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Abstract
Conditional autoregressive models are typically used to capture the spatial autocorrelation present in areal unit disease

count data when estimating the spatial pattern in disease risk. This correlation is represented by a binary neighbourhood

matrix based on a border sharing specification, which enforces spatial correlation between geographically neighbouring

areas. However, enforcing such correlation will mask any discontinuities in the disease risk surface, thus impeding the

detection of clusters of areas that exhibit higher or lower risks compared to their neighbours. Here we propose

novel methodology to account for these clusters and discontinuities in disease risk via a two-stage modelling approach,

which either forces the clusters/discontinuities to be the same for all time periods or allows them to evolve dynamically

over time. Stage one constructs a set of candidate neighbourhood matrices to represent a range of possible cluster/dis-

continuity structures in the data, and stage two estimates an appropriate structure(s) by treating the neighbourhood

matrix as an additional parameter to estimate within a Bayesian spatio-temporal disease mapping model. The effectiveness

of our novel methodology is evidenced by simulation, before being applied to a new study of respiratory disease risk in

Greater Glasgow, Scotland from 2011 to 2017.
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1 Introduction
Disease risk varies in space and time, and is affected by risk factors such as environmental exposures (e.g. air pollution) and
population behaviours (e.g. smoking). Health agencies routinely produce disease maps to identify high-risk areas and high-
light health inequalities,1 by displaying raw disease rates for n non-overlapping areal units that comprise the study region.
However, raw disease rates can exhibit extreme values for rare diseases or for areas with small populations, and also ignore
the potential spatial autocorrelation between nearby areas, which collectively leads to poor estimation of disease risk.
Additionally, visually examining maps of raw disease rates does not allow the systematic identification of clusters of
areas that exhibit higher risks compared to their geographical neighbours, which health agencies will want to identify
for risk reduction strategies.

Therefore, Bayesian hierarchical models have been widely developed for modelling areal unit disease count data, which
allow for their spatially correlated nature by incorporating a set of random effects that are assigned a conditional autore-
gressive (CAR) prior distribution (see Besag et al.2 and Leroux et al.3). This class of models has been extended to the
spatio-temporal domain to allow the estimation of spatio-temporal trends, including by Bernardinelli et al.,4

Knorr-Held,5 Ugarte et al.,6 Rushworth et al.7 and Napier et al.8 In all of these models spatial autocorrelation is
induced by an n × n neighbourhood matrix W = (wij), where typically wij = 1 if areal units (i, j) are spatially close
(e.g. share a common border) and wij = 0 otherwise. Using this specification the estimation of disease risk borrows strength
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between geographically adjacent areal units, thus assuming the risk surface is globally spatially smooth. However in prac-
tice, some pairs of neighbouring areas are likely to exhibit very different disease risks, which can be driven by social, eco-
nomic or environmental characteristics of adjacent neighbourhoods.9 Thus using the border sharing specification defined
above is likely to be inappropriate for capturing the complex spatial correlation structures observed in areal unit disease
count data. Furthermore, few existing studies assess the appropriateness of W for the data they model, nor do they
assess the sensitivity of their results to changing its specification. This is in sharp contrast to the related field of geostatistics,
where variogram analysis is routinely used to identify an appropriate spatial autocorrelation structure for the data.

A number of existing approaches have allowed for spatial discontinuities in the disease risk surface, by identifying clus-
ters of areas that exhibit elevated or reduced risks compared to their neighbours. One of the earliest approaches is scan
statistics,10 which can be implemented with the SaTScan software. However, scan statistics aim to identify a relatively
small number of clusters of areas exhibiting high-risks, rather than partitioning the risk surface into different risk levels
or estimating disease risk across the entire study region. In contrast, Knorr-Held and Raßer11 identify clusters using a pie-
cewise constant risk model that is implemented using a reversible jump Markov chain Monte Carlo (MCMC) algorithm,
but it involves a computationally expensive and complex algorithm for which publicly available code is not available.
Similarly, Wakefield and Kim12 and Anderson et al.13 capture risk discontinuities by utilising a piecewise constant
cluster model. The latter is a two-stage approach, which first obtains a set of candidate cluster configurations, and then
fits separate Bayesian hierarchical models to each configuration and chooses the best one using a model selection criterion.
Adin et al.14 extends Anderson et al.13 by replacing the cluster fixed effects with random effects, and considering a spatio-
temporal rather than a spatial setting. However, both papers treat the identification of the best cluster configuration as a
model comparison problem, and thus have the common computational limitation of fitting multiple Bayesian models sep-
arately, as well as ignoring the uncertainty about the number of clusters in the data.

Anderson et al.15 address these deficiencies in a purely spatial setting, by estimating disease risk and the cluster structure
simultaneously in a single model, thus quantifying the uncertainty in the estimated cluster structure. They do this by a two-
stage approach, which first uses agglomerative hierarchical clustering to create a set of candidate cluster structures, each of
which corresponds to a candidate neighbourhood matrix. Then in stage two they fit a single model that treats W as a par-
ameter to be estimated, and assign it a discrete uniform prior whose values are the set of candidate neighbourhood matrices
previously constructed. This paper develops a novel two-stage approach for simultaneously identifying clusters/discontinu-
ities and estimating the spatio-temporal trend in disease risk, which extends the approach of Anderson et al.15 in two main
ways. First, we consider a spatio-temporal rather than a purely spatial setting, and propose approaches that either force the
spatial clusters/discontinuities to be the same for all time periods or allow them to evolve dynamically over time. Second,
we construct a much bigger set of candidate cluster/discontinuity structures using a range of clustering methods, which
gives much greater flexibility in cluster identification compared to Anderson et al.15 who just used agglomerative hierarch-
ical clustering.

This methodology is motivated by a new study of respiratory disease risk in the Greater Glasgow and Clyde Health
Board during the time period from 2011 to 2017, and our main aim is to identify the, possibly temporally evolving,
cluster/discontinuity structures in disease risk. The remainder of this paper is organised as follows. Section 2 presents
the motivating data set and our questions of interest, as well as giving a brief literature review of spatio-temporal
disease risk models. Section 3 presents our new methodology, while the efficacy of this approach is evidenced using simu-
lation in Section 4. Then Section 5 applies the methodology to the motivating application, while Section 6 finishes the
paper with a concluding discussion.

2 Background

2.1 Motivating study
The methodology proposed in Section 3 is motivated by a study of respiratory disease (defined using the International
Classification of Disease tenth revision by codes J00-J99) in the Greater Glasgow and Clyde Health Board region in
Scotland between 2011 and 2017. The study region, as shown in Figure 1, contains the city of Glasgow and the surrounding
rural areas, and is split in two by the River Clyde running north west through the region. The study region has a population
of around 1,000,000 people and is split up into n = 257 intermediate zones (IZs), each with an average population of
approximately 4000 residents. The disease data, Y = {Y it}, available from Public Health Scotland, are the yearly
counts of the numbers of hospital admissions with a primary diagnosis of respiratory disease for i = 1, . . . , n( = 257)
IZs for t = 1, . . . , T ( = 7) years. Additionally, the expected number of respiratory hospitalisations is calculated for
each year and IZ using indirect standardisation to adjust for different population sizes and age and sex structures across
the IZs, and are denoted here by E = {Eit}. These expected counts are based on Scotland-wide age-sex specific respiratory
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hospitalisation rates, because it allows us to examine how the risk of disease in Glasgow compares to the national average,
which is the benchmark often used by Public Health Scotland when examining the spatial patterns in disease risk.

The standardised incidence ratio (SIR) is an exploratory estimate of disease risk calculated by SIRit = Yit
Eit
, where a value

greater than 1 corresponds to an increased level of risk compared to the Scottish average while a value less than 1 indicates
a decreased level of risk. For instance, an SIR of 1.2 corresponds to a risk 20% higher than the Scottish average during the
study period. The spatial patterns in the SIR for 2011 (the first year of data) and 2017 (the last year of data) are displayed in
the top panels of Figure 1. They show that higher respiratory disease risks are mainly in the East End of Glasgow (the east
of the map) and along the southern bank of the River Clyde, which includes the socio-economically deprived areas of
Easterhouse and Govan respectively, both of which are well known to suffer from multi-generational poverty.16 In add-
ition, there are numerous pairs of neighbouring areas where a discontinuity in disease risk appears to exist, suggesting
the presence of clusters of areas that exhibit elevated risks compared with their neighbours. For example, in 2017
Drumchapel and Drumry to the north west of the city exhibits a vastly higher SIR value (SIR = 1.85) than its neighbour
Bearsden (SIR = 0.53). Therefore, the common approach in the literature of assuming that all pairs of neighbouring areal
units exhibit similar disease risks is clearly not appropriate, which motivates the spatio-temporal clustering model proposed
below.

The spatial patterns in the SIR are fairly similar for each year, with an average Pearson’s correlation coefficient of 0.844
between each pair of years. This suggests that while any clusters identified in disease risk may evolve slightly over time,
one would not expect a large change in the clusters from year to year. This gradual change is likely to be because respiratory
related hospitalisations are a marker of chronic rather than epidemic disease, and hence any change would likely be gradual
and due to factors such as the gentrification of an area. The temporal trend in the SIR is shown in the bottom panel of
Figure 1, which shows that overall there has been a slight increase in the SIR over the 7-year period, with a mean
value of 1.10 in 2011 compared to 1.28 in 2017. There also appears to be increased spatial variation in risk in the later
years, with standard deviations over space of 0.39 in 2011 and 0.46 in 2017. Finally, we do not collect any covariate

Figure 1. Maps of the standardised incidence ratio (SIR) for respiratory disease in the intermediate zones in the Greater Glasgow and

Clyde Health Board in 2011 (the top-left panel) and 2017 (the top-right panel). The bottom panel shows boxplots of the SIR over time.
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data for this study, because our aim is to estimate the spatio-temporal trend in disease risk and its spatial cluster structure,
rather than the drivers of elevated disease risks. Furthermore, as the clusters identified by our methodology are in the
random effects surface, then including covariates in the model would mean that the clustering/discontinuities relate to
the residual risk surface after covariate adjustment. In contrast, by not including covariates in the model the random
effects and risk surfaces have the same spatial structure (see Section 3), and thus any clusters/discontinuities identified
also relate to disease risk.

2.2 Review of spatio-temporal modelling of areal unit count data
2.2.1 Notation and data likelihood
Consider a study region partitioned into n non-overlapping areal units indexed by i ∈ {1, . . . , n}, where data are collected
for t ∈ {1, . . . , T} consecutive time periods. As previously described Y = {Yit} and E = {Eit}, respectively, denote the
set of observed and expected disease counts, while a vector of covariates (if needed) is given by xit for area i and time
period t. The model we outline in this paper is the most general form that includes covariates, but as previously described
the application in this paper only includes an intercept term in the model. As the response variable is a count the data like-
lihood model commonly used is given by Yit|Eit, Rit ∼ Poisson(EitRit), where Rit represents disease risk in areal unit i
during time period t and is on the same scale as the SIR.

2.2.2 Spatio-temporal risk model
The spatio-temporal structure in risk {Rit} is typically modelled by both covariates and random effects, and a large number
of different random effects structures have been proposed. An appropriate choice of structure depends on both the aims of
the analysis and the trends observed in the data, and the first paper in this area proposed using spatially correlated linear
time trends4 for each area. Probably the most widely used structure to date was proposed by Knorr-Held,5 which decom-
poses disease risk into separate spatial and temporal main effects and an additional spatio-temporal interaction term. More
recently, two popular spatio-temporal structures were proposed by Rushworth et al.7 and Napier et al.,8 respectively.
Rushworth et al.7 modelled the risk surface as a spatially autocorrelated multivariate first-order autoregressive process,
while Napier et al.8 built on the model of Waller et al.17 by using a region-wide temporal trend and separate spatial pro-
cesses for each year. In this paper, we use the latter of these, because it is the only one of the aforementioned approaches to
have a separate spatial process with a potentially different neighbourhood matrixW for each time period. Having a separate
W for each time period is crucial for the methodology proposed in the next section, because it is the mechanism by which
we estimate the temporally evolving clusters/discontinuities in disease risk. The risk model proposed by Napier et al.8 that
our approach is based on is given by the Poisson log-linear specification

Yit|Eit, Rit ∼ Poisson(EitRit), i = 1, . . . , n; t = 1, . . . , T ,

ln (Rit) = x⊤itβ+ ϕit + θt,
(1)

where β is a vector of regression parameters. The residual spatio-temporal structure (after covariate adjustment) is modelled
by an overall temporal trend θ = (θ1, . . . , θT ) and a separate spatial surface at each time period t, ϕt = (ϕ1t, . . . , ϕnt).
Each spatial surface ϕt is modelled by the Leroux CAR prior,3 which induces spatial autocorrelation into the random
effects via a neighbourhood matrixW that determines which pairs of areal units are close together. Here we adopt the com-
monly used sharing a common border specification, where wij = 1 if areal units (i, j) share a common geographical border,
and wij = 0 otherwise. Based on this matrix the Leroux CAR prior3 for ϕt is specified by n univariate full conditional dis-
tributions, which for area i is given by

ϕit|ϕ−i,t, W ∼ N
ρs
∑n

j=1 wijϕ jt

ρs
∑n

j=1 wij + 1− ρs
,

τ2t
ρs
∑n

j=1 wij + 1− ρs

( )
, (2)

where ϕ−i,t = (ϕ1,t, . . . , ϕi−1,t, ϕi+1,t, . . . , ϕn,t). The strength of the spatial autocorrelation is controlled by a temporally
invariant parameter ρs, where a value of 1 indicates strong dependence in space (corresponding to the intrinsic CAR
model2) and a value of 0 indicates independence (as ϕit ∼ N(0, τ2t )). Additionally, τ

2
t is a temporally-varying variance

parameter, thus allowing the amount of spatial variation in the data to change over time. The joint multivariate
Gaussian distribution for ϕt corresponding to the above is ϕt ∼ N(0, τ2t Q(ρs, W )−1), where Q(ρs, W ) =
ρs(diag(W1)−W )+ (1− ρs)I , 1 is an n × 1 vector of ones and I is an n × n identity matrix. The partial correlation
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between (ϕit , ϕ jt) conditioning on the remaining spatial random effects (denoted ϕ−ijt) specified by this model is

Corr ϕit, ϕ jt|ϕ−ijt

( ) = ρswij��������������������������������������������������
ρs
∑n

v=1 wiv + 1− ρs
( )

ρs
∑n

v=1 wjv + 1− ρs
( )√ . (3)

Equation (3) shows that (ϕit, ϕ jt) are modelled as partially correlated if wij = 1, otherwise, the partial correlation between
(ϕit , ϕ jt) is 0 and they are modelled as conditionally independent. Hence the neighbourhood matrix W determines the
spatial autocorrelation structure imposed by the model. Thus using the border sharing rule the spatial random effect ϕit

is forced to be correlated with its geographical neighbours if ρs is estimated as close to one, meaning that any discontinu-
ities in the spatial surface are smoothed over in the estimation. This not only leads to poorer risk estimation in the presence
of discontinuities as we show in Section 4, but also does not allow a mechanism for identifying these discontinuities that
correspond to cluster boundaries. Finally, Napier et al.8 modelled the temporal trend θ = (θ1, . . . , θT ) by a one dimen-
sional Leroux CAR prior, and further details can be found in their paper.

2.2.3 Inference
Inference in these spatio-temporal areal unit models is typically based in a Bayesian setting, using either MCMC simulation
or integrated nested Laplace approximations (INLA). We adopt the former approach here, because we treatW as a random
parameter to be estimated which is not straightforward to do using INLA.

3 Methodology
We propose a novel two-stage modelling approach that jointly estimates the spatio-temporal pattern in disease risk and
identifies clusters of areas with elevated or reduced risks compared to their geographical neighbours. In stage one a
range of clustering methods are used to identify a large collection of plausible candidate cluster structures for the data,
each of which is then used to create a candidate neighbourhood matrix. In stage two, a Bayesian hierarchical model is pro-
posed for the data, which jointly estimates the spatio-temporal pattern in disease risk and the most appropriate neighbour-
hood matrix corresponding to a given cluster structure. We propose two different variants of the model, with variant A
having spatial clusters that remain fixed during the entire study period, while in variant B the clusters vary dynamically
over time.

3.1 Stage 1 – Generating neighbourhood matrices representing clusters/discontinuities
A collection of candidate cluster structures for disease risk are estimated based on c = 1, . . . , M different clustering
methods, and the M = 8 methods considered here are summarised in Table 1. The methods include k-means18 clustering,
k-medoids19 clustering, hierarchical agglomerative20 clustering with centroid, complete, average and Ward linkage, div-
isive21 clustering and expectation–maximisation22 clustering. Note, agglomerative clustering with single linkage is not
considered due to its limitation of frequently suffering from the chaining effect.23 These clustering methods are applied
to the data without regard to the spatial positions of the areal units, because the spatial correlation in the data is modelled
by random effects as described above. Thus the clusters identified represent the number of different risk levels rather than
the number of spatially distinct clusters, meaning that a single ‘cluster’ will likely contain groups of areas that are not spa-
tially connected by W .

Table 1. A key for each value of c and its associated clustering method.

c clustering method

c = 1 k-means clustering (kmeans)

c = 2 k-medoids clustering (kmedoids)

c = 3 Hierarchical agglomerative clustering with centroid linkage (agg_centroid)

c = 4 Hierarchical agglomerative clustering with complete linkage (agg_complete)

c = 5 Hierarchical agglomerative clustering with average linkage (agg_average)

c = 6 Hierarchical agglomerative clustering with ward linkage (agg_ward)

c = 7 Hierarchical divisive clustering (div)

c = 8 Expectation–maximisation clustering (EM)
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Each clustering method c is used to compute k = 1, . . . , K distinct cluster structures, where structure k contains k clus-
ters. Note, these K cluster structures are not necessarily nested, as for example a k-means solution with four clusters is not
obtained by splitting one of the clusters from the k-means with three solutions into two. The value K is chosen to be an
upper limit for the number of clusters one would expect to find in the data, which must be specified by the user. Here we set
K = 10 as a conservative overly large choice, because as described above this represents the number of distinct risk levels
and not the number of spatially contiguous clusters. These candidate cluster structures are incorporated into the disease risk
model by specifying a set of candidate neighbourhood matrices, which means they relate to the random effects surface
{ϕit}. Therefore we estimate {ϕit} from the data and the general model (1) by

ϕ̃it = ln
E(Yit)

Eit

( )
− x⊤itβ− θt ≈ ln

Yit
Eit

( )
− x⊤it β̂. (4)

This approximation replaces the unknown E(Yit) with the observed data Yit , and the temporal random effects are removed as
they do not vary over space and hence do not affect the spatial cluster structure. Finally, the regression parameters are esti-

mated for this initial stage assuming independence via maximum likelihood estimation, and are denoted above by β̂. These
estimated spatial random effects {ϕ̃it} are used to construct candidate cluster structures and corresponding neighbourhood
matrices as described below for variants A (static) and B (dynamic) of our model.

3.1.1 Variant A: Constant cluster structure over time
Temporally constant clusters are obtained by applying each clustering method to ϕ̃ = (ϕ̃1, . . . , ϕ̃n), where
ϕ̃i = (ϕ̃i1, . . . , ϕ̃iT ). The cluster structure obtained from method c with k clusters is used to create a candidate neighbour-
hood matrix W (c,k) as follows:

w(c,k)
ij = 1, if areal units (i, j) share a common border and are in the same cluster,

0, otherwise.

{
(5)

Thus there is a one-to-one relationship between a candidate cluster structure and its corresponding neighbourhood matrix,
and as trivially the border sharing matrix equals all of {W (1,1), . . . , W (M ,1)} this leads to (K − 1) ×M + 1 candidate cluster
structures in total. Altering the border sharing neighbourhood matrix in this way to allow for clusters means that if areas
(i, j) share a border and are in the same cluster (i.e. have similar data values) then their random effects will be modelled as
partially correlated (see equation (3)). In contrast, if they share a border but are in different clusters (i.e. have very different
data values) then their random effects will be modelled as conditionally independent, thus not enforcing spatial smoothing
between them.

3.1.2 Variant B: Temporally varying cluster structures
In variant A, the spatial clusters do not change over time, which allows one to estimate an overall average cluster structure
in the data across the entire study. However this may not be realistic in practice, because different areas can have different
temporal trends in disease risk leading to evolution in the spatial cluster structure over time. To account for this we adjust
the clustering method in variant A by estimating a separate spatial cluster structure for each time period. This is achieved by
applying clustering method c with k clusters to ϕ̃t = (ϕ̃1t, . . . , ϕ̃nt) separately for each time period t, yielding a candidate
neighbourhood matrix W (c,k,t) defined as follows:

w(c,k,t)
ij = 1, if areal units (i, j) share a common border and are in the same cluster during time period t,

0, otherwise.

{
(6)

This algorithm leads to (K − 1) ×M × T + 1 candidate cluster structures in total, including (K − 1) ×M for each time
period t and the additional border sharing specification.

3.2 Stage 2 – Bayesian spatio-temporal modelling
The second stage of our method fits a model to the data that jointly estimates the spatio-temporal trend in disease risk and an
appropriate cluster/discontinuity structure(s), the latter being achieved by treating W as a parameter to be estimated from
the set of candidates generated in stage 1. The model we propose is based on Napier et al.8 described in Section 2.2, because
its separate random effects surfaces for each time period allow for different neighbourhood matrices to be specified in each
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case which is necessary under variant B of the model. The first level of the model is given by

Yit|Eit , Rit ∼ Poisson(EitRit) i = 1, . . . , n; t = 1, . . . , T ,

ln (Rit) = x⊤itβ+ ϕit + θt,

βj ∼ N(0, 1000), for j = 0, . . . , p.

(7)

The residual spatio-temporal variation in the data is decomposed into an overall temporal trend common to all areal units
and separate spatial surfaces for each time period. The former is denoted by θ = (θ1, . . . , θT ) and modelled by the first-
order autoregressive process

θt|θt−1 ∼ N αθt−1, σ2
( )

for t = 2, . . . , T ,

θ1 ∼ N 0, σ2
( )

,

α ∼ Uniform(0, 1),

σ2 ∼ Inverse− Gamma(1, 0.01).

(8)

Here α ∈ [0, 1] is the temporal autoregressive parameter, with α = 1 indicating strong temporal dependence (a first-order
random walk), while α = 0 corresponds to independence across time. We assign a uniform prior on the interval [0, 1] to α,
while a conjugate Inverse-Gamma prior is assigned to the process variance σ2. The spatial surface at time period t is cap-
tured by ϕt = (ϕ1t, . . . , ϕnt), which is modelled by a separate Leroux CAR prior3 for each time period. We allow for dif-
ferent spatial variances for each time period because the exploratory analysis in Section 2.1 suggested that the level of
spatial variation may change over time. For both model variants A and B, the neighbourhood matrix is treated as a par-
ameter to be estimated, and the model specifications are given below.

3.2.1 Variant A: Constant cluster structure over time
In this model variant, there is a single neighbourhood matrix W̃ that is common to all time periods, and the spatial random
effects ϕt are modelled by

ϕt ∼ N 0, τ2tQ(ρs, W̃ )−1
( )

,

W̃ ∼ Discrete uniform W (1,1), W (1,2), . . . , W (1,K), W (2,2), . . . , W (2,K), . . . , W (M ,2), . . . , W (M ,K)
( )

.

Here Q(ρs, W̃ ) is the spatial precision matrix corresponding to the Leroux CAR prior, which was defined in the previous

section. This matrix depends on the neighbourhood matrix W̃ , which is assigned a discrete uniform prior whose possible
values are the set of candidates corresponding to the cluster structures estimated in stage 1. Finally, the variance and spatial
dependence parameters are assigned weakly informative Inverse-Gamma (τ2t ∼ Inverse− Gamma(1, 0.01)) and uniform
(ρs ∼ Uniform(0, 1)) priors, respectively.

3.2.2 Variant B: Temporally varying cluster structures
In this model variant, there is a different neighbourhood matrix W̃t for each time period t, and the spatial random effects ϕt

are modelled by

ϕt ∼ N 0, τ2t Q(ρst , W̃t)
−1

( )
,

W̃t ∼ Discrete uniform W (1,1,t), W (1,2,t), . . . , W (1,K ,t), W (2,2,t), . . . , W (2,K ,t), . . . , W (M ,2,t), . . . , W (M ,K ,t)( )
.

Here Q(ρst , W̃t) again corresponds to the Leroux CAR prior, where in this model variant the spatial dependence parameter
ρst changes over time as the neighbourhood matrix also varies over time. As before the set of candidate neighbourhood

matrices at time t that make up the discrete uniform prior for W̃t are obtained from the candidate cluster structures generated
in stage 1. In common with variant A, the model specification is completed with τ2t ∼ Inverse− Gamma(1, 0.01) and
ρst ∼ Uniform(0, 1).

For both model variants, the clustering stage elicits multiple candidate neighbourhood matrices that are equal to the
traditional border sharing W , which occur when the number of clusters k = 1 for each clustering method. Therefore
only one of these is included in the discrete uniform prior to avoid the border sharing W being given a larger prior
weight compared to the other candidate values. We include this border sharing W in the model because it corresponds
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to a globally spatially smooth risk surface with no clusters. Additionally, to achieve identifiability, all sets of spatial and
temporal random effects are zero-mean centred.

Here (ρs, ρst ) control the level of spatial autocorrelation globally across the study region, with values close to 1 corre-
sponding to strong spatial autocorrelation while a value of zero corresponds to spatial independence. However, in our two
model variants, the spatial autocorrelation structure is modelled locally for each pair of neighbouring areas by estimating an
appropriate neighbourhood matrix for the data, which may make the estimation of a single global parameter redundant.
Thus in the simulation study in Section 4, we compare the performance of both model variants when estimating
(ρs, ρst ) in the model and also when fixing them at ρs, ρst = 0.99. The latter is chosen because it is close to one and
hence enforces strong spatial autocorrelation globally, whose structure is then adjusted locally by estimating the neighbour-
hood matrix. Note, we do not set ρs, ρst = 1 because our model could produce a candidate neighbourhood matrix where an
areal unit has no neighbours due to it being a singleton cluster. This will cause

∑n
j=1 wij = 0 for the area i in question,

which leads to an infinite mean and variance for ϕit from (2).

3.3 Inference
Inference is carried out in a Bayesian setting via MCMC simulation, using both the Metropolis-Hastings algorithm24,25 and
Gibbs sampling.26 The only non-standard step is the updating of the neighbourhood matrices W̃ or W̃t, which is achieved
by using a Metropolis-Hastings step consisting of two MCMC moves, which are outlined below. Note, the step is outlined
for variant A of the model, and the updating step for variant B is analogous.

1. If the current value of W̃ in the Markov chain is W (c,k), then a new value W (c,l) is proposed uniformly from the set of
candidate matrices (W (c,k−s), . . . , W (c,k−1), W (c,k+1), . . . , W (c,k+s)), which is the candidate cluster structures generated
from the same clustering method but with a different number of clusters. Here s is a parameter controlling the acceptance
rates and mixing of the update, and exploratory model runs suggested that s = 2 leads to good estimation performance.

2. If the current value of W̃ after the first move is W (c,k
′
), then a new proposal W (h,k

′
) is drawn uniformly from the set

(W (1,k
′
), . . . , W (c−1,k

′
), W (c+1,k

′
), . . . , W (M ,k

′
)), which is the candidate cluster structures with the same number of clus-

ters but generated from a different clustering method.

Since the neighbourhood matrix follows a discrete distribution, the posterior mode of (W̃ , W̃ t), representing the most likely
occurring cluster structure across all the MCMC samples, is used to estimate the optimal cluster/discontinuity structure. In
contrast, the remaining parameters are summarised by their posterior medians. The MCMC algorithm for fitting the model
was developed and implemented in R27 and C++ via the R package Rcpp,28 and is available from https://github.com/
XueqingYin/ST-model.

4 Simulation study
In this section, we present a simulation study to comprehensively quantify the performance of our methodology. The study
assesses the performance of both model variants (A – static and B – time varying), and in both cases, we compare models
where the global spatial dependence parameters (ρs, ρst ) are fixed at 0.99 or estimated within the model. Thus in the study,
we compare five different models, where ST-A and ST-B denote model variants A and B, respectively, where
ρs, ρst = 0.99, while ST-A* and ST-B* denote model variants A and B, respectively, where (ρs, ρst ) are estimated
within the model. Finally, model ST-N is the existing non-cluster model proposed by Napier et al.8 (see Section 2.2).
Our aims in this study are to illustrate the improved risk estimation delivered by our models compared to a similar non-
clustering alternative, and also to quantify the accuracy of the resulting cluster identification.

4.1 Data generation
Simulated disease count data {Yit} are generated from the Poisson log-linear model (7) for the n = 257 IZs that comprise
the Greater Glasgow study region for T = 7 time periods. The template for the expected disease counts {Eit} is based on
the motivating study data, whose values range between 12.61 and 160.15 in a single IZ and year with a median of 74.09.
However, to explore the impact of disease prevalence on model performance, these {Eit} values are divided by the scale
factors (SFs) of 1, 2 and 4. Thus SF = 1 corresponds to the study data, SF = 2 corresponds to having a smaller number of
expected counts, while SF = 4 represents a rare disease that has very small expected counts.
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Disease risks {Rit} are generated by simulating both spatial ({ϕit}) and temporal ({θt}) random effects, and as previ-
ously described covariates are not included. The temporal random effects are generated from the Gaussian AR(1) model
given by (8), where we fix α = 0.9 and σ2 = 0.1. The spatially correlated random effects for each time period ϕt =
(ϕ1t, . . . , ϕnt) are generated from a multivariate Gaussian distribution with the spatially correlated precision matrix pro-
posed by Leroux et al.,3 where we fix τ2t = 0.001 for each t. To assess model performance with different degrees of
spatial correlation in the risk surface, we generate spatially correlated random effects ϕt where the spatial dependence para-
meters are varied over ρs, ρst = 0.9, 0.6, 0.3, 0. Here a value of 0.9 corresponds to strong spatial dependence, values of
(0.6, 0.3) correspond to moderate and weak dependence, respectively, while a value of 0 corresponds to spatial
independence.

Clustering is induced into these spatial surfaces by the mean of the multivariate Gaussian distribution used to generate
ϕt , which we denote by μt = (μ1t, . . . , μnt). At each time period we consider high, medium and low risk levels, which are
generated by specifying a piecewise constant mean function so that each μit ∈ {− Z, 0, Z}. Thus geographically neigh-
bouring areal units that have the same mean value are in the same cluster as their disease risks will be similar, while
those pairs that have different values will exhibit a step-change in their risks and hence are in different clusters. The
value of Z is varied in the different scenarios of our simulation design as either Z = 0.5 or Z = 1, which, respectively,
correspond to small and large differences in disease risk between neighbouring areal units in different clusters. We consider
two cases for this clustering, which, respectively, favour variants A (Case 1) and B (Case 2) of our model.

Figure 2. Maps of the simulated cluster structures under Case 1 (top-left) and Case 2 (top-right and bottom). High-risk, medium-risk

and low-risk clusters are, respectively, shaded in black, grey and white.
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• Case 1 – the simulated clusters remain constant during the study period, which is achieved by setting μit = μil for all
t ≠ l.

• Case 2 – the simulated clusters evolve over time, which is achieved by μit ≠ μil for some pairs of time periods (t, l).

Figure 2 provides the maps of the cluster structures simulated for both Case 1 and Case 2, where areal units in the high-risk,
medium-risk and low-risk clusters are, respectively, shaded in black, grey and white. Under Case 1, the simulated clusters
are common to all time periods, while under Case 2, the cluster structures at time periods t = 1, 4, 7 are shown here. The
remaining structures for other time periods are presented in Section 2 of the Supplemental Material. For Case 2, the tem-
poral evolution of the clusters is achieved by randomly selecting a small number of areal units and changing their cluster
membership for each time period. The chosen cluster structure template is based on the motivating study, by partitioning
the set of IZs into three groups based on their SIR values. Finally, we also consider a scenario where Z = 0, which corre-
sponds to a spatially smooth risk surface with no clusters for each time period. Note, in this case as there are no clusters in
the simulated risk surfaces then there is no difference between Case 1 and Case 2. Our simulation study thus has 30 sub-
scenarios in its design, which are summarised in Table 2. Thus in this study we vary the following quantities: (i) constant
and time-varying clusters via Case 1 and Case 2; (ii) varying cluster magnitudes via Z = 1, 0.5, 0; (iii) varying disease
prevalences via SF = 1, 2, 4; and (iv) varying levels of spatial autocorrelation via ρs, ρst = 0.9, 0.6, 0.3, 0.

4.2 Results
One hundred simulated data sets are generated under each of the 30 scenarios shown in Table 2, and the five models ST-A,
ST-A*, ST-B, ST-B* and ST-N are fitted to each data set. In all cases, inference is based on a single Markov chain with
100,000 MCMC samples, 80,000 of which were discarded for the burn-in period and the remaining 20,000 samples were
thinned by 10 to reduce their autocorrelation. The main results are shown below, while the sensitivity of these results to the
choice of prior distribution is assessed in Section 3 of the Supplemental Material. Specifically, we consider two commonly
used alternatives to the Inverse-Gamma(1, 0.01) prior distribution for τ2t used here (see Anderson et al.

13 and Spiegelhalter
et al.29), which are Inverse-Gamma(0.001, 0.001) and Inverse-Gamma(0.5, 0.0005), and the results show almost no sen-
sitivity to these choices of prior distribution.

The results of the main study are shown in Tables 3 and 4, which summarise the modelling performance using three
metrics. The accuracy of disease risk estimation is quantified by the root mean square error (RMSE) of the risk estimates
and the corresponding coverage probabilities of the 95% credible intervals. The correctness of the estimated cluster struc-
tures is measured by the adjusted Rand index30 between the true and estimated cluster structures over all time periods. For
this metric a value of 1 indicates complete agreement between two cluster structures, a value of 0 indicates that the data
points are randomly allocated to the two cluster structures, and a value less than 0 indicates that the level of agreement
between the two cluster structures is smaller than that arising from randomly allocated data points. Table 3 displays
these performance metrics for each model under different scenarios of Cases 1/2, Z = 1, 0.5, 0 and SF = 1, 2, 4, but in
this table, the spatial random effects are simulated under the strong spatial dependence scenario with ρs, ρst = 0.9.

The non-cluster model ST-Nmainly performs poorly in terms of risk estimation compared to the clustering models pro-
posed here, having mostly larger RMSE values and coverage probabilities as low as 0.8. An exception to this is when there
are no clusters in disease risk (Z = 0), and in this case the ST-N model performs similarly to the constant cluster models
ST-A and ST-A*. The other scenario in which ST-N performs comparably to the cluster models is when the disease is rare
(SF= 4) and the cluster boundaries are small in magnitude (Z = 0.5), which is because in this scenario the clusters are hard
to identify based on their small size and small number of disease cases.

The four clustering models perform best when the disease prevalence is high (SF = 1) and the clusters are large in size
(Z = 1) as expected, which is because in these scenarios there are more disease cases from which to identify more prom-
inent clusters. In this situation, the RMSE values are very low compared to the range of the true risks, coverage probabil-
ities are close to their nominal 0.95 levels, and cluster identification is very good with ARI values either very close to or

Table 2. Description of the scenarios in the simulation study. SF indicates the scale factor used for the expected values.

Cluster cases Z SF (ρs, ρst )

Case 1/2 Z ∈ {1, 0.5} SF ∈ {1, 2, 4} ρs, ρst = 0.9

– Z = 0 SF ∈ {1, 2, 4} ρs, ρst = 0.9

Case 1/2 Z ∈ {1, 0.5} SF = 1 ρs, ρst ∈ {0.6, 0.3, 0}
– Z = 0 SF = 1 ρs, ρst ∈ {0.6, 0.3, 0}
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equal to one. When the disease prevalence decreases (SF > 1) and the clusters are less pronounced the models perform less
well, but the ARI values are still relatively close to one in most scenarios unless the disease is rare (SF= 4) and the clusters
are small in magnitude (Z = 0.5). Additionally, the models identify temporally static clusters better than temporally
varying ones, as the results for models ST-A and ST-A* in Case 1 are generally better than those for models ST-B and
ST-B* in Case 2. This improved performance in the static cluster case is because the temporal replication in the true
cluster structure yields more data from which to identify clusters, thus resulting in improved model performance.

Table 3. Median values of the RMSE, 95% credible interval coverages and adjusted Rand Index (ARI) for each model and scenario. In the

scenarios considered here ρs = ρst = 0.9 is used to simulate the spatial random effects for each time period.

Performance metric Cluster case Z SF
Model

ST-A ST-A* ST-B ST-B* ST-N

RMSE Case 1 1 1 0.087 0.068 0.091 0.074 1.175

0.5 1 0.071 0.060 0.099 0.096 0.119

1 2 0.115 0.094 0.130 0.116 1.155

0.5 2 0.097 0.082 0.159 0.158 0.157

1 4 0.150 0.128 0.207 0.192 1.109

0.5 4 0.151 0.120 0.225 0.224 0.204

Case 2 1 1 0.135 0.132 0.091 0.074 0.904

0.5 1 0.114 0.111 0.101 0.099 0.113

1 2 0.188 0.181 0.142 0.126 0.864

0.5 2 0.153 0.148 0.155 0.155 0.150

1 4 0.267 0.249 0.217 0.209 0.817

0.5 4 0.204 0.196 0.218 0.217 0.195

– 0 1 0.025 0.034 0.083 0.070 0.026

0 2 0.029 0.040 0.112 0.095 0.028

0 4 0.091 0.049 0.145 0.131 0.033

Coverage probability Case 1 1 1 0.975 0.975 0.969 0.955 0.801

0.5 1 0.974 0.974 0.928 0.920 0.951

1 2 0.979 0.973 0.948 0.931 0.805

0.5 2 0.972 0.974 0.843 0.842 0.949

1 4 0.981 0.969 0.907 0.897 0.843

0.5 4 0.937 0.959 0.777 0.764 0.947

Case 2 1 1 0.935 0.942 0.964 0.969 0.811

0.5 1 0.937 0.930 0.900 0.884 0.950

1 2 0.915 0.938 0.921 0.923 0.851

0.5 2 0.928 0.913 0.827 0.819 0.948

1 4 0.862 0.929 0.885 0.860 0.881

0.5 4 0.901 0.878 0.783 0.785 0.942

– 0 1 0.991 0.993 0.694 0.905 0.996

0 2 0.992 0.997 0.759 0.893 0.998

0 4 0.979 0.998 0.829 0.891 0.999

Adjusted Rand Index (ARI) Case 1 1 1 1 1 0.986 0.976 –

0.5 1 1 1 0.843 0.853 –

1 2 1 1 0.891 0.893 –

0.5 2 0.983 1 0.514 0.589 –

1 4 1 1 0.740 0.787 –

0.5 4 0.617 0.937 0.319 0.367 –

Case 2 1 1 0.353 0.409 0.987 0.987 –

0.5 1 0 0.412 0.711 0.655 –

1 2 0.351 0.393 0.608 0.907 –

0.5 2 0 0.360 0.383 0.426 –

1 4 0.359 0.395 0.504 0.600 –

0.5 4 0 0.290 0.235 0.267 –

– 0 1 1 0 0 0 –

0 2 1 0 0 0 –

0 4 0 0 0 0 –
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Table 4. Median values of the RMSE, 95% credible interval coverages and adjusted Rand Index (ARI) for each model and scenario. In the

scenarios considered here the expected counts from the motivating application are used to generate disease data.

Performance metric Cluster case Z ρs/ρst
Model

ST-A ST-A* ST-B ST-B* ST-N

RMSE Case 1 1 0.9 0.087 0.068 0.091 0.074 1.175

0.5 0.9 0.071 0.060 0.099 0.096 0.119

1 0.6 0.088 0.068 0.090 0.074 1.172

0.5 0.6 0.076 0.059 0.097 0.094 0.117

1 0.3 0.089 0.071 0.092 0.077 1.191

0.5 0.3 0.100 0.061 0.099 0.095 0.118

1 0 0.094 0.078 0.097 0.084 1.246

0.5 0 0.102 0.064 0.101 0.100 0.117

Case 2 1 0.9 0.135 0.132 0.091 0.074 0.904

0.5 0.9 0.114 0.111 0.101 0.099 0.113

1 0.6 0.134 0.128 0.089 0.075 0.892

0.5 0.6 0.114 0.110 0.102 0.100 0.113

1 0.3 0.131 0.128 0.092 0.076 0.868

0.5 0.3 0.116 0.113 0.101 0.101 0.115

1 0 0.134 0.129 0.094 0.081 0.884

0.5 0 0.116 0.112 0.105 0.103 0.115

– 0 0.9 0.025 0.034 0.083 0.070 0.026

0 0.6 0.026 0.030 0.084 0.071 0.024

0 0.3 0.029 0.032 0.085 0.071 0.026

0 0 0.035 0.038 0.085 0.073 0.033

Coverage probability Case 1 1 0.9 0.979 0.975 0.969 0.955 0.801

0.5 0.9 0.974 0.974 0.928 0.920 0.951

1 0.6 0.978 0.971 0.969 0.954 0.791

0.5 0.6 0.973 0.972 0.930 0.925 0.952

1 0.3 0.978 0.968 0.968 0.952 0.797

0.5 0.3 0.947 0.969 0.922 0.921 0.949

1 0 0.974 0.946 0.964 0.934 0.781

0.5 0 0.947 0.950 0.909 0.899 0.949

Case 2 1 0.9 0.935 0.942 0.964 0.969 0.811

0.5 0.9 0.937 0.930 0.900 0.884 0.950

1 0.6 0.932 0.943 0.961 0.967 0.809

0.5 0.6 0.935 0.929 0.898 0.889 0.949

1 0.3 0.934 0.943 0.957 0.962 0.810

0.5 0.3 0.936 0.930 0.900 0.894 0.949

1 0 0.936 0.943 0.951 0.941 0.793

0.5 0 0.935 0.930 0.877 0.869 0.949

– 0 0.9 0.991 0.993 0.694 0.905 0.996

0 0.6 0.987 0.997 0.710 0.884 0.998

0 0.3 0.977 0.995 0.683 0.885 0.996

0 0 0.934 0.984 0.705 0.861 0.982

Adjusted Rand Index (ARI) Case 1 1 0.9 1 1 0.986 0.976 –

0.5 0.9 1 1 0.843 0.853 –

1 0.6 1 1 0.985 0.975 –

0.5 0.6 0.992 1 0.847 0.846 –

1 0.3 1 1 0.985 0.975 –

0.5 0.3 0.541 1 0.846 0.856 –

1 0 1 1 0.988 0.976 –

0.5 0 0.541 1 0.828 0.839 –

Case 2 1 0.9 0.353 0.409 0.987 0.987 –

0.5 0.9 0 0.412 0.711 0.655 –

1 0.6 0.367 0.412 0.987 0.988 –

0.5 0.6 0 0.411 0.645 0.699 –

(continued)
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When the clusters are temporally constant (Case 1) then as expected models ST-A and ST-A*, which assume static
clusters, produce more accurate risk estimates (lower RMSE) than model ST-B and ST-B* in all cases, as well as produ-
cing adjusted Rand indices that are generally very close to one. Similarly, when the clusters evolve over time (Case 2) then
as expected models ST-B and ST-B*, which allow for dynamic clusters, perform better than ST-A and ST-A* in most
scenarios. The only slight exception to this is when the disease is rare (SF = 4) and the clusters are not large in size
(Z = 0.5), which is the case where the clusters are hardest to identify and hence all the cluster models perform less
well (small ARI values). Estimating (ρs, ρst ) (ST-A*, ST-B*) rather than fixing them at 0.99 (ST-A, ST-B) produces
better results overall, with lower RMSE values and higher ARI values in almost all scenarios.

Table 4 summarises model performance under different levels of spatial autocorrelation (values of ρs, ρst ), and the
results are based on the expected disease counts from the motivating data (SF = 1). The results show that reducing the
spatial dependence in the data does not seem to have any substantial effect on the ability of the proposed cluster
models to estimate disease risk or identify the correct cluster structure, as the ARI results do not differ greatly as the
spatial dependence parameters (ρs, ρst ) vary. Additionally, the coverage probabilities are also largely unaffected by this
change, and the RMSE values increase very slightly (suggesting worse estimation) as (ρs, ρst ) gets closer to zero, due
to a reduction in the borrowing of strength spatially when doing the estimation. In Case 1, ST-A* again outperforms
ST-A across the board, suggesting that estimating ρs leads to better model performance regardless of the level of
spatial autocorrelation in the data. This effect is also seen when comparing ST-B* and ST-B in Case 2, in terms of
RMSE, but for the ARI results the two models are very similar. Finally, the globally smooth non-clustering model
ST-N again performs uniformly badly when there are clusters in the data (Z > 0) as expected.

Finally, we also tested the performance of the proposed models under a set of model-free scenarios. In these scenarios,
we fix the risks of the areas with high, medium and low risk levels at constant values of { exp (Z), 1, exp (− Z)}, respect-
ively, rather than generating the risks by simulating spatial random effects using a multivariate Gaussian distribution with a
Leroux covariance structure as described in Section 4.1. In this model free case, the proposed models still provide robust
and reasonable results in terms of estimating risk and cluster structure, and to conserve space the results are presented in
Section 4 of the Supplemental Material.

5 Results from the Greater Glasgow respiratory disease study

5.1 Model fitting and inference
The four spatio-temporal models ST-A, ST-A*, ST-B and ST-B* proposed in Section 3 are applied to the Greater Glasgow
respiratory disease study introduced in Section 2.1, with the aims of estimating the spatio-temporal patterns in disease risk and
identifying the locations of any high and low risk clusters. Model ST-N without clustering is also fitted to the data, to observe
how its model fit compares with the clustering models proposed here. In all cases covariate information is not included in the
models, because our aim is to identify clusters in the risk surface rather than clusters in the residual risk surface after covariate
adjustment. Posterior inference for all models is based on 10 independent Markov chains, where each chain is run for 100,000
samples. The first 80,000 samples from each chain are removed as the burn-in period and the remaining samples are thinned by
10, which yields a total of 20,000 samples across all 10 chains. These MCMC samples were deemed to have converged, which
was assessed both by examining parameter trace plots and by Geweke31 diagnostics. The computational time required to fit
each model is outlined in Section 5 of the Supplemental Material.

Table 4. Continued

Performance metric Cluster case Z ρs/ρst
Model

ST-A ST-A* ST-B ST-B* ST-N

1 0.3 0.358 0.409 0.980 0.987 –

0.5 0.3 0 0.388 0.691 0.735 –

1 0 0.357 0.397 0.981 0.987 –

0.5 0 0 0.387 0.618 0.687 –

– 0 0.9 1 0 0 0 –

0 0.6 1 0 0 0 –

0 0.3 1 0 0 0 –

0 0 1 0 0 0 –

1196 Statistical Methods in Medical Research 31(6)



5.2 Overall model fit
The overall fit of each model is summarised in Table 5 by the deviance information criterion (DIC32) and the effective
number of independent parameters (pd). The table shows that the four clustering models proposed here fit the data
better than the non-clustering model ST-N, as the latter has a DIC value that is higher by between 0.7% and 4.9% than
those from the clustering models. The time-varying clustering models ST-B and ST-B* have lower DIC values than
the static clustering models ST-A and ST-A*, while allowing (ρs, ρst ) to be estimated (ST-A*, ST-B*) rather than
fixed at 0.99 (ST-A, ST-B) also produces a better model fit. Additionally, our models are also preferred because they
model the data using fewer effective parameters, with reductions in pd varying between 16.0% and 33.6% compared to
ST-N. This reduced effective number of parameters is due to a reduction in the spatial random effects variance τ2t for
the cluster models, which can be seen clearly in Table 6. This reduction in the random effects variation is because by
our approach the spatial random effects are only forced to smooth towards their neighbours in the same cluster, that is,
those neighbours that have similar random effects values. In contrast, in model ST-N this smoothing is with all neighbour-
ing areas, even those that have very different random effect values which hence inflates the variance.

5.3 Temporal trends in disease risk
We present the estimated temporal trends in disease risk from model ST-B* in Figure 3, because it is the best fitting model
in terms of DIC. However, we note that the results from the other models are similar, as the mean absolute differences in the
posterior median risk estimates between each pair of models range between 0.009 and 0.083 over all years and IZs. Figure 3
displays the boxplots of the risk estimates from all the areal units over time, and shows a generally increasing trend in risk.
These risk estimates are relative to the expected number of hospitalisations computed using national respiratory hospital-
isation rates for the whole of Scotland between 2011 and 2017, because national rather than Greater Glasgow rates are used
by Public Health Scotland when quantifying disease risk. In 2011, the average risk across Greater Glasgow is 1.10, sug-
gesting that on average respiratory disease risk in Greater Glasgow is about 10% higher than the Scottish average. This rises
to 1.28 in the final year 2017, which is thus 28% higher than the overall Scotland average. Thus an elevated risk is observed
in Glasgow for the entire time period of this study, which corroborates the well-known Glasgow effect33 which is the phe-
nomenon that Glasgow exhibits some of the poorest health in western Europe.

Table 5. Deviance information criterion (DIC) and the effective number of independent parameters (pd) for each model.

ST-A ST-A* ST-B ST-B* ST-N

DIC 14 631 14 587 14 272 14 040 14 730

pd 1 344 1 362 1 268 1 183 1 580

Table 6. Summary of the estimated number of clusters with 95% credible intervals and spatial random effects variance τ2t at each time

period.

Time period

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7

clusters

ST-A 2 (1, 3) 2 (1, 3) 2 (1, 3) 2 (1, 3) 2 (1, 3) 2 (1, 3) 2 (1, 3)

ST-A* 2 (2, 5) 2 (2, 5) 2 (2, 5) 2 (2, 5) 2 (2, 5) 2 (2, 5) 2 (2, 5)

ST-B 4 (2, 7) 5 (3, 9) 4 (4, 9) 4 (3, 8) 4 (2, 7) 3 (3, 8) 4 (2, 7)

ST-B* 5 (4, 6) 6 (3, 8) 6 (4, 8) 5 (4, 8) 5 (3, 5) 5 (3, 7) 5 (4, 9)

ST-N – – – – – – –

τ2t
ST-A 0.056 0.088 0.069 0.083 0.084 0.083 0.075

ST-A* 0.061 0.081 0.069 0.077 0.078 0.081 0.075

ST-B 0.006 0.004 0.004 0.004 0.003 0.004 0.004

ST-B* 0.004 0.003 0.003 0.003 0.003 0.003 0.003

ST-N 0.265 0.291 0.292 0.268 0.254 0.283 0.297
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5.4 Spatio-temporal cluster structure
The previous section highlighted that the risk estimates from the clustering and non-clustering models are similar, and so
the main advantage of using the clustering models is the additional inference they provide on the locations of clusters of
areas that exhibit elevated or reduced disease risks compared to their neighbours. The top panel of Table 6 displays the
posterior mode for the number of clusters estimated by each cluster model for each year, with uncertainty measured by
the 95% credible intervals. If there are multiple modes present in the Markov chain, then the one yielding the fewer effect-
ive number of parameters is chosen in the interests of model parsimony. Note that by clusters we mean the number of non-
spatial clusters (distinct risk levels) that correspond to the posterior mode of (W̃ , W̃ t), rather than the number of spatially
distinct clusters observable on the risk maps presented below. Models ST-A and ST-A* have selected the same cluster
structure with two distinct clusters or risk levels, and that by design this structure is common to all time periods. In contrast,
model ST-B identifies between three and five different cluster levels depending on the year, although most years have four
different clusters, and model ST-B* detects five distinct clusters for most years. We now present the estimated cluster struc-
tures from the models, focusing on both the posterior mode clusters that are static (ST-A*) and dynamic (ST-B*) over time,
as well as illustrating posterior uncertainty in the cluster structures for ST-A*.

5.4.1 Static and time-varying clusters based on the posterior mode cluster structure
As Table 5 shows that models ST-A* and ST-B* have lower DIC values than models ST-A and ST-B, we present these
results here. The top left panel in Figure 4 displays the estimated spatial pattern in disease risk from model ST-A* for
2014, which is chosen because it is the middle year of our study. The blue dots relate to the cluster boundaries as
defined by the posterior mode of W̃ , which in this static clustering case are common to all time periods. The remaining
three panels of the figure present the estimated risk surfaces from model ST-B* for 2011, 2014 and 2017, the first,
middle and last years of the study period, respectively. In these cases, the clusters/discontinuities denoted by blue dots
vary over time and are specific to the year in question, and are again determined by the posterior mode of W̃ t. These
cluster boundaries (discontinuities) represent two IZs that are geographically adjacent but are in different clusters, suggesting
they have substantially different risks. For completeness, estimated risk patterns and clusters for all time periods from
models ST-A* and ST-B* are presented in Section 6 of the Supplemental Material.

The figure shows there are a number of similarities between the selected cluster structures from the two cluster models,
with the same areas being identified as having very different risks compared to their neighbours. For example, both models
identify the large high-risk cluster in the East End of Glasgow (far east of the map), which contains a number of socio-
economically deprived areas such as Easterhouse and Barlanark. Additionally, the models identify a cluster of areas to
the north of the city containing Springburn and Summerston, as well as another along the southern bank of the River
Clyde including Govan and Hutchesontown. They also pick out some high risk areas in the north west including the
deprived areas of Drumchapel and Drumry, which are bordered to the north by the more affluent and low-risk
Bearsden area. Additionally, another large region of low risk areas identified by both models is the affluent West End
of the city such as Dowanhill, which is just to the south of Bearsden. Note, as all the clustering methods were used to
adjust the border sharing neighbourhood matrix, clusters cannot be found between areas on opposite banks of the river
Clyde, which runs north-west through the study region.

Figure 3. Boxplots of the risk estimates (posterior median) from model ST-B* for all the areal units over time.
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In addition, there is some evidence of a changing cluster structure over time estimated by model ST-B* that is worth
noting. For example, the large rural areas of Inverclyde in the far west of the study region exhibit low risks in 2011, whereas
by 2017 they have joined a moderately high risk cluster. However, comparing the clustering results from the two modelling
approaches we find that while ST-B* is very flexible in capturing the temporal evolution of clusters, it can also be suscep-
tible to identifying discontinuities (clusters) caused by random noise that are present for some years but not for others,
which thus make the interpretation of an evolving cluster structure less clear cut. This happens because in the ST-B*
model each candidate cluster structure in stage one is elicited using data for a single year, which thus could be affected
by random noise in the data. However, model ST-A* is less vulnerable to this phenomenon, because the clustering is
applied to the data from multiple time periods. Thus despite model ST-A* having a higher DIC than model ST-B*, its
consistency of clustering may lead to robust and reliable clusters, as can be visually observed in Figure 4.

5.4.2 Posterior uncertainty in the estimated cluster structure
To illustrate the uncertainty in the estimated cluster structure Figure 5 summarises the posterior distribution of W̃ obtained
from the 10 Markov chains for model ST-A*, which assumes a single cluster structure for all time periods. In the figure
each grid square represents a candidate neighbourhood matrixW (c,k) corresponding to a distinct cluster structure, where the
horizontal axis denotes the number of clusters and the vertical axis denotes the clustering method. Note that the grid square
on the bottom left corner corresponds to the border sharing W = W (1,1), . . . , W (M ,1) (i.e. k = 1) which represents no

Figure 4. Maps of the disease risk estimates (posterior median) in Greater Glasgow for 2011, 2014 and 2017 from models ST-A*
and ST-B*. The dots on the map indicate the identified discontinuities, which are determined using the posterior mode of (W̃, W̃t).
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clusters in disease risk. The figure shows that this no cluster solution is not supported by the data, with a posterior prob-
ability of zero. The figure also shows that the posterior distribution is mainly centred on eight different cluster structures,
which each have posterior probabilities above 0.06. The top four of these cluster structures have posterior probabilities of
0.3, 0.138, 0.1 and 0.1 respectively, and are displayed in Figure 6 and denoted by (a), (b), (c) and (d). Cluster structure (a),
which has the highest posterior probability, identifies 2 spatial clusters (risk levels), although from the map it is clear that
this corresponds to many more spatially distinct clusters. In contrast, structures (b) to (d) identify 4 or 5 distinct cluster
levels, which is why there are more spatially distinct clusters identified in panels (b) to (d) in the figure. The adjusted
Rand Index values between these four cluster structures range between 0.49 and 0.77, suggesting moderate agreement
between them. The figure shows that all four cluster structures appear to mostly correspond to sizeable changes in
disease risk between adjacent IZs, suggesting that the clustering model can identify such spatially distinct clusters. To con-
serve space, the posterior distribution of W̃ t for model ST-B* is presented in Section 7 of the Supplemental Material.

6 Discussion
Smoothing models based on geographical adjacency are commonly used to estimate risk in disease mapping studies, and
they force geographical neighbours to have similar disease risks. However, this smoothing will mask any discontinuities
present in the risk surface, leading to sub-optimal risk estimation and no cluster identification. The latter is important
because health agencies often target additional resources at communities with the greatest need, thus they need to identify
the spatial extent of a cluster of high-risk areas. This paper has proposed a novel clustering-based adjacency modelling
approach in the spatio-temporal domain, which can simultaneously estimate disease risk and identify the locations of clus-
ters of high/low risk areas that may be static or evolve dynamically over time. Our methodology first constructs a large
collection of candidate cluster structures for the data, which each corresponds to a candidate neighbourhood matrix.
Then a spatio-temporal model is fitted to the data that jointly estimates disease risk and the cluster structure, the latter
by treating the neighbourhood matrix as a parameter to be estimated from the set of candidate structures constructed in
stage 1. As this matrix determines the spatial correlation structure in the data, our approach extends the standard practice
in areal unit modelling that naively assumes the geographical adjacency neighbourhood matrix provides a suitable spatial
correlation structure for the data. In fact, our methodology parallels the standard practice in geostatistics, where an appro-
priate spatial dependence structure is identified for the data (e.g. by variogram analysis) rather than a single structure being
assumed without assessing its suitability.

Existing cluster based methods15,14 fit a separate model to each candidate cluster structure, and identify the optimal
cluster structure by model comparison approaches. In contrast, our approach has the advantages of having substantially
reduced computational time (it only fits a single spatio-temporal model), and allowing the uncertainty in the cluster struc-
ture to be quantified when estimating disease risk in the second step. For example, although the computational time of
model ST-A* is almost 60% longer than that of the same model with a fixed neighbourhood matrix (or cluster structure),
the latter would have to be fitted 73 times in a model comparison setting because we have 73 candidate cluster structures to
consider. One approach that does allow for cluster uncertainty is Anderson et al.,15 and we have extended this approach by
considering a spatio-temporal rather than a spatial domain and proposing cluster models where the spatial clusters either
remain fixed or evolve dynamically over time. The simulation study shows that our models provide accurate risk estimates

Figure 5. Summary of the posterior distribution of W̃ over 10 Markov chains from model ST-A*.

1200 Statistical Methods in Medical Research 31(6)



in the presence of clusters (discontinuities), particularly performing better than a similar non-cluster model. This improved
performance is because our models account for the clusters in risk by estimating an appropriate neighbourhood matrix,
which better represents the spatial autocorrelation structure in the data, therefore removing any redundant smoothing of
the spatial random effects between neighbours. The study also shows that our models can accurately identify both static
and temporally dynamic clusters, with high ARI values being obtained in both cases. However, as expected cluster iden-
tification is more accurate for static rather than dynamic clusters, which is due to the former having more data with which to
identify the high-risk clusters due to them recurring for multiple time periods.

We have used a range of classical clustering techniques to identify the candidate cluster structures rather than scan sta-
tistics,10,34,35 because the latter only identify a relatively small number of clusters of areas exhibiting high-risks rather than
partitioning the risk surface into different risk levels, which is required here for constructing candidate neighbourhood
matrices. In our method, the maximum number of clusters K denotes the maximum number of risk levels and not the
maximum number of spatially distinct clusters, which is illustrated in Figure 4. In this paper, we have chosen K = 10,
which has been shown to be a conservative (overly large) choice because the posterior distribution in Figure 5 has no pos-
terior mass above five clusters. We note that the choice of K does not depend on the number of areas, because it does not
relate in any way to the maximum number of spatially connected clusters that can be identified. Thus the factors to consider
when choosing K is that if K is too small then the true cluster structure may not exist in the candidates, whereas if K is too

Figure 6. The four most likely cluster structures selected by model ST-A*, which are represented by blue dots. The colour shading

for the areas denotes posterior median disease risk in 2014 (the middle of the study period). The colour version of the figure is

available online.
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large then the computational cost increases because longer MCMC runs are likely to be needed for convergence with such a
large number of candidates.

The motivating application also illustrates the superiority of our clustering-based models compared to non-clustering
alternatives, with our models able to produce a better model fit to the data and provide additional insight as to the locations
of high-risk clusters. In regard to the latter, the majority of the identified clusters occur between geographical neighbours
that exhibit very different disease risks, which will allow health agencies to better identify these high-risk areas and target
additional resources where they are most needed. Each of our cluster models has its own appealing features, and the choice
between them will depend on the aim of the analysis. The model with constant clusters over time may be more appropriate
if the disease data have a high correlation in time and the main aim is to identify overall discontinuities for the entire study
period. In contrast, if the disease data are less correlated in time and the cluster structures in particular years are of interest,
then the model with temporally evolving clusters is likely to be the better choice. However, the latter model can sometimes
pick out apparently erroneous clusters, due to the presence of random year to year fluctuations in the observed disease
counts. Therefore in future work we will investigate a hybrid approach of the two considered here based on a 2q+ 1
years moving window, where the candidate cluster structures for a given year constructed in stage 1 are obtained by clus-
tering the data for the year in question and the q years before and after. Additional potential extensions of our approach
include adapting it for use with different spatio-temporal random effects structures, such as those of Knorr-Held5 and
Rushworth et al.,7 as well as utilising it in the context of a spatio-temporal multivariate disease model, which allows
for simultaneously estimating the risk of multiple diseases in space and time.

Acknowledgements
The authors gratefully acknowledge the contributions of two reviewers, whose suggestions have improved the motivation for and content
of this paper. The respiratory hospitalisation data are provided by Public Health Scotland.

Declaration of conflicting interests
The authors declared no potential conflicts of interest with respect to the research, authorship and/or publication of this article.

Funding
The work of the first author was funded by a University of Glasgow PhD scholarship.

ORCID iD
Xueqing Yin https://orcid.org/0000-0003-1103-8939

Supplemental material
Supplemental material for this article is available online.

References
1. McCartney G.What would be sufficient to reduce health inequalities in Scotland? Technical report, Ministerial Task Force on Health

Inequalities, NHS Health Scotland, 2012.
2. Besag J, York J and Mollié A. Bayesian image restoration, with two applications in spatial statistics. Ann Inst Stat Math 1991; 43:

1–20.
3. Leroux BG, Lei X and Breslow N. Estimation of disease rates in small areas: A new mixed model for spatial dependence. In :

Halloran M and Berry D (eds.) Statistical models in epidemiology, the environment, and clinical trials. New York: Springer,
1999. pp. 179–191.

4. Bernardinelli L, Clayton D, Pascutto C et al. Bayesian analysis of space-time variation in disease risk. Stat Med 1995; 14: 2433–
2443.

5. Knorr-Held L. Bayesian modelling of inseparable space-time variation in disease risk. Stat Med 2000; 19: 2555–2567.
6. Ugarte M, Etxeberria J, Goicoa T et al. Gender-specific spatio-temporal patterns of colorectal cancer incidence in Navarre, Spain

(1990–2005). Cancer Epidemiol 2012; 36: 254–262.
7. Rushworth A, Lee D and Mitchell R. A spatio-temporal model for estimating the long-term effects of air pollution on respiratory

hospital admissions in Greater London. Spat Spatiotemporal Epidemiol 2014; 10: 29–38.
8. Napier G, Lee D, Robertson C et al. A model to estimate the impact of changes in MMR vaccine uptake on inequalities in measles

susceptibility in Scotland. Stat Methods Med Res 2016; 25: 1185–1200.
9. Mitchell R and Lee D. Is there really a “wrong side of the tracks” in urban areas and does it matter for spatial analysis?. Ann Assoc

Am Geogr 2014; 104: 432–443.
10. Kulldorff M. A spatial scan statistic. Commun Stat Theory Methods 1997; 26: 1481–1496.

1202 Statistical Methods in Medical Research 31(6)

https://orcid.org/0000-0003-1103-8939
https://orcid.org/0000-0003-1103-8939


11. Knorr-Held L and Raßer G. Bayesian detection of clusters and discontinuities in disease maps. Biometrics 2000; 56: 13–21.
12. Wakefield J and Kim A. A Bayesian model for cluster detection. Biostatistics 2013; 14: 752–765.
13. Anderson C, Lee D and Dean N. Identifying clusters in Bayesian disease mapping. Biostatistics 2014; 15: 457–469.
14. Adin A, Lee D, Goicoa T et al. A two-stage approach to estimate spatial and spatio-temporal disease risks in the presence of local

discontinuities and clusters. Stat Methods Med Res 2019; 28: 2595–2613.
15. Anderson C, Lee D and Dean N. Bayesian cluster detection via adjacency modelling. Spat Spatiotemporal Epidemiol 2016; 16:

11–20.
16. Glasgow City Council. Child poverty in Glasgow report 2020. Technical report, Centre for Civic Innovation, 2020.
17. Waller L, Carlin B, Xia H et al. Hierarchical spatio-temporal mapping of disease rates. J Am Stat Assoc 1997; 92: 607–617.
18. MacQueen J et al. Some methods for classification and analysis of multivariate observations. In Proceedings of the fifth Berkeley

symposium on mathematical statistics and probability, volume 1. Oakland, CA, USA, pp. 281–297.
19. Park HS and Jun CH. A simple and fast algorithm for K-medoids clustering. Expert Syst Appl 2009; 36: 3336–3341.
20. Friedman J, Hastie T and Tibshirani R. The elements of statistical learning: data mining, inference, and prediction. Springer series in

statistics, New York City, USA, 2009.
21. Kaufman L and Rousseeuw PJ. Finding groups in data: An introduction to cluster analysis. New York, USA: John Wiley & Sons,

1990.
22. Fraley C and Raftery AE. Model-based clustering, discriminant analysis, and density estimation. J Am Stat Assoc 2002; 97: 611–

631.
23. Yim O and Ramdeen KT. Hierarchical cluster analysis: Comparison of three linkage measures and application to psychological data.

Quant Method Psychol 2015; 11: 8–21.
24. Metropolis N, Rosenbluth AW, Rosenbluth MN et al. Equation of state calculations by fast computing machines. J Chem Phys 1953;

21: 1087–1092.
25. Hastings WK. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 1970; 57: 97.
26. Geman S and Geman D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans Pattern Anal

Mach Intell 1984; 6: 721–741.
27. R Core Team. R: A language and environment for statistical computing. Vienna, Austria, 2013.
28. Eddelbuettel D, François R, Allaire J et al. Rcpp: Seamless R and C++ integration. J Stat Softw 2011; 40: 1–18.
29. Spiegelhalter D, Thomas A, Best N et al. Bugs 0.5: Bayesian inference using Gibbs sampling manual (version ii).MRC Biostatistics

Unit, Institute of Public Health, Cambridge, UK 1996; 1–59.
30. Hubert L and Arabie P. Comparing partitions. J Classif 1985; 2: 193–218.
31. Geweke J. Evaluating the accurating of sampling-based approaches to the calculation of posterior moments. In Bayesian Statistics,

volume 4. Oxford University Press, pp. 169–193.
32. Spiegelhalter DJ, Best NG, Carlin BP et al. Bayesian measures of model complexity and fit. J R Stat Soc Series B Stat Methodol

2002; 64: 583–639.
33. Walsh D, Bendel N, Jones R et al. Investigating a Glasgow effect: Why do equally deprived UK cities experience different health

outcomes? Technical report, Glasgow Centre for Population Health, 2010.
34. Takahashi K, Kulldorff M, Tango T et al. A flexibly shaped space-time scan statistic for disease outbreak detection and monitoring.

Int J Health Geogr 2008; 7: 1–14.
35. Kulldorff M, Huang L and Konty K. A scan statistic for continuous data based on the normal probability model. Int J Health Geogr

2009; 8: 1–9.

Yin et al. 1203


	1  Introduction
	2  Background
	2.1  Motivating study
	2.2  Review of spatio-temporal modelling of areal unit count data
	2.2.1  Notation and data likelihood
	2.2.2  Spatio-temporal risk model
	2.2.3  Inference


	3  Methodology
	3.1  Stage 1 – Generating neighbourhood matrices representing clusters/discontinuities
	3.1.1  Variant A: Constant cluster structure over time
	3.1.2  Variant B: Temporally varying cluster structures

	3.2  Stage 2 – Bayesian spatio-temporal modelling
	3.2.1  Variant A: Constant cluster structure over time
	3.2.2  Variant B: Temporally varying cluster structures

	3.3  Inference

	4  Simulation study
	4.1  Data generation
	4.2  Results

	5  Results from the Greater Glasgow respiratory disease study
	5.1  Model fitting and inference
	5.2  Overall model fit
	5.3  Temporal trends in disease risk
	5.4  Spatio-temporal cluster structure
	5.4.1  Static and time-varying clusters based on the posterior mode cluster structure
	5.4.2  Posterior uncertainty in the estimated cluster structure


	6  Discussion
	 Acknowledgements
	 References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile ()
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 5
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2003
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    33.84000
    33.84000
    33.84000
    33.84000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    9.00000
    9.00000
    9.00000
    9.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV <>
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames false
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks true
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


