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Abstract

Study Objectives: 1) To investigate the impact of acetazolamide, a drug commonly prescribed for altitude sickness, on
cortical oscillations in patients with obstructive sleep apnea syndrome (OSAS). 2) To examine alterations in the sleep EEG
after short-term discontinuation of continuous positive airway pressure (CPAP) therapy.

Design: Data from two double-blind, placebo-controlled randomized cross-over design studies were analyzed.

Setting: Polysomnographic recordings in sleep laboratory at 490 m and at moderate altitudes in the Swiss Alps: 1630 or
1860 m and 2590 m.

Patients: Study 1: 39 OSAS patients. Study 2: 41 OSAS patients.

Interventions: Study 1: OSAS patients withdrawn from treatment with CPAP. Study 2: OSAS patients treated with autoCPAP.
Treatment with acetazolamide (500–750 mg) or placebo at moderate altitudes.

Measurements and Results: An evening dose of 500 mg acetazolamide reduced slow-wave activity (SWA; approximately
10%) and increased spindle activity (approximately 10%) during non-REM sleep. In addition, alpha activity during wake after
lights out was increased. An evening dose of 250 mg did not affect these cortical oscillations. Discontinuation of CPAP
therapy revealed a reduction in SWA (5–10%) and increase in beta activity (approximately 25%).

Conclusions: The higher evening dose of 500 mg acetazolamide showed the ‘‘spectral fingerprint’’ of Benzodiazepines,
while 250 mg acetazolamide had no impact on cortical oscillations. However, both doses had beneficial effects on oxygen
saturation and sleep quality.
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Introduction

Obstructive sleep apnea syndrome (OSAS) is a highly prevalent

respiratory disorder characterized by recurrent episodes of partial

or complete collapse of the upper airways during sleep [1],

affecting 3–7% of the population [2]. An established and effective

therapy for OSAS is treatment with continuous positive airway

pressure (CPAP), which prevents obstructive apneas, stabilizes

sleep [3,4] and reduces daytime symptoms [5]. It is known that

OSAS patients show alterations in brain activity, for example a

slowing of the EEG during waking compared to healthy controls

[6,7], as well as reduced slow-wave activity (SWA), theta and

sigma activity and slowing of sleep spindles during sleep [8–11].

The efficacy of CPAP treatment is reflected in the normalization of

cortical activity after several months, as indicated by increased

SWA during non-REM sleep and absent EEG slowing during

wakefulness [6,12].

Since mountain tourism has increased during the last decades, it

is nowadays popular to spend weekends and holidays at mountain

resorts or lodges located at moderate altitudes between 1500 and

3000 m. Sleep at altitude is altered in healthy individuals. A shift

towards lighter sleep together with an increase in central apneas

has been observed at altitude [13–16]. Compared to the

obstructive apneas observed at baseline in OSAS patients, central

apneas induced by an ascent to altitude are characterized by the

intermittent absence of the drive to breathe [17] and are generated

by the brainstem respiratory center as a response to changes in

blood gas concentrations [18]. One treatment for central apneas at

altitude is acetazolamide, a carbonic anhydrase inhibitor fre-

quently used in the treatment of acute mountain sickness [19,20].
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Acetazolamide prevents central apneas at altitude through

metabolic acidosis by its diuretic effects [21]. Sleep of OSAS

patients at 490 m and at 1630 to 2590 m with and without CPAP

treatment was investigated in three previous studies [3,22,23], in

which acetazolamide was shown to reduce central apneas

compared to placebo during sojourns to moderate altitude

[3,22]. In addition, as observed in healthy subjects [24],

acetazolamide in OSAS patients reduced the apnea/hypopnea

index compared to placebo and increased oxygen saturation and

improved sleep quality (sleep efficiency, arousals, slow-wave sleep)

[3,22].

While the positive effect of acetazolamide on breathing and

sleep architecture at altitude has been investigated [19], its effect

on cortical oscillations remains unknown. Indeed, acetazolamide is

known to reduced cortical excitability and for this reason has been

used in the treatment of epilepsy [25].

A primary aim of the present study was to examine the effect of

acetazolamide on cortical activity as measured by the sleep and

wake EEG at moderate altitude in OSAS patients. We used

quantitative analysis of the sleep and wake EEG, namely spectral

analysis, to quantify the changes in cortical activity. Due to its

frequent use and beneficial effect on sleep quality, the impact of

acetazolamide on brain function is of great interest. As some

patients discontinue their CPAP therapy for short time periods for

various reasons a secondary aim of this study was to investigate

changes in cortical oscillations during non-REM sleep resulting

from short-term discontinuation of CPAP therapy in previously

CPAP-treated OSAS patients.

Materials and Methods

We analyzed data from two randomized, placebo-controlled,

double-blind crossover trials [3,22] to evaluate the effect of two

doses of acetazolamide on the non-REM sleep and wake EEG

spectra in OSAS patients with and without CPAP treatment. In

both studies patients underwent baseline recordings at 490 m and

two study nights at moderate altitudes, during which they received

acetazolamide and placebo (see Figure 1; for study protocols see

Latshang et al. [3] and Nussbaumer-Ochsner et al. [22]). The two

studies were conducted in Zurich, Switzerland (baseline) and

Davos, Switzerland (moderate altitude) according to a similar

study protocol [3,22]. Patients were studied during 2 sojourns of 3

days at moderate altitude, 2 days (one acclimatization day) at

1860 m (study 1) or 1630 m (study 2), 1 day at 2590 m (both

studies), separated by a 2-week washout period at low altitude (,

800 m). The studies are characterized by two primary methodo-

logical differences (see Figure 1): 1) Patients in study 1 [22] stopped

CPAP treatment starting 3 nights before study periods at altitude

and baseline and received no CPAP during the study (we refer to

this condition as ‘no CPAP’). On the other hand, study 2

participants were treated with autoCPAP (mask pressure 5–15 cm

H2O [3]; referred to as ‘with CPAP’). 2) The dose of

acetazolamide administered in the evening was twice as high in

study 2 [3] compared to study 1 (Nussbaumer-Ochsner et al. [22];

500 mg compared to 250 mg). In both studies, 250 mg of

acetazolamide was administered in the morning. In addition,

patients in study 2 performed an additional recording at 490 m on

the last of 4 nights of CPAP withdrawal to assess the effect of short-

term CPAP withdrawal [3].

Participants
Male and female patients with OSAS receiving long-term CPAP

treatment, living at low altitude (,800 m) participated in the

study. All participants had a prior diagnosis of OSAS based on

excessive sleepiness and an elevated obstructive apnea/hypopnea

index (AHI; .10/h) with predominant obstructive events prior to

initiation of CPAP treatment. Thirty-nine of 49 subjects in study 1

(mean age (SD): 62 (7.6) years; obstructive AHI in the range of 16/

h to 90/h at 490 m, Table S1 in File S1) and 41 of 51 subjects in

study 2 (60 (8.5) years; obstructive AHI 18/h to 94/h at 490 m,

Table S2 in File S1) were included in the present analysis. The

exclusion criteria for EEG analyses were insufficient quality of the

non-REM sleep EEG spectra due to artifacts. Details on

demographics, study designs and inclusion/exclusion criteria have

been reported previously [3,22].

Ethics Statement
Both studies were approved by the ethics committee of the

Canton of Zurich (Switzerland) and patients gave their written

informed consent. The studies were registered (clinicaltrials.gov;

ID#NCT00714740 and ID#NCT00928655).

Polysomnographic recordings
At each session, nighttime sleep was polysomnographically

recorded with Alice5 (Philips Respironics AG, Zofingen, Switzer-

land). The EEG (derivation C3A2), submental EMG, EOG and

respiratory signals consisting of calibrated inductance plethysmo-

graphy, nasal pressure swings and pulse oximetry were measured

[3,22]. The EEG was sampled at 200 Hz (high-pass filter at

0.32 Hz; low-pass filter at 100 Hz; notch filter at 50 Hz). Sleep

stages (30-s epochs) and arousals were visually scored according to

standardized criteria [17,26].

Quantitative EEG analysis
Spectral analysis was performed on consecutive 30-s epochs

(FFTW approach, Hanning window, averages of six 5-s epochs;

frequency resolution 0.2 Hz). The three lowest frequency bins

(0.2–0.6 Hz) were excluded from analysis because of their

sensitivity to low frequency artifacts. Spectral data were analyzed

up to 20 Hz.

Non-REM sleep EEG power density spectra were calculated

over the minimal common length of non-REM sleep within

individuals. REM sleep EEG spectra could not be analyzed as

subjects in study 1 (no CPAP) had insufficient amounts of REM

sleep due to frequent apneas. Average wake EEG power density

spectra were determined over all available epochs per night (i.e.

after lights out), if all five study nights included at least 20 artifact-

free 30-s epochs of waking. A wake EEG analysis was performed

for 30 (of 39 in study 1) and 33 subjects (of 41 in study 2). Artifacts

of both, sleep and wake EEG, were identified semi-automatically.

Epochs were excluded whenever power in the beta (20–40 Hz)

and delta (0.8–4.6 Hz) band exceeded a threshold based on a

moving average determined over twenty 30-s epochs [27]. A

detailed analysis of the sleep spindle peak height and frequency

was performed. Individual peaks in the spindle frequency range

(10 to 15 Hz) were determined visually and spindle peak height

was calculated as height of the individual peak minus background

activity [27,28]. Further analysis of the wake alpha peak frequency

was performed in a similar manner as the spindle peak analysis.

Statistical analysis
Effect of altitude and acetazolamide treatment. Sleep

and respiratory variables for study 1 and 2 were summarized as

medians and interquartile ranges (Table S1 and S2 in File S1).

Comparisons between measurements at altitude and baseline and

the effect of acetazolamide compared to placebo were examined

by Wilcoxon signed rank tests. To investigate the impact of

Impact of Acetazolamide on Cortical Activity
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altitude and treatment (placebo vs. acetazolamide) on the non-

REM sleep EEG spectra, a linear mixed model ANOVA with

factors Altitude [490 m, 1860 m resp. 1630 m and 2590 m],

Treatment [acetazolamide or placebo], Order of Treatment [acetazo-

lamide-placebo, placebo-acetazolamide] and their interaction was

performed per frequency bin (Figure 2 and 3).
Effect of treatment with acetazolamide compared to

placebo. Since the mixed model ANOVA with factors Altitude

and Treatment revealed an effect of treatment in study 2 (Figure 3),

we further investigated the impact of acetazolamide on the non-

REM sleep EEG in this study. Relative spectra of acetazolamide

compared to placebo at both altitudes (acetazolamide/placebo at

1630 m and acetazolamide/placebo at 2590 m) are shown in

Figure 4. Differences between conditions were investigated by bin-

wise paired t-tests. In addition, visually detected spindle peak

characteristics (frequency and height) were compared between

acetazolamide and placebo conditions by paired t-tests.

Similar to the sleep EEG analysis, wake EEG spectra of

acetazolamide and placebo conditions at both altitudes were

compared by bin-wise paired t-tests and wake alpha peak

frequencies of study 1 and 2 were compared by paired t-tests at

both altitudes (Figure 5).

As single frequency bins may reach significance by chance but

would not be clustered in a band, we considered it relevant for our

interpretation only if $5 consecutive frequency bins (a range of

1.0 Hz) showed a significant change.
Effect of short-term CPAP discontinuation. We investi-

gated the impact of short term CPAP discontinuation on the non-

REM sleep EEG at baseline and both moderate altitudes

(Figure 6). The effect of CPAP discontinuation was examined A)

at 490 m by a within subject comparison (bin-wise paired t-tests) of

the two recordings at 490 m performed in study 2; by a between

subject comparison (bin-wise unpaired t-test): B) CPAP treatment

(placebo condition at 1630 m, study 2) vs. no CPAP treatment

(placebo condition at 1860 m, study 1) and C) CPAP treatment

(placebo condition at 2590 m, study 2) vs. no CPAP treatment

(placebo condition at 2590 m, study 1). Again, only if $5

consecutive frequency bins showed a significant change were they

considered relevant.

Results

Effect of acetazolamide on non-REM sleep and
respiratory variables

Similar to the previous analysis of the full dataset [3,22],

acetazolamide reduced central apneas at altitude and increased

sleep quality, oxygen saturation (SpO2) and carbon dioxide (CO2;

Table S1 and Table S2 in File S1).

Effect of 250 mg acetazolamide on non-REM sleep EEG
spectra (Study 1, n = 39)

An evening dose of 250 mg acetazolamide did not affect the

non-REM sleep EEG spectra. On the other hand, sleep EEG

power density in the lower frequency range (0.8–11.4 Hz; Figure 2)

was reduced in an altitude-dependent manner (mixed model

ANOVA with factors Altitude, Treatment and Order of Treatment). No

interactions between Altitude and Treatment were observed.

Effect of 500 mg acetazolamide on non-REM sleep EEG
spectra (Study 2, n = 41)

Spectral analysis of the non-REM sleep EEG revealed an

altitude- and treatment-dependent reduction of power density in

the lower frequency range (0.8–11.6 Hz; Figure 3; mixed model

ANOVA with factors Altitude, Treatment and Order of Treatment).

Acetazolamide and altitude both contributed to the reduction in

Figure 1. Design of the two studies (Study 1 [16]; Study 2 [3]). The n indicates the number of participants included in the present analyses. In
both studies, patients underwent two 3-day sojourns at two moderate altitudes, once receiving acetazolamide and once receiving placebo with a 2
week washout period at baseline level (BL, 490 m). The first night at altitude (1860 m in study 1 and 1630 m in study 2) always served for
acclimatization. The order of altitude exposure of the two study nights at lower (1860 m and 1630 m) and higher altitude (2590 m) and at baseline
(BL, 490 m) were performed in a randomized cross-over design with regard to the order of altitude exposure. Patients in study 1 stopped CPAP
treatment starting 3 nights before study periods at altitude and baseline. In total 5 study nights were analyzed in study 1 and 6 in study 2.
doi:10.1371/journal.pone.0093931.g001

Impact of Acetazolamide on Cortical Activity
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Figure 2. Non-REM sleep EEG power density spectra of study 1 (no CPAP treatment [16]): Moderate altitude compared to baseline.
A) Average spectra (n = 39) at moderate altitude (1860 m and 2590 m) of the acetazolamide (250 mg in the evening) and placebo condition are
plotted relative to baseline sleep (490 m; line at 1). Frequency resolution: 0.2 Hz. B and C) F-values of the frequency bins with significant effect of
factor Treatment and Altitude of mixed model ANOVA with factors Altitude, Treatment and Order of treatment. Bins, which showed a trend, are
indicated with white bars. D) Average absolute non-REM sleep EEG power density spectra of the 5 nights.
doi:10.1371/journal.pone.0093931.g002

Figure 3. Non-REM sleep EEG power density spectra of study 2 (with CPAP treatment [3]): Moderate altitude compared to baseline.
A) Average spectra (n = 41) at moderate altitude (1630 m and 2590 m) of the acetazolamide (500 mg in the evening) and placebo condition are
plotted relative to baseline sleep (490 m; line at 1). Frequency resolution: 0.2 Hz. B and C) F-values of the frequency bins with significant effect of
factor Treatment and Altitude of mixed model ANOVA with factors Altitude, Treatment and Order of treatment. Bins, which showed a trend, are
indicated with white bars. D) Absolute non-REM sleep EEG power density spectra of the 5 nights.
doi:10.1371/journal.pone.0093931.g003

Impact of Acetazolamide on Cortical Activity
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the lower frequency range (Treatment: 1–11.8 Hz, Altitude: 0.8–

6.8 Hz and 9.6–10.8 Hz). In addition, Altitude had an effect on the

higher frequency range (14.8–20 Hz), while Treatment revealed

differences at 12.8–13.8 Hz, indicating changes in the spindle

frequency range (11–16 Hz; sigma activity). No interactions

between Altitude and Treatment were present.

Effects of acetazolamide compared to placebo
Non-REM sleep EEG spectra. Since the ANOVA revealed

an effect of treatment (evening dose of 500 mg) in study 2, we

further investigated the effect of acetazolamide by comparing EEG

spectra of acetazolamide to placebo at each altitude (e.g.

acetazolamide/placebo at 1630 m). In this way, effects that are

due to altitude are present in both, placebo and acetazolamide

condition. A direct comparison of the two should therefore reveal

the impact of acetazolamide on the EEG spectrum independent of

altitude. At both altitudes acetazolamide reduced power density in

the lower frequency range from 1 to 9.6 Hz by approximately

10% compared to placebo at the corresponding altitude (Figure 4).

Furthermore, power density at 13.2–13.4 Hz was increased by 10–

15%. This change in the spindle frequency range (sigma activity)

suggests that spindle peak characteristics may have been affected

(Figure 3D, absolute spectra). Thus, we further investigated the

effect of acetazolamide on the spindle peak frequency and height

in a subset of 34 subjects (those that showed a spindle peak in the

non-REM sleep EEG spectra; see methods). Acetazolamide

slightly reduced the frequency of the spindle peak (1630 m:

0.1 Hz, p,0.05; 2590 m: 0.2 Hz, p,0.001) and increased peak

height (1630 m: 10%, p,0.01; 2590 m: 9%, p,0.1).

Wake EEG spectra. Similar to the non-REM sleep EEG, the

wake EEG spectra (after lights off) were only affected after

administration of an evening dose of 500 mg acetazolamide (study

2; Figure 5). Irrespective of altitude power in the 3.8–5.2 Hz and

13.6–15 Hz range was increased by acetazolamide (Figure 5C and

Figure 4. Effect of acetazolamide on non-REM sleep EEG
spectra compared to placebo at 1630 m and 2590 m (Study
2). Non-REM sleep EEG power density spectra of the acetazolamide
conditions (500 mg in the evening) at moderate altitude (1630 m and
2590 m) are plotted relative to the placebo conditions at the
corresponding altitude (line at 1). Significant differences (p,0.05,
paired t-test) between acetazolamide and placebo are indicated by ‘‘n’’
for 2590 m and ‘‘m’’ for 1630 m (n = 39). Frequency resolution: 0.2 Hz.
doi:10.1371/journal.pone.0093931.g004

Figure 5. Effect of acetazolamide on wake EEG spectra during the sleep episode. In study 1 (A and B; ‘no CPAP treatment’; n = 30) 250 mg
acetazolamide were administered in the evening and in study 2 (C and D; ‘with CPAP treatment’; n = 33) 500 mg. Acetazolamide was compared to
placebo at both altitudes. ‘‘m’’ Increase in spectral power acetazolamide compared to placebo. ‘‘.’’ Decrease in spectral power acetazolamide
compared to placebo (p,0.05 paired t-test).
doi:10.1371/journal.pone.0093931.g005

Impact of Acetazolamide on Cortical Activity
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D) whereas alpha power (8.6–11.6 Hz) was reduced compared to

placebo. Since the change in the alpha range was not centered on

the alpha peak, we suspected that administration of acetazolamide

led to a shift in the alpha peak frequency. Additional analysis of

the alpha peak frequency confirmed that similar to the spindle

peak, the location of the peak was slightly shifted to lower

frequencies by administration of acetazolamide (2650 m: 0.3 Hz,

p,0.05; 1630 m: 0.2 Hz, p,0.1).

Effects short-term discontinuation of CPAP treatment
The effect of short-term CPAP discontinuation on the non-

REM sleep EEG was investigated at 490 m and both moderate

altitudes (Figure 6). Within subject comparison were only possible

at 490 m where the subjects of study 2 were recorded with and

without CPAP treatment (see methods). Abstaining from CPAP

during one night resulted in reduced power in the delta range

(0.8–4.8 Hz; approximately 5%) and increased power in the beta

range (14.6–20 Hz; approximately 25%; Figure 6).

Discussion

This is the first study examining the effect of two doses of

acetazolamide on cortical activity in OSAS patients with and

without CPAP treatment. Compared to placebo, acetazolamide

reduced non-REM sleep EEG spectral power in the lower

frequency range (1 to 9.6 Hz) and increased sleep spindle (sigma)

activity independent of altitude. In addition, acetazolamide slightly

slowed the frequency of the spindle peak in non-REM sleep EEG

spectra and the alpha peak in waking EEG spectra. Marked

changes in brain activity were also observed at baseline and both

moderate altitudes as a result of discontinued CPAP treatment.

Short-term discontinuation of CPAP treatment for a few nights

reduced delta power (0.8–4.8 Hz) and increased beta power (14.6–

20 Hz) most likely due to the occurrence of obstructive apneas.

Acetazolamide compared to placebo
Acetazolamide is a well-established and frequently used drug to

treat acute mountain sickness (AMS) [19] and associated high-

altitude periodic breathing [24]. In addition, acetazolamide is used

to treat patients suffering from central sleep apnea due to heart

failure [29]. The recommended dosage of acetazolamide is 250–

750 mg per day [30]. In the present two studies subjects received

500 mg in study 1 (250 mg in the morning and evening [22]) and

750 mg in study 2 (250 mg in the morning, 500 mg in the evening

[3]). While the dose administered in the morning was 250 mg in

both studies, the evening-dose was twice as high in study 2

compared to study 1 (500 mg vs. 250 mg). Since the half-life time

of acetazolamide is 6–9 hours [31], one can assume that the

morning-dose had minimal influence at night and the main effect

on sleep and breathing variables was due to evening doses.

Independent of the dose, acetazolamide reduced the total AHI, by

abolishing central apneas, increased SpO2 and reduced PCO2 in

both studies [3,22]. In terms of sleep architecture, waking was

reduced and percent of non-REM sleep and sleep efficiency were

increased with acetazolamide. Changes in cortical activity as

investigated by spectral analysis of the sleep and waking EEG

were, however, only observed with the evening-dose of 500 mg in

study 2.

The reduction of EEG power in the lower frequency range (1 to

9.6 Hz) and increase in spindle power after treatment with

acetazolamide is very similar to the sleep EEG changes observed

after administration of Benzodiazepines or analogs (Z-drugs) [32–

35]. Binding of Benzodiazepines to brain GABAA receptors

promotes binding of GABA and leads to hyperpolarization of the

cells. Benzodiazepines thereby reduce the excitability of neurons

[36]. The GABAA ionophore is selectively permeable to chloride

(Cl-) and bicarbonate (HCO3
-) [37]. Opening of the membrane

channel by GABA leads to a slight efflux of HCO3
- and influx of

Cl-, resulting in a more negative membrane potential [25]. Similar

to Benzodiazepines, acetazolamide might lead to an increased

efficacy of GABA-mediated inhibition. As a carbonic anhydrase

inhibitor, acetazolamide leads to renal bicarbonate excretion and

limits the HCO3
- efflux from the GABA channel [25]. We

Figure 6. Impact of CPAP treatment on non-REM sleep EEG
spectra at 490 m and at moderate altitudes. A) Data of study 1.
Non-REM sleep EEG power density spectra of 41 OSAS patients sleeping
at 490 m ‘with CPAP’ (line at 1; AHI = 6.3 [1/h]) compared to sleeping
during interrupted CPAP treatment (‘no CPAP’; AHI = 58.3 [1/h]). ‘‘m’’
p,0.05 paired t-test comparing CPAP to ‘no CPAP’. B) Non-REM sleep
EEG power density spectra of OSAS patients during ‘no CPAP’ (study 1,
1860 m placebo condition; n = 39) compared to ‘with CPAP’ (line at 1;
study 2, 1630 m placebo condition; n = 41) and C) non-REM sleep EEG
power density spectra of OSAS patients during ‘no CPAP’ (study 1,
2590 m placebo condition) compared to ‘with CPAP’ (line at 1; study 2,
2590 m placebo condition). ‘‘m’’ p,0.05 unpaired t-test ‘with CPAP’
compared to ‘no CPAP’.
doi:10.1371/journal.pone.0093931.g006
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therefore attribute the benzodiazepine-like effect (spectral ‘‘finger-

print’’) of acetazolamide on the sleep EEG to reduced excitability

of neurons due to GABAergic hyperpolarization induced by a

reduction in bicarbonate concentration. Due to their inhibiting

effect on neuronal excitability both, acetazolamide and Benzodia-

zepines, are also effective as anticonvulsants in epileptic patients

[25,36]. The mechanisms explaining how increased GABAergic

inhibition leads to the spectral ‘‘fingerprint’’ of Benzodiazepines,

however remain unknown.

Both doses of acetazolamide were, however, sufficient to reduce

the central AHI and stabilize sleep, but only the higher evening-

dose (500 mg) revealed changes in brain oscillations observed with

spectral analysis. Whether the changes in brain oscillations

observed at the higher dose are beneficial or detrimental is

unclear. On the one hand, the absence of changes to cortical

oscillations of the lower dose may be advantageous as cortical

oscillations remain unchanged. On the other hand, benzodiaze-

pines and analogs are used to improve sleep quality and the

benzodiazepine-like effect of the higher dose on cortical oscilla-

tions may positively impact sleep. Future studies should investigate

the dose-dependent effect of acetazolamide on not only cortical

oscillations but also other outcomes measures, such as behavioral

testing (e.g. daytime alertness), to reach a final conclusion about

the best dosage.

Short-term discontinuation of CPAP therapy
Treatment with CPAP improves sleep quality [3,4,38] and

reduces daytime symptoms [5,6,39]. For example slow-wave and

REM sleep duration as well as sleep efficiency are increased with

CPAP treatment and in turn the duration of stage 1 sleep as well as

the number of arousals is reduced [3,4,6,38]. In addition, daytime

sleepiness (as measured by MSLT), cognitive performance and

mood were improved after several weeks of CPAP treatment

[5,6,39]. In contrast to the aforementioned studies which

examined previously untreated patients, we measured the impact

of short-term discontinuation of CPAP treatment. We observed

that independent of altitude (490 m, 1630/1860 m and 2590 m)

non-REM sleep slow-wave activity (SWA; 0.8–4.6 Hz) was

reduced and beta activity increased, if OSAS patients discontinued

their CPAP treatment for a few days. This observation is in

agreement with the reduction in SWA and increase in beta activity

observed during epochs of stage 2 sleep containing a respiratory

disturbance in healthy subjects sleeping at moderate altitude [40].

A reduction in SWA and increase in beta activity was also

observed in untreated OSAS patients compared to healthy

controls [9]. We therefore attribute the alterations in brain

oscillations observed during a night where patients discontinued

CPAP treatment mainly to be due to respiratory disturbances and

subsequent micro arousals or EEG activation, while other factors

such as fluctuations in oxygen saturation may have only minor

effects on EEG activity.

SWA is considered a reliable indicator of sleep depth or sleep

intensity and is used to measure sleep homeostasis [41].

Suppression of SWA due to sleep disturbances, sleep restriction

or sleep deprivation leads to increased daytime sleepiness and

impaired performance [42,43]. The impact of CPAP treatment on

SWA in sleep apnea patients was investigated by Heinzer et al.

[12]. They observed an increase in mean SWA after 9 months of

CPAP treatment concurrent with a restoration of the physiologic

decay of SWA across the night. In the same study, SWA in

untreated patients was positively correlated with daytime sleepi-

ness as assessed by MSLT. Even short-term discontinuation from

CPAP treatment may therefore have adverse effects on daytime

functioning of patients suffering from OSAS.

The effect of altitude on the sleep EEG spectra of OSAS
patients

A consistent altitude-effect on the non-REM sleep EEG spectra

is in agreement with previous findings in healthy subjects [27].

Power in the lower frequency range (0.8–11.6 Hz) was reduced in

an altitude-dependent manner, independent of CPAP treatment.

These changes are further discussed in Discussion S1 in the File

S1.

Conclusions

In summary, using quantitative analysis of the EEG as a

measure of cortical oscillations, we show that acetazolamide affects

cortical oscillations during sleep and wakefulness in a dose-

dependent manner. We demonstrated that discontinuation of

CPAP treatment has immediate adverse effects on SWA, which is

known to reflect the restorative functions of sleep. Last, we

confirmed a reduction in SWA with increasing altitude in patients

suffering from OSAS as previously observed in healthy subjects.

Supporting Information

File S1. Table S1. Sleep and respiratory variables in study 1 [1].

OSAS patients withdrawn from CPAP treatment. *p,0.05,

compared to 490 m (Wilcoxon signed ranks test). {p,0.05,

compared to corresponding placebo condition at the same altitude

(Wilcoxon signed ranks test). Data are shown as medians and

interquartile ranges. AHI: Apnea/Hypopnea Index; SpO2:

Oxygen saturation; etCO2: End tidal carbon dioxide pressure;

REMS: Rapid-eye movement sleep; SWS: Slow-wave sleep; TST:

Total sleep time; TIB: Time in bed; Sleep efficiency. TST as

percentage of TIB. N = 39. Table S2. Sleep and respiratory

variables in study 2 [2]. OSAS patients treated with CPAP. *p,

0.05, compared to 490 m with CPAP (Wilcoxon signed ranks).

{p,0.05, compared to corresponding placebo condition at the

same altitude (Wilcoxon signed ranks). Data are shown as medians

and interquartile ranges. AHI: Apnea/Hypopnea Index; SpO2:

Oxygen saturation; PtcCO2: Transcutaneous carbon dioxide

pressure; REMS: Rapid-eye movement sleep; SWS: Slow-wave

sleep; TST: Total sleep time; TIB: Time in bed; Sleep efficiency.

TST as percentage of TIB. N = 41. Discussion S1. Supporting

discussion. References S1. Supporting references.
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