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Idiopathic pulmonary fibrosis (IPF) is a chronic respiratory disease with high incidence, morbidity, and mortality rates. Jinshui
Huanxian formula (JHF) is an empirical formula that targets the pathogenesis of lung-kidney qi deficiency and phlegm-blood
stasis in pulmonary fibrosis (PF). .e purpose of this study was to explore JHF’s potential pharmacological mechanisms in IPF
therapy using network intersection analysis. JHF’s primary active components and corresponding target genes were predicted
using various databases. Two sets of IPF disease genes were obtained from the DisGeNETand GEO databases and two sets of IPF
drug targets were collected. .e disease and drug target genes were analyzed. .e JHF target genes that intersected with IPF’s
differentially expressed genes were identified to predict JHF’s targets of action in IPF. .e functions and pathways of predicted
targets acting on IPF were analyzed using the DAVID and KEGG pathway databases. Finally, the resulting drug target
mechanisms were validated in a rat model of PF. .e initial analyses identified 494 active compounds and 1,304 corresponding
targets for JHF. .e intersection analysis revealed four common genes for the JHF targets, IPF disease, and anti-IPF drugs in the
KEGG database. Furthermore, these genes were targeted by several JHF compounds. Seventy-two JHF targets were closely related
to IPF, which suggests that they are therapeutically relevant. Target screening revealed that they regulate IPF through 18 pathways.
.e targets’ molecular functions included regulation of oxidoreductase activity, kinase regulator activity, phosphotransferase
activity, and transmembrane receptor protein kinase activity. In vivo experiments showed that JHF alleviated the degree of PF,
including decreases in collagen deposition and epithelial-mesenchymal transition. .is study systematically explored JHF’s
mechanisms to identify the specific target pathways involved in IPF. .e generated pharmacological network, paired with in vivo
validation, elucidates the potential roles and mechanisms of JHF in IPF therapy.

1. Introduction

Idiopathic pulmonary fibrosis (IPF) is a chronic respiratory
disease, which is characterized by progressive fibrosis of lung
parenchyma, resulting in function and respiratory failure. It
is the most common pulmonary interstitial disease with an
estimated incidence of 2.8–9.3 cases per 100,000 person per
year in Europe and North America [1]. .e IPF mortality

rate is very high, and the median survival time is approx-
imately 3 years [2]. IPF is a chronic and refractory disease
that shows annual increase in incidence, related disability,
and mortality. .is seriously affects patient health and in-
creases the social and economic disease burden. Although
there are antifibrosis IPF drug therapies, there is no treat-
ment that can change or reverse IPF fibrosis. Standard
clinical treatments include anti-inflammatory drugs,
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immunosuppressants, antiacid therapy, and lung
transplantation.

Drugs commonly used to treat IPF include glucocorti-
coids, azathioprine, cyclosporin, warfarin, N-acetylcysteine,
and acid suppressants. However, these drugs may induce
adverse events (AEs), such as myelotoxicity associated with
cytotoxic drugs or diffuse alveolar hemorrhage [3]. Pirfe-
nidone (PFD), nintedanib, and antiacid therapy are officially
recommended for use by the American .oracic Society,
European Respiratory Society, Japanese Respiratory Society,
and Latin American .oracic Association clinical practice
guidelines [4]. PFD may cause AEs that range from mild
gastrointestinal reactions to severe drug reactions, leading to
a discontinuation rate as high as 30% [5, 6]. .e course and
prognosis of IPF may differ between Asian and Western
patients; the most common AE among Asian patients is
diarrhea [7]. Antiacid therapy should be prescribed based on
the patient’s clinical indications. Compared to single-target
drugs, multitarget drugs may be more effective due to
synergistic effects or negative regulation of drug resistance
[8, 9].

Traditional Chinese medicine (TCM), a natural chemical
library, is a main component of medical practice. .e
characteristics of Chinese herbal compound include being
multicomponent, multitarget, and having complex mecha-
nisms of action. .ey can enhance body functions and re-
duce drug toxicity through the synergistic actions of their
main active ingredients. Jinshui Huanxian formula (JHF) is
an empirical formula for the pathogenesis of lung-kidney qi
deficiency and phlegm-blood stasis in PF. JHF’s monarch
herbs are ginseng and Radix Rehmanniae. .is blend
nourishes yin and dissipates phlegm, promotes blood cir-
culation and regulates qi, and primarily treats the lung-
spleen deficiency syndrome and phlegm-blood stasis in the
later stage of IPF. In clinical practice, JHF has shown sig-
nificant improvements in clinical symptoms, inducing
delayed down disease development and improving the
quality of life [10].

Network pharmacology integrates system-level network
analysis and pharmacology to gain insight into the complex
mechanisms of herbal formulas used to treat complex dis-
eases [11, 12]. In this context, the purpose of this study was
to use network pharmacology as a basis to conduct com-
prehensive research exploring JHF’s pharmacological
mechanisms in IPF.

In order to explore JHF’s pharmacological mechanisms
associated with IPF, we used JHF-based network pharma-
cology to study the relationship among TCM, Chinese
medicinal ingredients, target genes, and differentially
expressed genes in IPF. First, through extensive data mining,
we collected information on two groups of IPF-related
disease genes, two groups of anti-IPF drugs, and their
therapeutic targets. Second, we gathered information on
JHF’s bioactive compounds and identified candidate target
genes using public databases. Potential vital targets and their
related pathways involved in JHF-mediated effects were
identified by analyzing the collected datasets..en, based on
IPF’s differentially expressed genes, a network analysis was
conducted to discover JHF’s therapeutic targets that might

target IPF’s differentially expressed genes, their biological
functions, and the important pathways involved in this
response. Finally, JHF’s predicted targets and functions were
verified using in vivo experiments.

2. Materials and Methods

.e project’s workflow is illustrated in Figure 1.

2.1. Identification of Active JHF Ingredients. .e Traditional
Chinese Medicine Systems Pharmacology Database and
Analysis Platform (TCMSP) (http://tcmspw.com/tcmsp.
php) is a unique Chinese herbal medicine system that
contains information about absorption, distribution,
metabolism, and excretion (ADME) characteristics of
compounds [13]. Oral bioavailability (OB) and drug-likeness
(DL) are the two most important indicators to evaluate
ADME characteristics using bioinformatics. OB represents
the percentage of unchanged oral drug dose reaching sys-
temic circulation, indicating the convergence of the ADME
process. High OB is often the key index used to determine
the properties of bioactive molecules [14]. DL is a qualitative
concept used in drug design to evaluate how a “drug-like”
compound responds to metrics like solubility and chemical
stability, which helps optimize pharmacokinetics and drug
properties [15]. .e Traditional Chinese Medicines Inte-
grated Database (TCMID) (http://119.3.41.228:8000/tcmid/
search/) includes comprehensive formulas, herbs, herbal
ingredients, and drug and disease information..is database
helps researchers in the traditional medicine fields to dis-
cover potential new drugs and the mechanisms of drug
interactions.

Using the TCMSP and TCMID, 494 active JHF ingre-
dients were identified. Only compounds with OB≥ 30 and
DL≥ 0.18 were retained to satisfy the criteria suggested by
the TCMSP.

2.2. JHF Compound Targets. For each compound, putative
targets were predicted from the TCMSP and STITCH
(http://stitch.embl.de/, ver. 5.0) [16] using the “Homo sa-
piens” species setting. .e STITCH database uses com-
pounds that are structurally similar to JHF’s chemical
components to identify targets (Table S1). .e threshold of
confidence score was set as 0.8, a high benchmark to filter
genes associated with chemicals.

2.3. IPF-Associated Genes. Information on IPF-associated
genes was collected from the DisGeNET (http://www.
disgenet.org/, ver. 6.0) [17] and GEO (https://www.ncbi.
nlm.nih.gov/geo/) [18] databases. DisGeNET was searched
using the disease name “idiopathic pulmonary fibrosis” to
obtain 378 IPF-associated genes (Table S2). .e GEO da-
tabase was searched to find the genomic expression profile in
lung tissues from IPF patients (GSE2052 dataset). Pardo
et al. [19] ran microarray analysis on 13 IPF lung explants
and 11 normal histology lung tissue samples. .e screening
confirmed a total of 257 differentially expressed genes with
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known gene symbols in IPF patients. Of these, 122 were
upregulated (logFC≥ 1) and 135 were downregulated
(logFC≤−1) (Table S3).

2.4. Anti-IPFDrugs and5eir Targets. Known anti-IPF drugs
and their targets were collected from the KEGG [20] (https://
www.genome.jp/kegg/pathway.html) and DrugBank [21]
(https://www.drugbank.ca/, ver. 5.1.4) databases. Searching the
KEGG pathway database revealed four IPF-associated drugs
with 14 target proteins (Table S4)..eDrugBank database was
used to only search drugs that are approved by Food and Drug
Administration for IPF treatments with human gene/protein
targets. Two drugs with 26 target proteins were extracted from
the DrugBank database (Table S5).

2.5. Construction of the Target Networks. .e constructed
compound-target and target-pathway networks were visual-
ized using Cytoscape (http://www.cytoscape.org/, ver. 3.6.0).

To screen for JHF targets that may regulate differentially
expressed genes in IPF, IPF-associated differentially
expressed genes were first mapped to the High-quality
INTeractomes database (HINT; http://hint.yulab.org, ver. 4).

.e HINTdatabase is a curated compilation of high-quality
protein-protein interactions from eight interactome re-
sources (BioGRID, MINT, iRefWeb, DIP, IntAct, HPRD,
MIPS, and PDB) [22]..e target gene network contained the
selected targets and neighbor genes. Second, JHF’s predicted
targets were mapped to the IPF-associated differentially
expressed gene network. A small network was extracted
from the selected targets. Using this network, we obtained
information regarding targets that likely regulate IPF-as-
sociated genes.

2.6. FunctionalAnnotationClusteringAnalysis. To clarify the
functions and pathways associated with the predicted JHF
targets, we used the functional annotation clustering tool in
the Database for Annotation, Visualization, and Integrated
Discovery (DAVID, https://david.ncifcrf.gov/home.jsp, ver.
6.8) to calculate the Gene Ontology enrichment and the
KEGG pathways.

2.7. Reagents and Animals. JHF was provided by the
Pharmaceutical Department of Henan University of
Chinese Medicine. .e extraction procedure used to
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Figure 1: Comprehensive workflow illustrating JHF’s mechanisms of treatment in IPF. .e workflow includes (1) collecting JHF chemical
compound information from databases and predicting their putative targets using public databases. Dataset analysis revealed the potentially
important JHF targets and their relevant regulatory pathways. (2) IPF-associated genes, data for the two sets of anti-IPF drugs, and
therapeutic targets were collected through extensive data mining. (3) .erapeutic targets, their biological functions, and the important
pathways targeted by JHF compounds that regulate IPF genes were obtained using intersection analysis based on IPF’s differentially
expressed genes.
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obtain and standardize the JHF and in vivo JHF admin-
istration were performed as previously described [10].
Bleomycin hydrochloride was purchased from the Nippon
Kayaku Co. Ltd. (lot 650427). PFD was obtained from the
Beijing Kangdini Pharmaceutical Co. Ltd. (lot 150603;
Beijing, China).

Forty Sprague Dawley rats (20 males and 20 females,
200± 20 g) were obtained from the Experimental Animal
Center of Henan Province (Zhengzhou, China). .e rats
were housed under standard temperature (26± 2°C), hu-
midity (50± 10%), and light intensity (12 h light/dark cycle)
conditions and were allowed free access to standard labo-
ratory food and water. All animal experiments were per-
formed in accordance with international ethical guidelines
and the National Institutes of Health’s Guide for the Care
and Use of Laboratory Animals. .e experiments were
approved by the Experimental Animal Care and Ethics
Committee of the First Affiliated Hospital, Henan University
of Traditional Chinese Medicine.

2.8. PF Rat Model and Drug Administration. .e PF rat
model was established using previously published methods
[10]. .e PF rats received a tracheal infusion of bleomycin at
5mg/kg. .e PF rats were intragastrically administered
normal saline, JHF (10.8 g/kg), or PFD capsules (50mg/kg)
every day for 4 weeks. Finally, all rats were sacrificed and the
lung tissues were collected.

2.9. Histological Analysis. .e formaldehyde-fixed lung
tissues were paraffin-embedded and cut into 4 μm sections.
.e sections were stained with hematoxylin-eosin solution
(Solarbio, Beijing, China) and Masson’s Trichrome Stain Kit
(Solarbio, Beijing, China) to determine the collagen distri-
bution. Digital images were captured using light microscopy.

2.10.WesternBlot. Lung tissues were homogenized and lysed
with RIPA containing PMSF (Solarbio, Beijing, China) for
30min and centrifuged at 12,000 g for 10min at 4°C. Lysates
were mixed with SDS loading buffer and boiled at 100°C for
5min. .e proteins were separated using SDS-PAGE gel and
transferred to PVDF membranes (Millipore, Bedford, MA,
United States). .e membranes were sealed with 5% nonfat
milk and incubated with the following primary antibodies:
α-SMA (1 :1000, Proteintech, China), E-cadherin (1 :1000,
Proteintech, China), N-cadherin (1 :1000, Proteintech,
China), and GAPDH (1 : 5000, Proteintech, China) at 4°C
overnight. .e membranes were incubated with horseradish
peroxidase-linked anti-rabbit or anti-mouse antibody (1 :
3000, Proteintech, China) for 2 h and visualized using a Bio-
Rad ChemiDocTM MP System (Bio-Rad, United States) with
Super ECL Plus reagent (Solarbio, China).

2.11. Statistical Analysis. All data are expressed as mean-
± standard error of the mean. Statistical analysis was per-
formed using one-way ANOVAs followed by post hoc
analysis with Tukey’s tests. Results were considered signif-
icant at P value < 0.05.

3. Results

3.1. JHF Compounds and Predicted Targets. JHF contained
the following 12 herb materials with a total of 548 com-
pounds: Renshen (Ginseng Radix et Rhizoma, 162 com-
pounds), Maidong (Radix Ophiopogonis, 22 compounds),
Dihuang (Radix Rehmanniae, 10 compounds), Gualou
(Fructus et Semen Trichosanthis, 41 compounds), Zhebeimu
(Bulbus Fritillariae 5unbergii, 27 compounds), Mudanpi
(Cortex Moutan Radicis, 28 compounds), Yinyanghuo
(Herba Epimedii Brevicornus, 50 compounds), Baiguo (Se-
men Ginkgo, 53 compounds), Baitouweng (Radix Pulsatillae,
25 compounds), Yiyiren (Semen Coicis, 11 compounds),
Chenpi (Pericarpium Citri Reticulatae, 40 compounds), and
Gouqizi (Lycii Fructus, 79 compounds). Fifty-four of the
compounds revealed by the TCMSP and TCMID were
duplicates, resulting in 494 unique compounds.

We used the STITCH database to predict the selected
compounds’ targets..e compounds were predicted to interact
with 1,304 distinct protein targets with a high level of confi-
dence (Table S1). Figure 2 shows the JHF drug-target network
in a manner that describes its multicomponent and multitarget
therapy. Notably, the number ofmutual putative targets among
the JHF compounds varied, suggesting that these herbs might
have several interactions in the course of treatment.

3.2. Identifying JHF’s Important Targets Using Intersection
Analysis. We collected two sets of disease genes and two sets
of drug targets associated with IPF for reference. We first
looked at the overlap between these gene sets. Among the
IPF patients who participated in the GSE2052 dataset ex-
periment, 25 of the 378 disease genes were differentially
expressed, accounting for 6.6% of all disease genes
(Figure 3(a)). Notably, the KEGG and DrugBank databases
revealed four drug anti-IPF drug targets, accounting for
30.8% of the target genes in the KEGG database.

Figure 3(b) shows the overlap between JHF target genes,
IPF disease genes, and anti-IPF target genes in the KEGG
database. Of the 1,305 JHF target genes, 99 were IPF disease
genes, accounting for 7.59% of all disease genes. Among these,
four were anti-IPF drug target genes: tumor necrosis factor
(TNF), C-Cmotif chemokine (CCL2), interleukin-6 (IL6), and
interleukin-10 (IL10). .is suggests their important role in
IPF treatment. .ese predictions indicated that TNF was
targeted by 13 JHF compounds (kaempferol, quercetin, rus-
cogenin, luteolin, epicatechin, palmitic acid, methyl palmitate,
adenosine, adenosine triphosphate, choline, ginsenoside rg1,
hexadecanoic acid, and spermine), CCL2 was targeted by six
JHF compounds (naringenin, quercetin, rutin, palmitic acid,
adenosine triphosphate, and hexadecanoic acid), IL6 was
targeted by eight JHF compounds (quercetin, luteolin, pal-
mitic acid, adenosine, adenosine triphosphate, dibutyl
phthalate, hexadecanoic acid, and spermine), and IL10 was
targeted by three JHF compounds (quercetin, luteolin, and
adenosine) (Table S1). .e four target genes were also the
target of PFD, which has been approved for IPF treatment [4].
.erefore, we used PFD as a positive control in the following
studies.
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Figure 2: .e drug-target network generated for active JHF compounds. Orange diamonds represent JHF compounds and blue nodes
represent their targets.
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Figure 3: .e overlap between different gene sets. (a) .e overlap of disease genes from DisGeNET (Disease genes), IPF’s differentially
expressed genes from the GSE2052 dataset (Diff genes), and drug target genes for anti-IPF drugs in the KEGG and DrugBank database
(KEGG targets and DrugBank targets). (b).e overlap between disease genes fromDisGeNET, drug target genes of anti-IPF drugs from the
KEGG database, and potential JHF targets.
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3.3. Identifying JHF-Regulated Pathways and Diseases. We
used Cytoscape software to construct KEGG’s drug-target-
pathway network for the anti-IPF drugs (Figure 4(a)). PFD, a
drug commonly used for PF treatment, primarily regulates
processes including the TNF signaling pathway, trans-
forming growth factor-β (TGF-β) signaling pathway, cyto-
kine-cytokine receptor interaction, and cellular senescence.
We used ClueGO, a Cytoscape plugin [23], to analyze the
biological processes involved in the KEGG-identified anti-
IPF drug targets. .e primary biological processes iden-
tified were positive regulation of phospholipase activity,
regulation of endothelial cell proliferation, branching in-
volved in salivary gland morphogenesis and regulation of
vascular endothelial growth factor (VEGF) production
(Figure 4(b)).

Figure 4(c) demonstrates that target genes can partici-
pate in multiple pathways. We used DAVID analysis to
elucidate the important biological pathways that JHF might
regulate through its targets and constructed a target-path-
way network of putative JHF targets. Because disease is an
advanced biological process caused by the dysfunction of
basic biological processes, we only focused on signaling
pathways relevant for biological processes. JHF’s targets
were significantly enriched in 16 pathways (P< 0.01)
(Figure 4(d)). Disease ontology enrichment was conducted
to uncover the therapeutic potential of these putative targets.
.rough “high” strict classification and enrichment score, a
total of 59 disease clusters were related to JHF targets, in-
cluding inflammation, bronchiolitis, and coronary artery
disease (Table S6).

3.4. Target, Pathway, and GO Analysis of IPF’s Differentially
Expressed Genes Targeted by JHF. To further improve
analysis reliability, we mapped the predicted JHF targets to
IPF disease gene network. .is target information revealed
that JHF could directly regulate differentially expressed
genes in IPF (Figure 5(a)). Analyzing these targets with
KEGG database revealed 72 targets, including TGF-β1 and
SMAD3, that participated in 18 pathways, including the
ErbB signaling pathway, thyroid hormone signaling path-
way, and TGF-β signaling pathway (Table S7, Figure 5(b)).
ClueGO plugin analysis through Cytoscape software
revealed that the molecular functions of these targets mainly
included the regulation of kinase regulator activity, protein
kinase regulator activity, positive regulation of phosphatase
activity, and regulation of lipase activity (Figure 5(c)). .eir
biological processes included the regulation of muscle tissue
development, heart valve morphogenesis, positive regulation
of fibroblast proliferation, and regulation of smooth muscle
cell proliferation (Figure 5(d)).

3.5. Experimental Validation. To confirm our predictions
and JHF’s therapeutic effects, we used a well-characterized
rat model of PF that received JHF or PFD treatment. Pre-
vious studies have shown that, compared with the model
group, JHF and PFD significantly attenuated decreased
forced vital capacity and increased lung coefficient [10]. Our
histological examinations showed structural changes in the

alveoli of the PF model group, including collapsed alveolar
spaces, thickening of the alveolar walls, presence of in-
flammatory cells, and excessive collagen fiber deposition.
However, JHF and PFD alleviated this alveolar bleomycin-
induced damage (Figure 6(a)). .e epithelial-mesenchymal
transition (EMT) contributes to the progression of fibrotic
lung disease in humans [24]. TGF-β is an important EMT
inducer and the strongest inducer of extracellular matrix
deposition. .erefore, we observed EMT’s role in the TGF-β
signaling pathway during PF development. Increased
vimentin and N-cadherin expression, but decreased
E-cadherin expression, was observed in the PF model. .is
expression pattern was reversed by JHF administration
(Figure 6(b)). TGF-β and SMAD3 expressions were also
increased in the PF model group compared to the controls,
but protein expression was returned to control levels by JHF
administration (Figure 6(b)).

4. Discussion

Well-known treatment options for PF include antioxidants,
cytokine inhibitors, antifibrotic drugs, and lung transplan-
tation [25]. However, studies regarding these treatments
have only focused on one or two aspects of the lung injury
repair process. Although PFD has a better therapeutic effect
when prescribed for PF in clinical practice, it has only re-
ceived a conditional use recommendation, and its long-term
efficacy and safety are not known [26, 27]. Herbal medicine
has become one of the most important sources of chemical
substances and lead compounds in drug discovery [28].
Network pharmacology has been used to study the complex
components, unknown targets, and pharmacological
mechanisms of TCM prescriptions [29]. .is work presents
a systematic study of the JHF’s anti-IPF mechanisms from
the perspective of target, pathway, network, and efficacy
levels.

Identifying the IPF disease genes, JHF targets, and anti-
IPF drug targets revealed four overlapping genes: TNF,
CCL2, IL6, and IL10. Inappropriate TNF production is
involved in the pathogenesis of many human diseases,
including PF [30, 31]. Furthermore, TNF is known to
affect a multitude of responses that extend far beyond its
proinflammatory properties [32, 33]. CCL2 is associated
with macrophage activation and may have a serious im-
pact on the overall survival of IPF patients [34]. IL6 and
IL10 play an important role in the recruitment, activation,
survival, and differentiation of fibroblasts into myofi-
broblasts in IPF [35, 36]. Notably, although multiple JHF
compounds target these genes, each compound also has
other targets that differ between them. .is reflects TCM’s
multicomponent, multitarget, and synergistic action
mode characteristics.

By constructing and analyzing JHF’s assumed target-
pathway network that regulates IPF’s differentially expressed
genes, we identified five pathways that were the most sig-
nificantly enriched by JHF targets: the thyroid hormone
signaling pathway, chemokine, ErbB, neurotrophin, and
Hippo signaling pathways.
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Figure 4: Identification of targets and pathways for anti-IPF drugs and JHF. (a) A drug-target-pathway network generated from the KEGG
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Figure 5: Target, pathway, and GO analysis of IPF’s differentially expressed genes targeted by JHF. (a) Analysis of the disease genes
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(b) Effects of JHF on epithelial-mesenchymal transition-related proteins and TGF-β signaling pathway proteins.
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mitochondrial biogenesis and bioenergy, thereby regulat-
ing AEC apoptosis [37]. Compared to controls, IPF patients
show increased activity and expression of iodothyronine
deiodinase 2, an enzyme that activates TH, which was
related to disease severity. TH inhibited PF through the
PPARGC1A and PINK1 pathways and its antifibrosis
properties were related to AEC protection and the resto-
ration of mitochondrial function [37].

Multiple chemokines and cytokines induce fibroblast
migration and induce the phenotype switch tomyofibroblasts,
thereby contributing to the occurrence of IPF. Chemokines
and cytokines are expressed and released in alveolar mac-
rophages, which mediate the inflammatory response and fi-
brotic process. During the middle stage of PF, immune cells
secrete chemokines and proinflammatory factors and accel-
erate macrophage migration and secretion, thereby acceler-
ating the immune response [38]. Single-cell sequencing has
shown that IPF upregulates the chemokine signaling pathway
[39]. Based on the RNA sequencing of bronchoalveolar lavage
cells in IPF, GO identified that the chemokine-mediated
signaling pathway and chemokine activity were the most
significantly enriched biological processes and molecular
functions, respectively. Similarly, KEGG pathway analysis
indicated that cytokine-cytokine receptor interaction, the
chemokine signaling pathway, and the TNF signaling path-
way showed the most significant overexpression [40].

ErbB signaling is enriched in the plasma proteome of IPF
patients [41]. Tyrosine kinase receptor families include Her1
(also known as epidermal growth factor receptor (EGFR)),
Her2, Her3, and Her4. Several of these receptors are known
to play an important role in epithelial remodeling, epithelial
hyperplasia, and models of fibrosis [42–44]. EGFR plays a
key role in the maintenance and repair of epithelial tissue.
Identifying the interactions between c-erbB receptors and
their ligands might help to determine their role in the
maintenance and repair of bronchial epithelium [45].

Neurotrophin signaling is performed via the binding of
NT ligands to their homologous high-affinity receptors, i.e.,
neurotrophic tyrosine kinase receptors. NT ligands and their
homologous receptors have been detected in mice and adult
human lung tissues [46–48]. Mounting evidence indicates
that the expression of NTs and their homologous receptors
in the NT signaling pathways is changed in lung diseases.
NT3 concentrations are reduced in chronic obstructive
pulmonary disease [49]. Expression of NT4/5 and its ho-
mologous receptor, TrkB, is increased in transplanted hu-
man lungs with IPF and in the lungs of mice with bleomycin-
induced PF. A dysregulated TrkB/NT4/5 axis might lead to
PF-related pathology, including alveolar type II cell hy-
perplasia and fibroblast proliferation [50].

.e Hippo signaling pathway plays a key role in many
important pathological processes, such as organ growth
control, cell proliferation, apoptosis, tissue regeneration, and
tumor suppression [51, 52]. Yes-associated protein (YAP) is
a crucial downstream effector protein of Hippo. IPF patients
show increased YAP activity. Interaction of the YAP and
mTOR/p-S6 signaling pathways induces cell proliferation
and migration while inhibiting epithelial cell differentiation
[53]. Melatonin can attenuate TGF-β1-induced fibrogenesis

in pulmonary fibroblasts by activating the Hippo pathway,
resulting in the promotion of nuclear translocation and
increasing YAP1 inactivation and degradation in the cyto-
plasm [54].

In addition, TGF-β is an important EMT inducer and is
the strongest inducer of extracellular matrix deposition.
TGF-β can stimulate fibroblasts to synthesize extracellular
matrix components and induce matrix metalloproteinase
expression [55], including SMAD-dependent and non-
SMAD-dependent pathways. .e SMAD complex can
target many genes that activate or inhibit EMT-related
transcription factor expression by interacting with DNA
sequence-specific transcription factors, coactivators, or
coinhibitors [56, 57]. VEGF is a potent angiogenesis
promoter. Abnormal angiogenesis is a central character-
istic of IPF development and progression. VEGF signaling
is enriched in the plasma proteome of IPF patients, indi-
cating its role in IPF pathogenesis [41]. In the VEGF
signaling pathway, VEGF binding to VEGF receptor 2
(VEGFR2) regulates cell migration, survival, and perme-
ability by activating PI3K in the PI3K-Akt signaling
pathway [58, 59]. Some studies have shown that TGF-β1
can stimulate VEGF-A expression in human fetal pul-
monary fibroblasts through the Smad3 signaling pathway
[60]. .ese results indicate that targeting the VEGF and
VEGF signaling pathway might produce powerful and
effective IPF therapeutic targets.

Some “hub” signal molecules show multiple overlapping
pathway routes that form complex functional modules [61].
.is complex crosstalk among pathways and specific envi-
ronmentally dependent functions allows JHF to ameliorate
IPF through multiple targets and channels.

5. Conclusions

.e current study systematically analyzed JHF’s pharmaco-
logical mechanisms underlying IPF treatment to provide
guidance for clinical practice. .e study investigated the un-
derlying mechanisms of a common TCM at the levels of the
target, pathway, network, and biomedical efficacy; obtained
information regarding JHF’s therapeutic targets that might
affect IPF’s differentially expressed genes; and elucidated the
biological functions of these targets and their important
pathways. In addition, this work lays a foundation for iden-
tifying therapeutic treatments for complex diseases like IPF.
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