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Objectives. Previous researches have demonstrated that abnormal functional connectivity (FC) is associated with the
pathophysiology of bipolar disorder (BD). However, inconsistent results were obtained due to different selections of regions of
interest in previous researches. This study is aimed at examining voxel-wise brain-wide functional connectivity (FC) alterations
in the first-episode, drug-naive patient with BD in an unbiased way. Methods. A total of 35 patients with BD and 37 age-, sex-,
and education-matched healthy controls underwent resting-state functional magnetic resonance imaging (rs-fMRI). Global-
brain FC (GFC) was applied to analyze the image data. Support vector machine (SVM) was adopted to probe whether GFC
abnormalities could be used to identify the patients from the controls. Results. Patients with BD exhibited increased GFC in the
left inferior frontal gyrus (LIFG), pars triangularis and left precuneus (PCu)/superior occipital gyrus (SOG). The left PCu
belongs to the default mode network (DMN). Furthermore, increased GFC in the LIFG, pars triangularis was positively
correlated with the triglycerides (TG) and low-density lipoprotein cholesterol (LDL-C) and negatively correlated with the scores
of the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) coding test and Stroop color. Increased
GFC values in the left PCu/SOG can be applied to discriminate patients from controls with preferable sensitivity (80.00%),
specificity (75.68%), and accuracy (77.78%). Conclusions. This study found increased GFC in the brain regions of DMN; LIFG,
pars triangularis; and LSOG, which was associated with dyslipidemia and cognitive impairment in patients with BD. Moreover,
increased GFC values in the left PCu/SOG may be utilized as a potential biomarker to differentiate patients with BD from controls.

1. Introduction

Bipolar disorder (BD) is a severe and chronic mood disorder
characterized by alternating episodes of depression and
mania, punctuated by periods of clinical remission or euthy-
mia [1]. The prevalence rate of BD is relatively high (0.5%-
1.5%) [2, 3]. The high mortality of patients with BD is caused
by cardiovascular diseases, other natural causes, and suicide
[4, 5]. Patients with BD who are associated with metabolic

syndrome have complex clinical presentations, difficult treat-
ment, and increased risk of suicide. BD is currently diag-
nosed by observing patients’ behavior and self-reporting.
Therefore, objective biomarkers are needed to improve the
early recognition rate and the diagnosis rate of BD [6].
Metabolic syndrome is a common complication in
patients with BD. In particular, dyslipidemia is a risk factor
for the onset of cardiovascular disease which is often mani-
fested by elevated triglycerides (TG), total cholesterol, high-
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density lipoprotein cholesterol (HDL-C), and low-density
lipoprotein cholesterol (LDL-C) in the serum. The preva-
lence of dyslipidemia in patients with BD could be as high
as 37.3% [7]. The lowest rate of dyslipidemia (hypertriglyc-
eridemia or low HDL-C) was observed in emergent mania
[8, 9]. Different from other mood disorders, BD may be
accompanied by state-dependent low cholesterol and TG
levels [7]. Therefore, exploring the association between dys-
lipidemic levels and the severity of BD is warranted.

Cognitive impairment is a recognized characteristic of
mood disorders which is common in BD. Patients with BD
show dysfunction in several cognitive areas including atten-
tion, executive function, learning and memory, and psycho-
motor speed, during acute episodes of mania and
depression [10]. Persistent cognitive deficits could be found
in roughly one-third of patients with BD during euthymia
after the major emotional symptoms were resolved [11].
One research suggested that cognitive impairment was an
important reason for the inability to restore social function
in patients with euthymia [12]. Neuroimaging studies of
mood disorders have proven that cognitive impairment orig-
inates from the destruction of neuroplasticity mechanisms
and the functional and structural changes of cognition-
related neural circuits [13]. However, the specific neurobio-
logical mechanisms associated with cognitive impairment
remain unclear.

Resting-state functional connectivity (FC) between brain
regions is an essential tool for understanding FC alterations
between brain regions in mental disorders. Previous studies
focused on using a region-of-interest (ROI) method to study
the alterations of FC in preselected brain regions with incon-
sistent results [14-20]. The reason is that these studies may
ignore the key areas related to the core pathological alter-
ations in BD due to the preselected ROIs. Different ROI
selections may yield different results due to potentially biased
results based on preset ROIs. Voxel-based global-brain FC
(GFC) analysis can be adopted to probe the pathophysiology
of BD to remedy this defect. GFC is a measurement that
focuses on FC alterations throughout the whole brain rather
than the preselected ROIs [21, 22]. The advantage relative to
other FC approaches is that GFC can reflect the complexity of
the whole brain connectome. This method can avoid
parcellation-dependent effects on the topological organiza-
tion of the brain network [23]. GFC focuses on the relation-
ship of a given voxel to all other voxels of the brain, not just
its relationship to a single region or to separate larger compo-
nents [24]. Given this background, the purpose of the GFC
method adopted in the study was to observe brain mecha-
nism from the perspective of FC alterations across the whole
brain in an unbiased way.

As a monitoring machine learning technology, the sup-
port vector machine (SVM) has been applied to medical
diagnosis and image processing. SVM is a computational
algorithm that learns from experience and examples to assign
labels to targets. Its basic function is to separate binary
labeled data based on a line to maximize the distance between
the labeled data [25]. SVM has good accuracy under limited
samples [26]. The present study was aimed at exploring FC
alterations in the whole brain of patients with BD by using
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the GFC method. Based on the aforementioned studies in
BD, we hypothesized that (1) patients with BD would exhibit
significant GFC alterations in certain brain regions compared
with healthy controls, (2) abnormal GFC in these brain
regions might be associated with blood lipid levels, and (3)
abnormal GFC values could be utilized as potential bio-
markers to differentiate patients with BD from healthy
controls.

2. Materials and Methods

2.1. Subject. A total of 38 right-handed patients with BD aged
16-45 years old were recruited from the Second Xiangya Hos-
pital of Central South University. All patients were diagnosed
and screened by two experienced psychiatrists based on the
Diagnostic and Statistical Manual of Mental Disorders, Fifth
Edition (DSM-5). The enrolled patients were first-episode
patients without any drug treatment or psychotherapy to
their BD and with the course of disease not exceeding 5 years.
Data on clinical characteristics were collected through direct
interviews with patients and their relatives as well as access to
the patients’ medical records. The exclusion criteria included
any serious organic disease and other mental disorders in
accordance with DSM-5, any history of alcohol or drug
abuse, and lipid-lowering treatment, pregnancy, and contra-
indications for MRI scan. We used the Hamilton Depression
Rating Scale-17 (HAMD-17), Young Mania Rating Scale
(YMRS), and Hamilton Anxiety Scale-14 (HAMA-14) to
assess the clinical symptoms of BD. Repeatable Battery for
the Assessment of Neuropsychological Status (RBANS) was
adopted to evaluate the cognitive functions of all patients.

Forty right-handed healthy controls were recruited
through advertising in the local community at the same time.
All controls were matched with patients in age, sex ratio, and
education. Healthy controls were screened using DSM-5,
nonpatient version. None of the controls or their first-
degree relatives had any history of serious mental disease,
neurological disease, or substance abuse.

The study was approved by the ethics committee of the
Second Xiangya Hospital of Central South University and
was performed in accordance with the Helsinki Declaration.
All participants provided a written informed consent after a
complete explanation. A parental consent was obtained for
participants under 18 years old.

2.2. Sample Collection. Fasting blood samples from all
patients were collected between 7 am and 9 am for biochem-
ical analysis to avoid circadian disruptions of the data. Serum
test was adopted to analyze the following parameters: liver
and kidney function, blood glucose, TG, HDL-C, and LDL-C.

2.3. Image Acquisition and Preprocessing. Resting-state
images were obtained using a Siemens 3.0T scanner, and
the imaging data were preprocessed automatically using the
DPABI software in MATLAB [27]. Participants were
instructed to lie motionless during the scan. Detailed image
acquisition and preprocessing procedures are provided in
the supplementary file (available here).
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24. GFC Analysis. GFC is a data-driven graph theory
approach that measures the number of FCs between a given
voxel and other voxels within a gray matter mask [28]. The
gray matter mask is produced by the gray matter probability
map (Probability > 0.2) in SPM8 [29]. Such a threshold was
chosen to eliminate the voxel with weak correlations that
possibly originated from signal noise [29]. GFC of a given
voxel was defined as the mean Pearson coefficients (r)
between the time series of this voxel with all other voxels
within the gray matter mask. We computed the mean corre-
lation coefficients throughout the gray matter mask in the
whole brain in the MATLAB [21, 30-33]. All correlation
coefficients were considered for the average, including posi-
tive and negative values. The Fisher r-to-z transformation
was utilized to convert the coefficients into z values to
improve data normality [34-36]. The GFC maps were gener-
ated by composing GFC of all voxels within the gray matter
mask. This method has been applied in several neuropsychi-
atric disorders by our group, including schizophrenia, soma-
tization disorder, cervical dystonia, dry eye disease, primary
blepharospasm, obsessive-compulsive disorder, and major
depressive disorder [21, 32, 37-41].

2.5. Classification Analysis. SVM is a good learning classifier
widely used in classification, especially for small sample cases
[42, 43]. The basic function of SVM is to separate binary
labeled data based on a line to maximize the distance between
labeled data [44]. It learns from experience and examples on
how to assign labels to targets and uses kernel functions to
separate labeled data. One advantage of using the kernel
function in SVM is that it could be applied to nonvector
inputs, which is important in the medical field [26, 44, 45].
The kernel type used in this study was the default Gaussian
kernel in MATLAB. The LIBSVM software package in
MATLAB [46] was employed in this study. Abnormal clus-
ters were obtained from the group comparisons between
patients and controls. We then extracted mean z values from
brain clusters with abnormal GFC. The sample set was
divided into a test set and a training set to observe the classi-
fication performance of label data [47]. A random SVM was
established to classify and select the brain clusters based on
the fMRI data obtained from the brains of the participants.
A “leave-one-out” cross-validation method was utilized to
optimize the parameters, and the most common traits were
selected to obtain better sensitivity and specificity.

2.6. Statistical Analysis. Continuous variables, including age
and years of education, were analyzed with two-sample ¢
-tests. A chi-squared test was used for sex distribution. The
significance level was set at p < 0.05.

Two-sample t-tests were adopted to compare GFC differ-
ences between patients and controls. We calculated the
frame-wise displacement (FD) values of each participant
based on a previous research [48]. The education level, sex,
age, and mean FD were treated as uninterested covariates.
The family-wise error (FWE) correction method was
adopted to set the significance level at p < 0.05.

Pearson correlation analyses were conducted between
GFC values of BD and clinical variables including blood lipid

level and scale scores of HAMD-17, HAMA-14, YMRS, and
RBANS after extracting the mean z values of GFC from the
brain clusters with abnormal GFC and evaluating the nor-
malization of the conversion values. The significance level
was Bonferroni corrected at p < 0.05.

3. Results

3.1. Characteristics of the Participants. We excluded three
patients and three controls before further investigation due
to excessive head movement during fMRI scanning. The final
sample included 35 patients with BD and 37 healthy controls.
No significant differences were observed in sex ratio, age, and
years of education between patients with BD and controls.
The clinical variable characteristics of the participants are
shown in Table 1. The detailed results with each value for
male and female are shown in supplementary Table S1.

3.2. Group Differences in GFC. Compared with healthy con-
trols, increased GFC in the left inferior frontal gyrus (LIFG),
pars triangularis (t =4.1653, p <0.001) and left precuneus
(PCu)/superior occipital gyrus (SOG) (t =5.3697, p <0.001
) was observed in patients with BD (Figure 1 and Table 2).
No decreased GFC was found in any brain regions in the
patients.

3.3. Correlations between GFC and Clinical Variables. As
shown in Figure 2, GFC values in the LIFG, pars triangularis
were positively correlated with the TG (r = 0.453, p = 0.009)
and LDL-C (r=0.422, p=0.016) and negatively correlated
with the scores of the RBANS coding test (r=-0.402, p =
0.021) and Stroop color (r=-0.473, p=0.004). No signifi-
cant correlation was found between the GFC values and the
illness duration, years of education, age, and scores of
HAMD-17, HAMA-14, or YAMS.

3.4. SVM Results. Increased GFC values in the left PCu/SOG
could identify the patients with BD from the controls with
preferable sensitivity (80.00%), specificity (75.68%), and
accuracy (77.78%) (Table 3 and Figure 3). As shown in
Table 3, the accuracy of LIFG was unsatisfactory.

4. Discussion

Increased GFC in the LIFG, pars triangularis and left PCu/-
SOG was observed in patients with BD relative to controls,
indicating disrupted functional interactions in the DMN,
LSOG, and LIFG, pars triangularis in the patients. The result
of SVM analysis suggested that increased GFC in the left
PCu/SOG could differentiate patients with BD from controls
with preferable sensitivity and accuracy. Moreover, GFC
values in the LIFG, pars triangularis were positively corre-
lated with the TG, LDL-C and negatively correlated with
the scores of the RBANS coding test and Stroop color.

The IFG is located below the subfrontal sulcus. The IFG,
pars triangularis is in the middle of the IFG. Increased FC in
the brain region was considered as a compensatory effort for
the brain activation in the resting state [49, 50]. Compared
with healthy controls, patients with BD exhibited increased
GFC in the LIFG, pars triangularis, which might represent
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TaBLE 1: Characteristics of the participants.

Patients (n = 35) Controls (n =37) p value
Sex (male/female) 11/24 17/20 0.144%
Age (years) 20.66 +2.51 21.35+3.16 0.593°
Years of education (years) 13.91 £2.02 14.95+2.11 0.607°
HAMD-17 22.14 £ 6.95
HAMA-14 25.54+8.20
YRMS 9.26 +6.84
Blood glucose 4.09£1.04
TG 1.06 £ 0.92
CHOL 3.88+1.11
HDL-C 1.27£0.40
LDL-C 2.41+£0.81
Vocabulary learning 28.36 +£4.72
Story retelling 13.64 +4.48
Immediate memory total score 40.76 +10.69
Graphic copy 17.45 +2.00
Line positioning 15.85+3.18
Visual span total score 32.32+7.21
Picture named 8.79+0.93
Verbal fluency test 19.94 + 4.42
Verbal function total score 27.88£6.78
Digit span 14.76 £ 1.79
Coding test 56.97 +10.52
Attention total score 69.62 + 16.56
Vocabulary memory 7.39+£1.60
Vocabulary recognition 19.82£0.58
Story recall 7.91+2.51
Figure memory 14.55+3.30
Delayed memory score 48.21 £10.27
Stroop word 96.30 +20.84
Stroop color 68.42 +18.24
Stroop color-word 41.42+8.81

“A p value was obtained by a chi-square test. "The p values were obtained by two-sample ¢-tests. HAMD-17: Hamilton Depression Rating Scale-17; HAMA-14:
Hamilton Anxiety Scale-14; YRMS: Young Mania Rating Scale.

increased cortical thickness in this area and/or an inflamma-
tory response at the early stage of the disease because patients
with BD were first-episode patients without any drug treat-
ment or psychotherapy to their BD and with the course of
disease not exceeding 5 years in the present study. At this
stage, astrocytes, which make up the majority of cortical tis-
sue, can be activated by proinflammatory cytokines [51]
and lead to cellular hyperplasia, hypertrophy, and increased
cortical thickness [52]. Activated astrocytes will stimulate
neuronal survival by producing neurotrophic factors that will
promote the recovery of central nervous system function. In
addition, increased GFC of the LIFG, pars triangularis in
patients with BD was negatively correlated with the scores

of the RBANS coding test, suggesting a strong association
with cognitive function of this region. Combined with previ-
ous studies, the present study indicated that compensation
might occur in the triangular part.

The prefrontal lobe plays a key role in emotional and cog-
nitive control [53]. Previous studies found abnormal neuro-
biochemistry and neuropathology in the prefrontal lobe in
patients with BD. Moreover, the dysfunction in the prefron-
tal lobe was closely related to cognitive dysfunction in
patients with affective disorder [54, 55]. The BA45 and 44
in the LIFG are Broca’ s regions involved in language produc-
tion [56] which provide a pathway for the BA47/12 in the lat-
eral orbitofrontal cortex to connect to the premotor region.
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Left PCu/SOG

FI1GURE 1: Increased GFC in the LIFG, pars triangularis (# = 4.1653) and left PCu/SOG (t = 5.3697) in patients with BD relative to healthy
controls. GFC: global-brain functional connectivity; LIFG: left inferior frontal gyrus; PCu: precuneus; SOG: superior occipital gyrus; BD:

bipolar disorder.

TaBLE 2: Significant differences in GFC values between groups.

Cluster location P;ak (yMNI) Number of voxels T value
Patients > controls

LIFG, pars triangularis -48 33 18 35 4.1653
Left PCu/SOG -9 -81 42 53 5.3697

BD: bipolar disorder; GFC: global-brain functional connectivity; LIFG: left
inferior frontal gyrus; PCu: precuneus; SOG: superior occipital gyrus; MNI:
Montreal Neurological Institute.

The LIFG, pars triangularis is the region connecting the
language processing in the left hemisphere with the signal
output from the premotor cortex region [57]. Thus, we
speculated that the dysfunction in the LIFG, pars triangu-
laris might explain the symptom of alexithymia during the
manic state. Alexithymia is defined as an emotional expe-
rience with which an individual has difficulty in recogniz-
ing and expressing oneself and is widely regarded as an
impairment in the process of emotional recognition, pro-
cessing, and regulation [58]. Studies in BD have generally
shown that patients with BD present a high prevalence
of alexithymia compared to healthy controls [59, 60].
The manic state in patients with BD tends to be brief
and exhibits significant alexithymia during these periods
[61]. We are sorry that we did not assess alexithymia in
the patients in this study because patients with BD
included in the present study were at the depressive
episode.

Patients with BD accompanied with alexithymia showed
poor emotional regulation ability [62]. A previous study on
coding task in patients with ischemic lesions speculated that
the LIFG might be involved in coding behavior [63]. Consis-
tent with that study, our result exhibited that the GFC values
in the LIFG, pars triangularis were negatively correlated with
the scores of the RBANS coding test. This result suggested
that the LIFG might be one of the main areas involved in cod-
ing. The Stroop Color-Word Task was used to investigate
response inhibition. In this study, the GFC values in the
LIFG, pars triangularis were negatively correlated with the
Stoop color score. Increased GFC in the LIFG of patients with
BD and the controlling effect of response inhibition were
emphasized in the color-word interference process which
may reflect the defects in the executive control of patients
with BD, especially the defects in response inhibition treat-
ment [64].

The PCu is associated with several high-level cognitive
functions and may be involved in information processing
related to metacognitive processes, such as episodic mem-
ory, self-reflection, and other introspection [65]. A previous
research found that the metacognitive process dysfunction
of patients with BD in the social and emotional domains
was closely associated with self-reflection and other reflec-
tion [66]. Several studies have shown that autobiographical
memory may play a key role in the processing of self-
reflection and other reflection [67]. The PCu is an impor-
tant region that constitutes autobiographical memory [68,
69]. In other words, the PCu contributes specifically to
self-reflection [67] and other reflection, which are related
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FIGURE 2: (a, b) Positive correlations between the GFC values in the LIFG, pars triangularis and the TG or LDL-C in patients with BD. (c, d)
Negative correlations between the GFC values in the LIFG, pars triangularis and Stroop color or coding test of the RBANS in patients with BD.
BD: bipolar disorder; GFC: global-brain functional connectivity; LIFG: left inferior frontal gyrus; RBANS: repeatable battery
neuropsychological status; TG: triglycerides; LDL-C: low-density lipoprotein cholesterol.

TasLE 3: Differentiate the patients from the controls by using the GFC values of a single region with the SVM method.

Brian region Sensitivity

Specificity Accuracy

LIFG, pars triangularis
Left PCu/SOG

60.00% (21/35)
80.00% (28/35)

78.38% (29/37)
75.68% (28/37)

69.44% (50/72)
77.78% (56/72)

GFC: global-brain functional connectivity; IFG: inferior frontal gyrus; SVM: support vector machines; LIFG: left inferior frontal gyrus; PCu: precuneus; SOG:

superior occipital gyrus.

to autobiographical memory processing. Abnormal function
in PCu of patients with BD might lead to impaired autobio-
graphical memory and make them provide less details when
recalling autobiographical memory compared with the con-
trols [66]. The most sensitive brain network to resting state
is the DMN. DMN is active when the brain is at rest and
inactive when the brain is involved in task execution. The
PCu is a crucial part of the DMN. As the functional core
node of DMN [70], the PCu is the only hub to distinguish
between the task and resting state of the brain [71]. As the
only network node in the DMN that directly interacts with
other nodes, PCu dysfunction may impair the connection to
the entire DMN [72] and affect the ability of the brain to
distinguish between task execution and resting state. There-
fore, the present results suggested disrupted functional
interactions in the DMN in the patients compared with
the controls.

The LSOG is involved in the processing of advanced
visual association and is an important part of the dorsolateral
cortex [73]. Previous studies have exhibited that the SOG is
activated in tasks related to emotional recognition [74-76]
and may be associated with emotional processing [77].
Another study has shown that individuals with higher anxi-
ety are more sensitive to sensory information and tend to
pay attention to visual fear information [78]. Individuals with
abnormal FC in the SOG may feel anxiety more easily than
those with normal FC in the SOG [78]. The present study
observed increased GFC in the LSOG of patients with BD.
Thus, the difficulty of patients with BD to recognize emotions
may be related to the processing of visual information.

The risk of comorbidity with metabolic syndrome char-
acterized by dyslipidemia in BD is high (about 37%) [7].
The prevalence of hypertriglyceridemia in patients with BD
is relatively high [79]. Notably, increased GFC in the LIFG,
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FIGURE 3: 3D view of classified accuracy with the best parameters.
Visualization of classifications in SVM by using increased GFC
values in the abnormal brain region. The result was obtained in
LIBSVM using a “leave-one-out” approach with default Gaussian
kernel. GFC: global-brain functional connectivity; SVM: support
vector machines.

pars triangularis is positively correlated not only with TG but
also with LDL-C. Previous studies have confirmed that
reduced TG might be associated with suicidal and self-
injurious behavior of depression or BD [80-82]. Patients
with BD have persistent cognitive impairment in mood
episodes which has not been recognized until now [83].
In addition, studies on the relationship between lipid level
and cognitive function suggested that enhanced TG signif-
icantly correlates with executive function deterioration
based on second-generation antipsychotic treatment [84].
This result indicates that cognitive deficits in patients with
BD may be related to enhanced TG level. Dyslipidemia is
an important risk factor for cardiovascular disease in the
clinic. One study based on cardiovascular diseases has
shown that the shortened life expectancy in patients with
BD is closely related to the risk for comorbidities [85]
and that enhanced LDL-C could inhibit the working mem-
ory task performance of the elderly [86]. Dyslipidemia
might alter the GFC in the LIFG, pars triangularis of
patients with BD and cause cognitive function and mood
disorders. The high cooccurrence of mood disorders and
metabolic syndrome suggests that a pathophysiological
overlap was well recognized [87].

SVM has been widely used in biomedical diagnosis as an
auxiliary method for diagnosis and prediction. The SVM
analysis showed that increased GFC values in the left PCu/-
SOG could be used to distinguish patients with BD from
controls with satisfactory accuracy, specificity, and sensitiv-
ity of more than 0.7, which is conducive to the establish-
ment of diagnostic indicators. Therefore, we inferred that
increased GFC values in the brain area could be used as a
potential imaging biomarker to differentiate patients from
controls.

The study has limited applicability. First, BD was not
classified into different types in the present study. Differ-
ent types of patients’ status might lead to biased results.
The sample sizes should be expanded to explore whether
or not blood lipids could be utilized as a biomarker for

abnormal function in different states of BD. Second, the
lipid levels may differ between genders, but no difference
was observed in our study. Finally, the confounding effects
of smoking, exercise level, or dietary habits on the result
were not ruled out.

5. Conclusion

The present study is the first to detect voxel-based GFC in
BD, which indicates that increased GFC exists in brain
regions of the DMN; the LIFG, pars triangularis; and LSOG
in patients with BD. Increased GFC values in the LIFG, pars
triangularis and left PCu/SOG might be one of the brain
functional bases that caused emotional and cognitive dys-
function. The present study provided preliminary evidence
that dyslipidemia might be associated with dysfunction in
the LIFG, pars triangularis.
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