was then applied on

the test.

To test grade 1 or grade 3 samples, it was imperative to exclude the samples from the train-

ing set. To achieve this objective, a bootstrap strategy was developed. Briefly, training sets were

created with randomly drawn grade 1 or 3 samples, with resampling. Undrawn samples were

added to the test set to be tested. Backward Elimination was run for each training set, and a

classification model was built for each iteration and applied to the test set.

The raw array dataset is available as supporting information (S1 Table).

Biomarker validation using an orthogonal method

A commercial ELISA kit against IL-6 (IL-6 ELISA Kit, Human, Cat#EH2IL6, Thermo Fisher

Scientific) was run as an orthogonal method to validate the microarray results. The analysis
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used reagents supplied with the kit, and followed the protocol provided by the supplier. The

absorbance was measured at 450 nm using a FLUOstar Omega plate reader (BMG LABTECH

GmbH, Ortenburg, Germany). Raw data was used, and statistical analysis was performed

using Welsh’s t-test in R to consider the unequal sample sizes.

Results

In this study, we have performed tissue protein profiling of breast cancer tumors in an attempt

to decode novel biomarkers reflecting histological grade. To this end, a 293-plex recombinant

antibody microarray platform targeting the immunoproteome was used. Fifty breast cancer

tumors, distributed between histological grade 1 (n = 9), 2 (n = 17), and 3 (n = 24) were

profiled.

Molecular grading of breast cancer tumors

First, we explored whether tissue protein signatures classifying breast cancer according to his-

tological grade could be decoded. To this end, a LOOC SVM strategy was applied based on

unfiltered microarray data. The results showed that grade 1 vs. grade 3 tumors could be classi-

fied, with a ROC AUC value of 0.83 (Fig 1A). In contrast, grade 2 tumors could not readily be

differentiated from neither grade 1 nor grade 3 tumors, as illustrated by ROC AUC values of

0.67 and 0.59, respectively (Fig 1B and 1C). Hence, the data indicated on a large molecular het-

erogeneity among the grade 2 tumors. Visualizing the microarray data using a PCA based

approach (Fig 1), a similar pattern of discrimination was observed, further supporting the

conclusions.

A total of 170 proteins were found to be significantly differentially expressed (p< 0.05)

between grade 1 vs. grade 3 tumors, further highlighting the distinct differences between these

two grades (Table 3; top 20 differentially expressed proteins listed). Among the top 20 proteins,

all (e.g. IL-6, Angiomotin, MCP-1 and CDK-2) but Mucine-1, were found to be present at

higher levels in grade 3 than in grade 1 tumors. In this context, it might be interesting to note

that several antibody clones targeting the same protein (e.g. four anti-IL-6 antibodies), but

directed against different epitopes, gave similar binding patterns, further supporting the obser-

vations. In contrast, the number of significantly differentially expressed (p< 0.05) proteins

was only found to be 23 and 19 for grade 2 vs. grade 1 or grade 3, respectively (Tables 4 and 5),

further outlining the small differences between these grades. In the case of grade 2 vs. grade 1,

all proteins (e.g. IL-2, IL-3, IL-4, IL-5, IL-6, Lewis y, CD40 ligand, and Angiomotin), but two

(Mucine-1 and Cystatin C), were found to be present at higher levels in grade 2 than in grade 1

tumors. For grade 2 vs. grade 3 tumors, all proteins (e.g. IL-6, IL-8, CDK-2, UBE2C, and

UPF3B), but three (Factor B, C3, and CIMS-29), were found to be present at higher levels in

grade 3. Taken together, the data showed that several candidate protein biomarkers associated

with histological grade of breast cancer could be delineated.

Validation of protein expression profiles

In an attempt to validate the recombinant antibody microarray data, the observed protein

expression profiles were compared with those obtained using an orthogonal, commercially

available method (ELISA) (Fig 2). To this end, IL-6 was selected as model protein, since i) it

was indicated to be significantly differentially expressed in all LOOC SVM analysis, and ii) sev-

eral antibodies targeting IL-6, but directed against different epitopes, were included on the

arrays. The results showed that the differential expression pattern of IL-6 observed using

microarrays was reproduced using the ELISA method (Fig 2). Hence, the microarray data was

validated by an orthogonal, independent method.
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Fig 1. Molecular classification of breast cancer tumors according to histological grade (H1, H2, and H3)

by tumor tissue protein expression profiling, using recombinant scFv antibody microarrays. Unfiltered

data was used in all analysis. A) A ROC curve and AUC value obtained for H1 vs. H3, using a LOOC SVM (left

panel). A PCA plot for H1 vs. H3 (right panel). B) A ROC curve and AUC value obtained for H1 vs. H2, using a

LOOC SVM (left panel). A PCA plot for H1 vs. H2 (right panel). C) A ROC curve and AUC value obtained for H1

vs. H3, using a LOOC SVM (left panel). A PCA plot for H2 vs. H3 (right panel).

https://doi.org/10.1371/journal.pone.0179775.g001
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First model for refined molecular grading of breast cancer

To explore whether a model for refined molecular grading of breast cancer, and in particular

grade 2 tumors, could be generated, we used the grade 1 and 3 tumors (the best defined grades)

to build a classification model. In order to define a condensed list with those protein biomark-

ers that contributed the most to the classification of grade 1 vs. 3 (as opposed to the list of

proteins based on p-values, merely indicating whether they were significantly differentially

expressed (Table 3), a backward elimination strategy was adopted (Fig 3). The top 20 proteins

(e.g. antibodies) most important for classifying grade 1 vs. grade 3 tumors are shown in Fig 3A,

including e.g. IL-6, Mucine-1, Cystatin C, and Angiomotin. Of note, among the identified

candidate biomarker proteins, four proteins were pin-pointed (VEGF, Procathepsin W,

TNFRSF14, and PS6KA2), which would have been missed if the signature had been selected

based simply on p-values.

The grade 1 and 3 tumors were then used to calibrate the SVM model using this 20 protein

signature, where after the grade 2 tumors were classified using the frozen model (Fig 3B). A

nominal cut-off, or grey zone, was adopted, defined by a decision value set to ± 0.5. While four

tumors were still considered to be of grade 2, three were re-classified as being more similar to

grade 1, and ten re-classified as being more similar to grade 3. Hence, the data, implied that

Table 3. Significant analytes from SVM leave one out cross validation on unfiltered data for H1 vs. H3.

Protein Names Foldchange Wilcoxon p-values QvaluesAll

Angiomotin (2) 6.59E-18 0.0003 0.027

CD40 ligand (1) 1.99E-13 0.0005 0.027

IL-6 (2) 3.78E-14 0.0005 0.027

Leptin (1) 2.59E-13 0.0007 0.027

IL-6 (5) 7.12E-08 0.0007 0.027

IL-6 (3) 1.12E-13 0.0007 0.027

Her2/ErbB2 (1) 1.57E-15 0.0009 0.027

IL-1ra (1) 1.40E-13 0.0009 0.027

CHX10 (2) 4.56E-14 0.0011 0.027

MUC1 (3) 7.99E+09 0.0011 0.027

Sox11a (1) 2.69E-13 0.0013 0.027

MCP-1 (8) 1.34E-12 0.0013 0.027

MCP-3 (1) 7.78E-11 0.0013 0.027

MCP-3 (2) 3.81E-19 0.0013 0.027

PSA (1) 8.50E-10 0.0015 0.027

CDK-2 (2) 7.64E-05 0.0018 0.027

Apo-A4 (2) 2.66E-12 0.0018 0.027

ORP-3 (1) 5.42E-10 0.0018 0.027

GM-CSF (1) 7.84E-12 0.0018 0.027

IL-3 (3) 3.54E-11 0.0018 0.027

IFN-γ (2) 4.31E-09 0.0022 0.027

IL-4 (2) 4.67E-13 0.0022 0.027

FASN (1) 1.65E-13 0.0026 0.027

Her2/ErbB2 (2) 1.49E-09 0.0026 0.027

Apo-A4 (1) 1.46E-12 0.0026 0.027

GM-CSF (2) 3.26E-12 0.0026 0.027

IL-6 (1) 7.32E-11 0.0026 0.027

TGF-b1 (3) 4.53E-11 0.0026 0.027

https://doi.org/10.1371/journal.pone.0179775.t003
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Table 4. Significant analytes from SVM leave one out cross validation on unfiltered data for H1 vs. H2.

Protein Names Foldchange Wilcoxon p-values QvaluesAll

Lewis y 8.78E-08 0.002 0.406

CIMS (13) 3.24E-16 0.011 0.406

MUC1 (3) 3.00E+07 0.013 0.406

MUC1 (4) 1.39E+08 0.013 0.406

IL-2 (3) 8.71E-11 0.016 0.406

IL-3 (3) 6.58E-09 0.021 0.406

IL-5 (2) 2.12E-09 0.021 0.406

CD40 ligand (1) 1.45E-10 0.025 0.406

Cystatin C (3) 2.50E+11 0.025 0.406

MUC1 (6) 1.39E+08 0.025 0.406

Angiomotin (2) 3.11E-15 0.029 0.406

IL-6 (5) 7.39E-05 0.029 0.406

Cystatin C (4) 4.44E+09 0.034 0.406

Sox11a (1) 2.26E-09 0.034 0.406

MCP-3 (1) 1.14E-07 0.034 0.406

C5 (2) 2.55E-08 0.039 0.406

C5 (3) 1.35E-10 0.039 0.406

CD40 (1) 1.07E-10 0.039 0.406

IL-2 (2) 8.15E-10 0.039 0.406

Leptin (1) 1.16E-10 0.045 0.406

CIMS (14) 3.44E-10 0.045 0.406

IL-4 (4) 2.65E-08 0.045 0.406

IL-5 (1) 9.85E-09 0.045 0.406

https://doi.org/10.1371/journal.pone.0179775.t004

Table 5. Significant analytes from SVM leave one out cross validation on unfiltered data for H2 vs. H3.

Protein Names Foldchange Wilcoxon p-values QvaluesAll

Factor B (4) 5.46E+07 0.0004 0.121

CIMS (29) 5.22E+06 0.007 0.517

Factor B (2) 8.40E+05 0.013 0.517

Osteopontin (2) 1.95E-07 0.014 0.517

IL-8 (2) 5.84E-08 0.020 0.517

IL-6 (2) 2.92E-07 0.024 0.517

CIMS (5) 2.90E-07 0.027 0.517

UPF3B (2) 2.31E-04 0.027 0.517

CDK-2 (2) 1.04E-03 0.032 0.517

IL-6 (3) 3.80E-07 0.032 0.517

CDK-2 (1) 7.07E-04 0.034 0.517

UBE2C (1) 7.73E-24 0.037 0.517

Integrin α10 (1) 2.97E-07 0.039 0.517

IgM (1) 1.87E-03 0.039 0.517

C3 (4) 6.95E+03 0.042 0.517

Factor B (1) 1.11E+05 0.045 0.517

IL-10 (2) 9.51E-07 0.045 0.517

MCP-4 (1) 6.56E-06 0.045 0.517

Apo-A4 (2) 6.39E-05 0.048 0.517

https://doi.org/10.1371/journal.pone.0179775.t005
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Fig 2. Validation of antibody microarray data using an orthogonal method (ELISA). A) Histological grade 1 vs. 2 based

on ELISA data (left panel) and antibody microarray data (right panel). B) Histological grade 2 vs. 3, based on ELISA data (left

panel) and antibody microarray data (right panel). C) Histological grade 1 vs. 3, based on ELISA data (left panel) and antibody

microarray data (right panel). In all comparisons, a Welsh t-test was used to evaluate the level of significance.

https://doi.org/10.1371/journal.pone.0179775.g002
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Fig 3. First model for refined molecular grading of breast cancer. A) Backward elimination analysis of the data set (grade 1 and grade 3

tumors), resulting in a condensed signature of 20 antibodies (indicated by an arrow). The panel of antibodies (specificities) are shown (in

order of last removed antibody). B) A frozen SVM classification model was generated using the 20-plex antibody panel in A, based on all

grade 1 and 3 tumors. The grade 2 tumors were then applied as test set. The resulting classification decision values are shown, where tumors

with values� 0.5 are defined as being more similar grade 1 tumors, 0.5 to -0.5 is defined as a grey zone (i.e. grade 2 tumors), and� -0.5 are

defined as being more similar to grade 3 tumors. C) The decision values for the grade 1 and grade 3 tumors used to build the SVM model are

plotted. The same arbitrary cut-off as in B) is indicated (dashed line).

https://doi.org/10.1371/journal.pone.0179775.g003
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molecular profiling could be used for refined molecular grading of breast cancer, in particular

of the heterogeneous grade 2 tumors.

Testing the model on the grade 1 and 3 tumors resulted in a 100% correct classification (Fig

3C). This comparison is, of course, biased, as all these samples were used to build the model.

The current model could potentially also be limited by the fact that the á priori determined

grading of the tumors used to build the model was assumed to be correct. Since, this criteria

might not be a 100% correct, a new model at least to some extent bypassing this issue should

be designed.

Improved models for refined molecular grading of breast cancer

In order to build a more adequate model for molecular grading of breast cancer, a (sample)

bootstrap strategy was implemented (Fig 4A). By randomly picking samples from grade 1 and

3 tumors with re-sampling, respectively, a training dataset was generated. Next, a condensed

20-plex protein signature was generated using the backward elimination strategy, and used to

train a frozen SVM model. Any unused grade 1 and grade 3 tumors were then added to the

test dataset (previously only composed of grade 2 tumors) and independently tested using the

frozen model (the SVM decision values were saved). This entire procedure was repeated 100

times. Based on the number of times a tumor was classed as grade 1 or 3, a nominal cut-off at

70% was adopted to classify tumors as grade 1, 2 or 3.

The analysis showed that two grade 2 tumors were re-classified as being more similar to

grade 1, four tumors remained in the grey zone as grade 2 tumors, while eleven tumors were

re-classified as being more similar to grade 3 (Fig 4B). Compared to the first model, the classi-

fication overlapped for 14 of 17 samples (cfs. Figs 3B and 4B). Of note, the refined model also

indicated that the grade 1 and 3 tumors were no longer classified as a 100% correct compared

to the á priori grading, indicating a tentative need for re-classification here as well for several

tumors (Fig 4B).

However, the adopted model strategy was based on generating a unique 20-plex protein sig-

nature for each iterative round. This means that the signature will differ from round to round,

reflecting the precise composition of the training dataset (data not shown). Depending on how

the samples were selected (e.g. whether the most typical/atypical tumors samples were

included/excluded) will thus have a significant impact, in particular when targeting relatively

small sample cohorts. In Fig 4C, the top 20 most frequently included in the signature are

shown. The frequency ranged from high (>60%; e.g. IL-6, Mucine-1, and Factor B) to low

(<40%; e.g. CDK-2 and Angiomotin), illustrating the influence of sample selection. Instead of

using 100 different signatures, adopting this list of biomarkers as a consensus signature could

be a way to bypass, or minimize, the observed sample dependency.

Using the consensus signature as a fixed protein signature (Fig 4C), the bootstrap strategy

with re-sampling was re-run and a new classification model was generated (Fig 5A). The

analysis showed that two grade 2 tumors were re-classified as being more similar to grade 1,

three tumors remained in the grey zone as grade 2 tumors, while twelve tumors were re-

classified as being more similar to grade 3 (Fig 5B). Further, the data (model) also indicated

that one grade 1 tumor and two grade 3 tumors ended up in the grey zone (i.e. as grade 2

tumors), while the remaining tumors were apparently classified in accordance to the á priori

grading.

Taken together, this pilot study showed that new candidate biomarker signatures reflecting

histological grade of breast cancer, and in particular the heterogeneity of grade 2 tumors,

could be pin-pointed targeting the immunoproteome. This will add additional information to

the underlying molecular puzzle of (grading) breast cancer tumors.
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Fig 4. Second model for refined molecular grading of breast cancer. A) Outline of the sample bootstrap strategy approach,

combined with 100 iterative cycles of backward elimination and frozen SVM, generating a classification model. B) The

classification is shown in terms of number of time a tumor was classified as either grade 1 (positive value) or grade 3 (negative

value). A tumor was classified as being more similar to grade 1 when the value was�70, <70 to >-70 is defined as a grey zone

(i.e. grade 2 tumors), and� -70 are defined as being more similar to grade 3 tumors. The arbitrary cut-limits are indicated by

dashed lines. Left panel–classification of grade 1 and grade 3 tumors. Right panel–classification of grade 2 tumors. C)

Consensus list of the twenty most often occurring antibody clones in the condensed signatures.

https://doi.org/10.1371/journal.pone.0179775.g004
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Fig 5. Third model for refined molecular grading of breast cancer. A) Outline of the sample bootstrap strategy and combination with

backward elimination and frozen SVM, generating a classification model. B) The classification is shown in terms of number of time a

tumor was classified as either grade 1 (positive value) or grade 3 (negative value). A tumor was classified as being more similar to grade 1

when the value was�70, <70 to >-70 is defined as a grey zone (i.e. grade 2 tumors), and� -70 are defined as being more similar to grade

3 tumors. The arbitrary cut-limits are indicated by dashed lines. Left panel–classification of grade 1 and grade 3 tumors. Right panel–

classification of grade 2 tumors.

https://doi.org/10.1371/journal.pone.0179775.g005
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Discussion

Finding protein biomarkers for accurate grading and molecular classification of breast cancer

tumors is of great clinical relevance, by which the patients in the end could benefit by tailored

care. Clinical immunoproteomics is based on exploring the immune system as a disease-spe-

cific sensor [29]. We have previously demonstrated the ability of our recombinant antibody

microarray technology platform [28, 46], targeting mainly immunoregulatory proteins, as a

unique tool for serum biomarker discovery within cancer [28, 47], including breast cancer [41,

42]. In the latter case, tentative serum biomarker signatures reflecting metastatic breast cancer

[42] and predicting the development of distant metastases [41] were discovered. In this pilot

study, we have for the first time explored the immunoproteome of breast cancer tumor tissue

for disease-associated protein biomarkers reflecting histological grade, using our antibody

array technology platform. Uniquely, the results showed that several tissue proteins reflecting

histological grade could be delineated. In more detail, the candidate biomarker signatures

could be used to i) build a tentative model classifying grade 1 vs. grade 3 tumors, ii) demon-

strate the molecular heterogeneity among grade 2 tumors, and iii) potentially re-classify several

of the grade 2 tumors to more like grade 1 or grade 3 tumors. Hence, these new molecular fea-

tures supported the notion presented by others that grade 2 tumors represents a heterogeneous

cohort that could benefit from being re-classified [8, 9, 12, 22]. Follow-up studies, based on

larger, independent sample sets, will be required to (pre-)validate these findings and to exam-

ine whether this new classification of grade 2 tumors was better correlated with e.g. survival.

Of note, these key observations were also (indirectly) supported by our recent profiling

efforts, where we analysed the same tissue samples, but i) explored a completely different part

of the proteome, and ii) and used different technologies, either a mass-spectrometry based

affinity approach [24] or a targeted mass spectrometry method (Olsson et al, submitted). This

work indicated a candidate 49-plex protein signature [24], refined and extended to a tentative

21-plex peptide signature (Olsson et al, submitted), for discriminating between histological

grade 1,2 and 3 classified breast cancer, and for outlining the heterogeneity among grade 2

tumors. Importantly, these candidate biomarker signatures are completely different from the

biomarker panels presented in this study, but they were found to provide similar biological

information. Hence, this illustrated the importance of the experimental design for the end

result. But more interestingly, it demonstrated the massive amount of key biological informa-

tion (in terms of biomarker panels) potentially carried by the proteome just waiting to be har-

vested. Additional work will be required to explore the power of combining these tentative

signatures and/or for exploring the remaining part of the proteome for additional relevant

information reflecting histological grade of breast cancer tumors.

The observed differences of immunophenotype between grade 1 and grade 3 tumors did

not merely reflect differences in receptor status (only triple negative in grade 3 tumors, 8 of

23) (data not shown). Briefly, the classification of grade 1 vs. grade 3 tumors gave similar

AUC values (0.83 vs. 0.85) whether all grade 3 tumors were included or the triple negative

tumors were excluded (n = 23, of which 8 were triple negative). When comparing the top 30

differentially expressed proteins for these two classifications, 21 of 30 biomarkers overlapped.

Noteworthy, only minor differences could be observed, more reflecting the receptor status, as

indicated when comparing only grade 3 tumors, divided into two groups—triple negative

(n = 8) vs. positive (n = 15) tumors. In addition, the list of top 30 differentially expressed pro-

teins did not correlate with the above lists (only 1 of 30 overlapped), further indicating that

the observed differences of immunophenotype between grade 1 and grade 3 tumors did not

only mirror differences in receptor status. Additional studies will be needed to validate also

these findings.
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This pilot study does have some limitations, such as the number of tumor samples analysed

and the number and range of antibody specificities included. In this context, it should be

noted that we, where possible, adopted stringent biostatistical methods, such as leave-one out

cross validation and (sample) bootstrap strategies, as one way of addressing the issue of limited

samples. Still, the data and SVM models needs to be corroborated in follow-up studies target-

ing larger, independent patient cohorts collected at different sites. Regarding the density of the

antibody arrays, we used a 293-plex recombinant antibody microarray, of which 262 were tar-

geted against 98 known proteins, and 31 were directed against short peptide motifs. But

despite the fact that our set-up only targeted a selected part of the immunoproteome, we were

still capable of deciphering several disease-associated and discriminatory protein biomarkers.

It could thus be rewarding the further explore the remaining part of the immunoproteome in

future experiments.

However, it should be noted that several of the biomarkers that we identified have previ-

ously been indicated with breast cancer (and histological grade thereof), but not in terms of

multiplex signatures as in our case. This illustrates the uniqueness of our approach and sup-

ports and highlights the biological relevance of our observations. A majority of all significantly

differentially expressed proteins were found to be present at higher levels with increasing his-

tological grade, i.e. in the order of grade 1< grade 2< grade 3.

Mucin-1 was one of the few proteins present at higher levels at lover grade. Although

debated, studies have suggested increased expression of Mucin-1 at lower grade as a prognostic

value [48], which would support our observations. More commonly, shredded or soluble

forms of Mucin-1 [49, 50] are measured as a serological clinical marker for monitoring

response to treatment in breast cancer [51].

Among the proteins present at higher level at higher grade, IL-6 was frequently pinpointed.

IL-6 is a pleiotropic cytokine, which acts directly on cancer cells to promote their survival and

proliferation [52]. Elevated serum levels of IL-6 have also been shown to negatively correlate

survival of cancer patients, which might be attributed to defective responses of patients T cells

to IL-6 [53]. In addition, IL-6 has been reported to be involved, with other chemokines (e.g.

IL-2, IL-3, IL-4, and IL-5), in key mechanisms of tumorigenesis, and as a factor in certain

EMT pathways that contributes to metastatic processes [54]. Notably, the levels of IL-2, IL-3,

IL-4, and IL-5 were also found to be higher in grade 3 vs. grade 1 tumors, further supporting

our observations.

Furthermore, CD40 and CD40L were also found to be among the proteins with higher lev-

els in grade 3 vs. grade 1. In accordance, the expression levels of CD40/CD40L have also been

found to be increased in breast cancer, displaying a positive relationship with pathological

grade [55]. A recent study, showed that the production of TGF-β induced by the CD40-CD40L

interaction resulted in enhanced immunosuppressive function of breast cancer cells, thereby

contributing to tumor progression [55].

Another protein displaying increased levels with grade was Cyclin Dependent Kinase 2

(CDK-2). CDK-2 is a serinine/threonine kinase involved in the control of cell cycle, and phos-

phorylates among others, p53 and BRCA2 [56, 57]. Notably, phosphorylated CDK-2 has been

indicated as a biomarker for aggressive breast cancer [58].

Cystatin C, Fatty Acid Synthase (FASN), Complement factor B, IL-1ra, PTK6, and Angio-

motin were some additional proteins found to be important in the condensed biomarker sig-

natures. Cystatin C, a major inhibitor of Cathepsins, has been identified as a novel p53 target,

and the levels of Cystatin C was found to be associated with poor prognosis of breast cancer

[59]. Previous studies have shown a strong correlation between FASN and the aggressiveness

of breast cancer, and increased levels are associated with poor prognosis [60, 61]. The levels of

complement factor B has been shown to be increased in breast cancer [62] and associated with
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molecular subtypes of breast cancer [63]. IL-1 has been shown to act as a tumor suppressor,

and the IL-1 receptor antagonist (IL-1ra) binds the receptor of IL-1 without activating it. Ele-

vated levels of IL-1ra has been linked to tumor load [64, 65]. Further, PTK6 has been indicated

as a prognostic factor for long-term breast cancer survival [66]. Finally, Angiomotin is a multi-

functional protein involved in endothelial cell migration and tube formation and angiogenesis.

Recent data has shown Angiomotin to be highly expressed in breast cancer tissue and to be

important for promoting breast cancer cell proliferation and invasion [67]. Taken together,

the biological and clinical relevance of the breast cancer associated protein biomarkers deci-

phered in this study was thus strongly supported by all of these studies. From a biological

point of view, the data could be interpreted as that the grade 3 tumors have shaped their

(micro)environment in a way to increase the survival and metastatic ability of tumors cells

compared to grade 1 tumors.

In conclusion, we have in this pilot study shown that the immunoprotome of breast cancer

tissue contained key biological information in terms of protein biomarkers that could be deci-

phered using recombinant antibody microarrays. More specifically, candidate biomarker sig-

natures differentiating grade 1, 2 and 3 tumors as well outlining the molecular heterogeneity

among grade 2 tumors were delineated. The study have thus provided additional key informa-

tion about the underlying molecular puzzle of breast cancer and histological grade thereof.

This could, once validated and further refined, improve the prognostic ability, in the end

resulting in improved tailored patient care (e.g. improved decision in therapy selection).

Supporting information

S1 Table. Raw antibody microarray data. The observed array signal intensity for each anti-

body is listed per sample.
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