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ABSTRACT Understanding the consequences of local adaptation at the genomic diversity is a central goal in
evolutionary genetics of natural populations. In species with large continuous geographical distributions the
phenotypic signal of local adaptation is frequently clear, but the genetic basis often remains elusive. We
examined the patterns of genetic diversity in Pinus sylvestris, a keystone species in many Eurasian ecosystems
with a huge distribution range and decades of forestry research showing that it is locally adapted to the vast
range of environmental conditions. Making P. sylvestris an even more attractive subject of local adaptation
study, population structure has been shown to be weak previously and in this study. However, little is known
about the molecular genetic basis of adaptation, as the massive size of gymnosperm genomes has prevented
large scale genomic surveys. We generated a both geographically and genomically extensive dataset using a
targeted sequencing approach. By applying divergence-based and landscape genomics methods we
identified several loci contributing to local adaptation, but only few with large allele frequency changes
across latitude. We also discovered a very large (ca. 300 Mbp) putative inversion potentially under selection,
which to our knowledge is the first such discovery in conifers. Our results call for more detailed analysis of
structural variation in relation to genomic basis of local adaptation, emphasize the lack of large effect loci
contributing to local adaptation in the coding regions and thus point out the need for more attention toward
multi-locus analysis of polygenic adaptation.
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Populations of species with vast continuous distributions can inhabit
very different environments. These populations are often locally
adapted, defined as each population having higher fitness than any

introduced population at its home site (Kawecki and Ebert 2004),
preferably demonstrated by performing reciprocal transplant exper-
iment (Savolainen et al. 2013) as has been done with many plant
species, such as the Arabidopsis genus (e.g., Leinonen et al. 2011;
Ågren and Schemske 2012; Hämälä et al. 2018). Local adaptation can
also be inferred from patterns of phenotypic variation or environ-
mental correlation, as has been shown for example, in Drosophila
melanogaster (Adrion et al. 2015), humans (Fan et al. 2016) and also
forest trees (Giertych 1991; Mimura and Aitken 2007; Savolainen
et al. 2007; Alberto et al. 2013b; Prunier et al. 2016; Gárate-Escamilla
et al. 2019; Pyhäjärvi et al. 2020).

Local adaptation with a polygenic basis has received more atten-
tion lately, because a great deal of adaptive variation is quantitative
with multiple underlying loci (Buckler et al. 2009; Rockman 2012;
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Berg and Coop 2014; Yeaman 2015; Hall et al. 2016; Boyle et al. 2017),
also in forest trees (Lind et al. 2018). A well-known model of
polygenic adaptation of a single population in a new environment
is presented by the Fisher/Orr model (Fisher 1918; Orr 1998) which
predicts an exponential distribution of QTL effects (see Barton &
Keightley 2002). However, local adaptation arises due to differential
selection in different populations in variable environments, possibly
connected by gene flow. This kind of selection often results in
phenotypic clines (Huxley 1938). Several theoretical predictions
for the underlying genetic architecture of clines have been proposed.
While differential selection along environmental gradients in con-
tinuous populations on single locus governed traits is expected to
result in allele frequency clines (e.g., Slatkin 1973), for polygenic
models the expectations are more complex.

Barton (1999) has examined a model with polygenic architecture
where a subset of loci will have successive, sharp allele frequency
clines along the environmental gradient and maintain the phenotypic
mean close to the optimum. The underlying loci are, perhaps
unrealistically, expected to have similar effect size on the trait. Such
sharp allele frequency clines would be seen as FST outliers, although
the majority of loci governing the underlying traits may remain
undetected as most alleles are expected to stay near fixation through-
out the range in this model.

Latta (1998, 2003) and LeCorre and Kremer (2003, 2012; Kremer
and Le Corre 2012) show that in a high gene flow and strong selection
scenario of a polygenic trait, the contribution of covariance between
loci becomes more important than between population allele fre-
quency differentiation. Also, in a simulation study Yeaman (2015)
showed that local adaptation is indeed a possible outcome even when
only small effect alleles are present given that there is enough standing
genetic variation. Most importantly in this model, the contributions
of individual loci may be transient making detection of the contrib-
uting loci more difficult. Nonetheless, allele frequency clines have
been observed in many empirical studies (e.g., Schmidt et al. 2008;
Adrion et al. 2015; Wang et al. 2018).

Even with genome-wide datasets of tens or hundreds of thousands
of loci sampled across localities, identifying the loci underlying
adaptive clinal variation remain a challenge. The majority of methods
for uncovering adaptive loci are based on the island model of
population structure (Lewontin and Krakauer 1973; Foll and Gag-
giotti 2008; Excoffier et al. 2009; Vitalis et al. 2014) and do not fully
utilize the spatial information on the clinal genetic variation. Envi-
ronmental association analysis (Coop et al. 2010) and simple re-
gression models can be used to identify clinal trends (Ma et al. 2010;
Chen et al. 2012; Kujala et al. 2017).

It is also important to consider putative effects of recombination
across adaptive loci on the genetic architecture of local adaptation.
The effect of gene flow is expected to override the effect of weak
differential selection on a particular locus. However, physical linkage
between multiple small effect alleles makes them behave like a single
large effect allele, as described by Yeaman andWhitlock (2011). They
show that local adaptation under gene flow may favor genetic
architecture where recombination is reduced between loci contrib-
uting to local adaptation, which may be caused by physical prox-
imity, transposable element action, translocations or inversions
(Kirkpatrick and Barton 2006). This will result in increased link-
age disequilibrium (LD), and thus the examination of unusual LD
patterns may be a fruitful approach in discovering the genetic
architecture of local adaptation.

Pinus sylvestris (Scots pine) is a widely distributed conifer species
with nearly three centuries of history as a study subject of forestry,

ecology and adaptive variation (Pyhäjärvi et al. 2020). The range of P.
sylvestris spans a huge distribution area in Eurasia from southern
Spain to northern Scandinavia and eastern Russia. Its distribution is
mostly continuous displaying only limited population structure in the
nuclear genome, with the exception of some of the more isolated
populations for instance in Spain and Italy (Karhu et al. 1996;
Pyhäjärvi et al. 2007; Kujala and Savolainen 2012). However, differ-
entiation within the main range can be seen in mitochondrial
haplotype structure, providing information about the recent coloni-
zation routes of P. sylvestris (Cheddadi et al. 2006; Naydenov et al.
2007; Pyhäjärvi et al. 2008).

In P. sylvestris multiple latitudinal phenotypic clines have been
repeatedly observed in traits important for abiotic adaptation such as
cold tolerance (Eiche 1966; Aho 1994; Hurme et al. 1997, 2000) and
the timing of growth start and cessation (Mikola 1982; Beuker 1994;
Karhu et al. 1996). These traits vary latitudinally with environmental
conditions, such as temperature, day length, UV radiation intensity
and seasonality. Common garden experiments have shown that these
traits have a considerable genetic basis suggesting local adaptation
(Giertych 1991; Savolainen et al. 2007; Alberto et al. 2013a; Pyhäjärvi
et al. 2020). When searching for genomic basis of local adaptation,
demographic effects may lead to spurious signals if the underlying
population structure remains unaccounted for (Hoban et al. 2016).
Lack of genome-wide structure, together with highly differentiated
phenotypic variation, makes P. sylvestris an ideal species for in-
vestigating the genetic basis of local adaptation in a large genome.
Furthermore, the low level of LD (Wachowiak et al. 2009) and lack of
any known hybridization with other species should aid in detecting
non-equilibrium patterns in the genome. The genetic basis of the
adaptation remains largely unknown even though some details have
been uncovered in previous studies using data from few candidate
genes. Only few FST outliers have been found, but several cases of
latitudinal allele frequency clines and variants associated to timing of
bud set have been uncovered (Kujala and Savolainen 2012; Kujala
et al. 2017). Similar observations of allele frequency clines have been
made in other tree species as well, such as Populus (Ma et al. 2010;
Evans et al. 2014) and Picea (Holliday et al. 2010; Chen et al. 2012).
However, many of these important traits likely have polygenic
architecture, possibly complicating efforts in detecting the underlying
genetic variation (Lind et al. 2018).

Clinal variation, genetic differences across the range and the effect
of natural selection in P. sylvestris are obvious at the phenotypic level.
In this study we create the first genome-wide dataset of P. sylvestris to
examine patterns of genetic diversity and to search for genomic
signature of local adaptation. Similarly to e.g. Yeaman et al. (2016),
the use of exome capture instead of whole genome sequencing makes
it feasible to sequence large number of samples in this species with a
genome size of 23.6 Gbp (Zonneveld 2012), or roughly 7 times larger
than the human genome. The use of exome capture allows the
examination of a significant portion of the coding sequence for
genetic diversity, long range LD patterns and the detection of large
structural variants. However, this kind of data are not well suited –
especially in P. sylvestris with limited genomic resources – for sliding
window type of analysis or comparing features of coding, non-coding
and intronic areas. In this study we use this novel data set sampled
from wide geographical area to answer the following questions
regarding the manifestation of the phenotypic patterns at the mo-
lecular level of variation: 1) Is the commonly applied discrete island
population model properly describing the distribution of genetic
diversity, or is a model incorporating continuous isolation-by-
distance more suitable for a widely distributed and wind dispersed
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species such as P. sylvestris? 2) Is the strong local adaptation at the
phenotypic level reflected in the genetic diversity as corresponding
allele frequency clines, high differentiation among populations or
increased LD in vicinity of selected sites in P. sylvestris?

MATERIALS AND METHODS

Plant material and genotyping
Seeds from 109 P. sylvestris samples from 12 populations spanning
31 degrees of latitude were used in generating the dataset for this
study (Figure 1, Table 1). The main sampling area included two
latitudinal gradients, one from northern Finland to Poland and
another north-south gradient in western Russia, to increase power
of genome scans (Lotterhos and Whitlock 2015). A total of 120 sam-
ples were initially genotyped, of which one was later removed due to
sampling the same tree twice and additional 10 were removed due to
low sequencing coverage. Haploid genomic DNA was extracted from
megagametophyte tissue by using E.Z.N.A. SP Plant DNA kit (Omega
Biotek). DNA was fragmented to an average length of 200 nucleotides
with Bioruptor ultrasonicator (Diagenode). Libraries were prepared
by using NEBNext DNA Library Prep Master Mix Set for Illumina
and NEBNext Multiplex Oligos for Illumina E7600S (New England
BioLabs) to multiplex libraries of four samples. Targeted capture was
performed for each pool according to MycroArray MYbaits protocol
v.2.3.1.

Bait design for targeted sequence capture
Bait design was based on a set of P. sylvestris transcripts described
previously (Li et al. 2017). Briefly, transcriptomes of P. sylvestris were
assembled from 454 read data derived from different developmental
stages using the Newbler software (v2.8.1). Those were then in-
tegrated with public transcriptomes from PlantGDB-assembled
Unique Transcripts (based on GenBank release 187) and a public
set of EST assemblies. This initial set contained 121,538 transcripts on
which 36,106 open reading frames (ORFs) were predicted by Trans-
Decoder (r20131117). The ORFs were thenmapped against the repeat
masked P. taeda reference genome version 1.01 (Neale et al. 2014)
with gmap (Wu and Nacu 2010) in order to obtain exon sequences.
An ORF was omitted if it could be mapped equally well to several
locations of the reference suggesting a paralogous sequence. In total
10,330 ORFs encompassing an area of 12,221,835 bp were selected as
targets for initial bait design.

MycroArray MYbaits (Ann Arbor, MI) service was used to create
an initial set of 100 base long baits with 2x tiling resulting in a total of
176,334 baits. Four pilot experiments including target capture and
sequencing were then conducted to determine bait performance. The
putative position of each bait in the genome was determined by
aligning the bait sequences to the unmasked P. taeda reference
genome v. 1.01 (Neale et al. 2014) with blastn. A well working bait
was defined as having a unique high-quality hit to omit possible
paralogous sequences, at least 75 out of 100 bases aligning to omit
baits on exon-intron boundaries and less than 4% mismatches to
ensure successful alignment. To analyze bait ability to capture target
areas 2 · 100 bp paired-end sequencing reads were generated in total
for 32 P. sylvestris megagametophyte and needle samples with
Illumina Hiseq 2500 instrument and 2 · 150 bp paired-end reads
with MiSeq instrument. Baits failing to capture any sequence were
omitted from the final bait set. After filtering, 60,000 high quality bait
sequences were selected as the final bait set (File S1) that was used for
examining the 109 samples used in this study. Sequencing was
performed using Illumina HiSeq 2500 instrument at Institute of

Molecular Medicine Finland (FIMM), by multiplexing four randomly
selected samples to each lane, with 100-bp paired-end reads

Genotype calling workflow
Raw reads from Illumina sequencing were aligned to unmasked P.
taeda reference genome version 1.01 with bowtie2 version 1.1.1
(Langmead and Salzberg 2012) using parameters to include only
properly paired alignments (–no-mixed) omit discordant alignments
(–no-discordant), and to omit results with no proper alignment (–no-
unal). The resulting SAM files were modified with Picard toolkit
(http://broadinstitute.github.io/picard/) and SAMtools (Li et al.
2009) by converting SAM files to BAM format with SamFormat-
Converter, sorting with SortSam, removing duplicate sequences
with MarkDuplicates, defining read groups with AddOrReplaceR-
eadGroups and indexing with SAMtools index. Examination of
alignments revealed that despite omitting targets at known para-
logous areas in the bait design stage, many baits captured paralo-
gous sequences from unknown areas not covered in the P. taeda
reference genome. This was causing issues in read alignment and
often leading to spurious SNP calls. The process of detecting the
issue and circumventing incorrect SNP calls is described in sup-
plementary methods (File S2). In short, the SNP calling was
performed twice using freebayes, first to detect problematic areas
identified as heterozygous SNP calls not expected when sequencing
haploid DNA, and second time to call SNPs only in problem-free
areas.

The technical quality was evaluated by generating a fastqc quality
report for raw reads, SAMtools flagstat report for alignment success,
along with visual inspection of alignments with SAMtools tview and
Integrative Genomics Viewer (Thorvaldsdóttir et al. 2013). Based on
these reports, 10 samples were removed due to low technical quality.
Variant calls were filtered with VCFtools (Danecek et al. 2011) to
remove sites with quality score below 30 and read depth lower than 5.
The entire variant position was removed if it contained non-SNP
variants, non-biallelic variants, or had more than 33% missing data.
The final high-quality dataset contained 81,301 SNPs (File S3). The
genotype calling workflow was parallelized using workflow manage-
ment software STAPLER (Tyrmi 2018).

Diversity and population structure
To estimate the levels of genetic diversity, pairwise nucleotide di-
versity (Nei and Li 1979) was calculated with a modified version of
python script provided in Garner et al. (2016) (File S3). The size of
available genome used for analysis was 3.8 Mbp. To calculate Tajima’s
D and pairwise ST the SNP data set was filtered with vcftools–thin
parameter to remove variants closer than 10 kbp from each other to
reduce correlation between sites due to physical proximity. After
filtering, a set of 4,874 SNPs were available.

Tajima’s D estimates (Tajima 1989) were calculated for the whole
dataset and also for each population separately using @a@i
(Gutenkunst et al. 2009). The allele frequency spectrum was gener-
ated using @a@i with first down-projecting the sample size to 86 to
account for missing data. Hudson et al. (1992) pairwise FST values
were then calculated for each population pair by using the equation
presented – and recommended over the Weir and Cockerham
estimate (Weir and Cockerham 1984) – in Bhatia et al. (2013) for
a two-population, bi-allelic scenario. An unbiased genome-wide
estimate of FST for each population pair was obtained by calculating
the nominator and denominator of equation 10 presented in Bhatia
et al. (2013) separately for each site, averaged over all sites after which
the division was performed.
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Population structure was also examined with principal compo-
nent analysis (PCA) (McVean 2009) using the prcomp R package.
Sample size was evened between different populations to six as
uneven sample sizes may distort the PCA projections. For the analysis
singleton variants were removed as recommended for instance by
Galinsky et al. (2016).

Population structure was further analyzed by using STRUCTURE
software (Pritchard et al. 2000). As STRUCTURE is computationally
demanding the SNP set was stringently filtered to obtain a smaller
high-quality data set of 4,197 bi-allelic SNPs. At least 10 kbp distance
between variants, minor allele frequency of 0.3 and maximum pro-
portion of missing data per site of 0.2 were used. Burn-in length of
250,000 and run length of 50,000 steps were used. K values from 1 to
10 were tested with three replicate runs for each value of K. The
software package Clumpak (Kopelman et al. 2015) was used to
visualize the results and in determining the most likely value of K
by using the method of Evanno et al. (2005).

The R-package conStruct (Bradburd et al. 2018) was used for
spatial analysis of population structure. It allows explicit testing for
presence of isolation-by-distance, often found in continuous pop-
ulations and thus reduces the probability of overestimating the
number of potential clusters. Two models, non-spatial which is
similar to the model the ADMIXTURE software uses (Alexander
et al. 2009), and a spatial model which accounts for isolation-by-
distance patterns, were tested. For both models K-values from 1 to
5 were examined using 50,000 iterations in each. To test whether the

spatial or non-spatial model better explains the genetic variation and
to compare results between different K-values the cross-validation
pipeline provided with conStruct was used with 50 iterations up to K
value of 8 (Figure S2).

The level of LD in the dataset was estimated by nonlinear regression
of r2 on between-site distance in base pairs (Hill and Robertson 1968).
The expected relationship is presented in the following equation,

Eðr2Þ ¼
�

10þrd
ð2þrdÞð11þrdÞ

��
1þ ð3þrdÞð12þ12rdþr2d2Þ

nð2þrdÞð11þrdÞ

�
, where n is the sample

size, d is a distance between adjacent sites in base pairs, r ¼ 4Nec,
population recombination rate between adjacent sites and c is the
recombination rate (Hill and Weir 1988). r2 was calculated between
all variants located within the same scaffold over all populations as the
populations are nearly panmictic according to the conStruct analysis.
Singletons were omitted from this analysis.

To detect loci forming allele frequency clines along the sampled
latitudinal gradients, possibly indicating that they are under varying
selective pressure along the gradient, a test of generalized linear mixed
effect models was fitted for all loci using R package lme4. The first
model was created with glmer function for each SNP by setting
genotypes as a response variable, population information as a fixed
effect and latitude as a random effect. The second model was created
similarly but with latitude omitted. The two models were then
compared to each other by calculating a p-value with ANOVA to
infer whether or not latitude contributes to the model. In addition to
latitude we also performed the analysis using 21 other environmental
variables downloaded from WorldClim (Hijmans et al. 2005). The
Baza population was omitted from all selection scan analyses as it was
shown to be the only population clearly differentiated from the others
in every analysis of population structure.

To identify putative loci responsible for local adaptation we used the
program pcadapt (Luu et al. 2017). It infers population structure with
PCA and then identifies putative outliers with respect to how they are
related to the population structure, making it well suited for examining
datasets containing isolation-by-distance patterns. We used all SNPs
with minor allele count over 10 and with Baza population omitted for
generating PCA. The number of principal components to be used in the
outlier analysis was chosen as two, by first producing a scree plot
(Figure S3) with pcadapt and then applying Cattell’s graphical rule.
Pcadapt assigns a p-value for each SNP. The p-value distribution
(Figure S4) is then used to obtain FDR estimates.

To further detect potential loci underlying local adaptation, we
also used the Bayesian FST-outlier method bayescan (Foll and Gag-
giotti 2008) that is based on identifying locus specific components
affecting allele frequencies as a signal of selection. Bayescan was run
with default parameters with the exception of setting prior odds for

Figure 1 Map of sampling locations with P. sylvestris distribution is
marked in green color.

n■ Table 1 Study population location and summary statistic information

Population Latitude Longitude p4 (·1023) p0=p4 Tajima’s D Ρ (·1023)

Inari 68� 54’ N 27� 1’ E 3.90 0.404 20.250 1.63
Kolari 67� 10’ N 24� 39 E 3.71 0.393 20.290 1.81
Kälviä 63� 51’ N 23� 27’ E 3.94 0.395 20.259 1.49
Punkaharju 61� 45’ N 29� 23’ E 3.87 0.395 20.283 2.27
Kalsnava 56� 43’ N 26� 1’ E 3.79 0.384 20.299 1.21
Radom 50� 24’ N 20� 39 E 3.85 0.400 20.290 1.47
Ust-Chilma 65� 22’ N 52� 21’ E 3.94 0.396 20.223 1.60
Megdurechensk 63� 4’ N 50� 49’ E 4.04 0.397 20.283 1.81
Ust-Kulom 61� 30’ N 54� 0’ E 3.76 0.380 20.301 1.19
Penzenskaja 53� 27’ N 46� 6’ E 4.12 0.398 20.272 2.16
Volgogradskaja 47� 45’ N 44� 30’ E 4.19 0.400 20.278 1.89
Baza 37� 46’ N 2� 49’ W 3.82 0.389 20.156 1.11
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the neutral model to 100 from the default of 10 to account for the
large set of SNPs as recommended in the bayescan documentation.

Bayescan analysis also revealed the presence of a large haplotype
structure in 11 samples with SNPs in complete LD in several scaffolds.
To find all scaffolds included in the haplotype structure an r2 value
was calculated between one of the SNPs contained in the haplotype
and all other SNPs in our dataset. Scaffolds containing one or more
SNPs with r2 value of 1.0 in this comparison were then assumed to be
part of the haplotype structure. As it is possible that SNPs are in
complete LD only by chance, we examined how likely it is that the
whole haplotype structure would be due to chance. This was done by
randomly choosing 10,000 sets of scaffolds with each set having
similar properties to the ones containing the haplotypes and testing
how often similar haplotype structure could be seen. More specifi-
cally, each randomized set contained similar number of scaffolds (59)
with similar number of SNPs (25 per scaffold) and contained at least
one SNP with equally high or higher minor allele frequency (11/109)
as the scaffolds containing the haplotype. The permutation approach
was also used to further study if the haplotype had been affected by
selection by calculating within population p and between population
FST and dXY values for the permuted set. FST is a commonly used
measure for differentiation, but it can be affected by reduced within-
population nucleotide diversities. dXY is a measure for estimating
absolute levels of differentiation and is unaffected by this potential
bias, although it is susceptible to bias stemming from unequal sample
sizes (Nei and Li 1979; Cruickshank and Hahn 2014). FST values
were calculated as described earlier, dXY was calculated using the

following equation: dxy ¼   1n
Pn
i¼1

pi1ð12 pi2Þ þ pi2ð12 pi1Þ. Results of

the permutation analysis were then compared to observed values of the
haplotype region.

Data availability
Figure S1 contains p-value distributions for linear regression anal-
ysis. Figure S2 contains cross-validation results for conStruct
analysis. Figure S3 contains scree plot for pcadapt analysis. Figure
S4 contains p-value distribution for pcadapt analysis. Figure S5
contains between-population covariance visualizations for con-
Struct analysis. Figure S6, S7 and S8 contain boxplot representation
for between population FST, dXY and pairwise within population p

for the peculiar haplotype pattern region and for permuted data-
sets. Table S1 lists interesting outliers for linear regression analysis.
Table S2 shows pairwise FST-values for all population pairs with
the putative inversion removed. File S1 contains the final 60,000
bait set sequences in fasta format. File S2 contains additional
method description for filtering paralogous variants. File S3 con-
tains SNP-data in vcf-format used in the analysis of this publica-
tion. Custom script used in calculating p is provided in File S4. Raw
Illumina sequences are available at NCBI SRA with accession
number PRJNA592869. Supplemental material available at fig-
share: https://doi.org/10.25387/g3.12403448.

RESULTS

Nucleotide diversity
Pairwise synonymous nucleotide diversity averaged over populations
was 0.0039 with different populations showing similar diversity
(Table 1). pN /pS ratio was on average 0.394 and again similar levels
can be seen in all populations indicating homogenous levels of
negative selection across populations. Tajima’s D value over all
populations was -1.29 and it was also negative within every sampled
population with Baza population having a less negative value than
others (Table 1). This result is also reflected in the minor allele
frequency spectrum calculated for all samples (Figure 2), which shows
an excess of rare alleles compared to the standard neutral expectation.

Assessing population structure
We performed a pairwise FST (Hudson et al. 1992), STRUCTURE
(Pritchard et al. 2000) and PCA (McVean 2009) analysis to evaluate
the genetic relationships between populations. All analysis indicate
that the Spanish Baza population is differentiated from other pop-
ulations and in addition to that, very subtle population structure
separates eastern and western samples from each other. In general,
pairwise FST estimates show low level of differentiation between most

Figure 2 Minor allele frequency spectrum calculated over all samples.
Spectrum is projected down to 87 samples to account for missing data.
Blue line denotes expected spectrum shape calculated according to
equation presented in Nordborg et al. (2005) figure 7.

n■ Table 2 Weighted genome-wide averages of pairwise FST estimates for all populations

Population Inari Kolari Kälviä Punkaharju Kalsnava Radom
Ust-
Chilma Megdurechensk

Ust-
Kulom Penzenskaja Volgogradskaja

Kolari 0.013
Kälviä 20.001 0.016
Punkaharju 0.000 0.017 0.005
Kalsnava 0.019 0.019 0.023 0.020
Radom 0.002 0.021 0.005 0.007 0.015
Ust-Chilma 0.010 0.022 0.013 0.010 0.034 0.018
Megdurechensk 0.008 0.021 0.011 0.009 0.029 0.016 0.001
Ust-Kulom 0.064 0.045 0.063 0.064 0.044 0.052 0.054 0.052
Penzenskaja 0.009 0.023 0.011 0.013 0.033 0.015 0.008 0.009 0.060
Volgogradskaja 0.000 0.017 0.005 0.005 0.023 0.007 0.010 0.006 0.063 0.000
Baza 0.068 0.082 0.073 0.071 0.077 0.065 0.083 0.077 0.117 0.081 0.072
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sample populations (Table 2) with overall FST of 0.031. Contrasts with
Baza are higher (average of 0.079).

The STRUCTURE results (Figure 3) analyzed using Evanno
method indicate that the most likely value of K is three. Again,
Baza population forms a distinct group compared to the main
distribution. However, the rest of the range is divided into two
groups, where the other contains all samples of Ust-Kulom pop-
ulation and parts of other, mainly eastern, populations. PCA
analysis suggests that the genetic differentiation within and across
populations in general is weak as each principal component
explains just small fraction of total variance (Figure 4A), although
some trends can be observed. The samples originating from Baza
population are separated from the rest by the first principal
component. The rest of the range is being clustered more closely

together, with a trend separating the eastern and western samples
from each other (Figure 4B, 4C).

ConStruct analysis was performed using the both non-spatial
model and the spatial model (Figure 5), which incorporated in-
formation on the geographical distance between populations. A
cross-validation test indicated that for the spatial and non-spatial
models the predictive accuracy improved with more layers, but only
modest improvement can be seen after K2 (Figure S2). At K2 the
spatial model has a better fit than the non-spatial model. Even though
the K2 model has two layers, the second layer contributes very little
(1–2%) to populations other than Baza where it contributes 8%
(Figure 5A). We also inspected the value of parameter aD which
controls the shape of the decay of covariance in the spatial model,
with values close to 0 indicating no isolation-by-distance (equation

Figure 4 PCA projections of two first
principal components of all samples
(A), excluding Baza population sam-
ples (B), excluding Baza and the sam-
ples containing the putative inversion
(C) and projection created using vari-
ants from putatively inverted area (D).
In figures B and D the samples encom-
passed within black circle contain the
putatively inverted haplotype. Circles
represent the samples of the western
cline, squares the samples of eastern
cline and triangles the samples in iso-
lated Baza population. Total variance
explained by principal component is
indicated within parentheses next to
respective principal component axis
header.

Figure 3 Visualization of STRUCTURE
results using K values of 2 (A) and 3 (B).
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3 in Bradburd et al., 2018). The first layer with larger propor-
tion produces a value of 0.0020 for aD indicating that a very
weak isolation-by-distance-pattern can be detected through most
of the sampled distribution. Other layer parameters describing the
isolation-by-distance control for the sill of covariance matrix in each
layer (a0= 0.0098), control the shape of the decay of covariance with
distance in each layer (a2 = 0.093), global variance due to shared
ancestral frequency (g=0.144) and population specific drift param-
eters (i.e., nugget values) (0.051-0.058) (Figure S5A for K1 and Figure
S5B for K2). Most of the covariance shown in the figure S5B (0.185) is
explained by the covariance originating from the same ancestry (i.e.,
layer). The within population covariance (dots) is slightly higher by
0.06. The contribution of IBD is very small but nonetheless explains
the data better than a spatial model without the alpha parameters.

Identifying loci responsible for local adaptation
Comparison of linear regression models with or without latitude was
used to identify clinal allele frequency patterns. At a p-value cutoff of
0.001 a total of 12 SNPs were outliers, although due to limitations in
the annotation of the reference genome the putative gene of interest
could be defined only in three cases. Outliers that could be annotated
were the Early-responsive to dehydration stress 1 (ERD1) known to
play a role in dehydration stress (Simpson et al. 2003), a putative
pentatricopeptide repeat containing gene and an ATP2binding
cassette transporter gene. With a more lenient p-value cut-off of
0.01 a total of 131 SNPs were outliers, including several genes with

interesting function (Table S1). However, controlling for false dis-
covery rate (FDR, Benjamini and Hochberg 1995) with q-values
obtained from the p-value distribution suggests that a high pro-
portion of top candidates are false positives as the minimum q-value
for the dataset was 0.46. The sampling was designed to particularly
detect latitudinal allele frequency clines, but we also downloaded
all available environmental variables for each sampling site from
WorldClim and performed the same analysis, yielding no outliers
with low q-values as with the tests using latitude. The lowest q-value
of 0.18 for a top outlier SNP was obtained with longitude. Interest-
ingly, the top outliers seem to have identical allele frequencies
population-wise with high minor allele frequency especially in the
Ust-Kulom population. These SNPs, although still suggesting a high
chance for type I error, were further examined by studying their LD
patterns. Other environmental variables also yielded even p-value
distributions (Figure S1) suggesting few true outliers.

Bayescan, an FST outlier detection method, was used to detect
putative SNPs underlying local adaptation. Using 0.1 FDR level we
obtained a single outlier locus, which is located in non-coding area of
the P. taeda reference genome v. 1.01 in position 404,961 of tscaf-
fold3905. TreeGenes database (Wegrzyn et al. 2008) P. taeda anno-
tation also places the area into non-coding area, but blast search of the
surrounding sequence against all known gymnosperm genes at
ConGenIE (http://congenie.org/) (Sundell et al. 2015) revealed that
the outlier locus appears to lie within a gene with an unknown
function. The outlier locus has a distinct allele frequency pattern

Figure 6 A) Bayescan outlier locus al-
lele frequencies at sampling sites (Y-
axis) across latitude of the sites (X-axis).
Populations are marked with red (east-
ern) and blue (western) squares with
respective least squares trend line. B)
Allele frequency of the second highest
scoring bayescan result.

Figure 5 Admixture proportions for
two layers estimated for different pop-
ulations using conStruct spatial (A) and
non-spatial (B) models.
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(Figure 6A) where the frequency of the alleles varies along latitude
with steeper cline in the east. Interestingly, the second highest scoring
variant, although above the 0.1 FDR limit, shows a very similar allele
frequency cline pattern to the first outlier (Figure 6B). The variant is
located within an intron of a Rubisco gene family member. The two
top variants are not in LD nor do they appear to be located in the
same scaffold of the P. taeda reference genome. The subsequent SNPs
in p-value rank, although also above the FDR limit, are the same set
of SNPs detected in linear regression analysis with identical allele
frequencies.

The pcadapt scan (Luu et al. 2017), used for identifying loci under
selection by searching for excess divergence along principal compo-
nents of population structure, assigned a total of 489 SNPs as outliers
when a q-value cutoff of 0.1 was used. This set also includes the set of
SNPs with identical allele frequencies detected in Bayescan and the
linear regression analysis.

Linkage disequilibrium patterns
Linkage disequilibrium patterns (Figure 7) suggest that LD decays
quickly within the P. sylvestris genome as the r2 values fall below 0.2
within 145 bp. However, outlier scans revealed that many SNPs
in different scaffolds had identical allele frequencies within each
population, with particularly high minor allele frequency in the
Ust-Kulom population. More careful examination of the LD pattern
for these SNPs revealed a distinct haplotype structure in 11 samples,
of which five belong to the eastern Ust-Kulom, two to Megdure-
chensk, two to Penzenskaja, one to Ust-Chilma and one to the Latvian
Kalsnava population. We did not find any putative technical expla-
nations for the phenomenon, as stringent parameters were used in the
read alignment and SNP calling, where only concordantly, uniquely
aligned reads were retained. In addition, the read alignments were
visually inspected using SAMtools tview, and no abnormalities were
found.

In total 169 variants located in 59 different reference sequence
scaffolds had identical allele frequency and LD pattern (Figure 8A).
The possibility of detecting such haplotype structure by chance was
explored using a permutation test showing that the probability is very

low (p-value, 0.001). In the set of samples exhibiting the haplotype
structure, the average nucleotide diversity within the 1-kbp area
surrounding each outlier variant was only 0.0003, compared to value
of 0.0034 within the same region observed between other samples.
Average pairwise nucleotide diversity value calculated between the
samples exhibiting the haplotype structure and other samples was
0.0093 for the same area consistent with higher than average FST
values. Variants were found to be polymorphic only within the
haplotypes, but no variant was polymorphic within both haplotypes,
providing further proof that no recombination events between them
have taken place.

Westbrook et al. (2015) generated a consensus genetic map for P.
taeda and aligned many of their EST sequences corresponding to the
marker data to the P. taeda reference genome v. 1.01, thus providing
putative physical location for many scaffolds of the reference. There
were 12 cases where the EST sequence alignment covers or is within a
few kbp of the SNPs belonging to the P. sylvestris haplotype structure.
In ten of these cases theWestbrook et al. (2015) data suggests that the
scaffolds belong to linkage group one, but one scaffold seems to be
part of linkage group 3 and another on of linkage group 10. The SNPs
positioned in linkage group 1 are located between positions 51.12 cM
and 94.54 cM. This 43.42 cM area is 23.48% of the total length of the
first linkage group. Given that the 12 chromosomes of P. sylvestris
seem to be similar in size, we can expect each chromosome to be
roughly 2.0 Gbp long. We can then, naively, take the proportion the
haplotype structure covering the first chromosome’s genetic map and
apply it to the expected physical size of the chromosome. This
approach gives us an estimated size of 470 Mbp for the haplotype
structure. Another way for estimating the haplotypes minimum size is
to simply sum the lengths of the P. taeda reference scaffolds con-
taining the haplotype structure, which gives a size estimate of
35.9 Mbp. As we have a capture target in 11.0% of P. taeda reference
genome scaffolds, we estimate that the total area covered by the
haplotype structure is roughly 35.9 / 0.11 = 326 Mbp.

Allele frequencies of the haplotype structure were highly similar to
the detected population structure patterns. To investigate whether the
haplotype drove the observed population structure, STRUCTURE,
PCA and pairwise FST analysis were redone without the scaffolds
containing the haplotype structure. No change was observed in the
STRUCTURE results. However, the FST results appear to be affected
such that lower values are now seen between Ust-Kulom and other
populations (Table S2), but the values are still relatively high. It may
be that several scaffolds that are part of the inversion are not identified
as part of it, as they happen to not contain any informative SNPs for
identifying the inversion. In the PCA results, the projection where
Baza samples are omitted (Figure 4B), the samples containing the
haplotype structure are separated by the second principal component
and the other eastern samples are separated from western samples by
the first principal component. Removing also the samples that
contain the haplotype structure results in projection where Eastern
and Western samples are more distinctly separated and occupy the
opposing ends of the first principal component. When PCA was
performed using only the areas identified as part of alternate hap-
lotype, the samples containing the alternate haplotype structure form
a distinct group with the separating principal component explaining
large proportion of the variance (Figure 4D).

Permutation test was performed to test whether the patterns of
between population FST, dXY and within population p in the hap-
lotype region are consistent with ongoing positive selection in a
subset of populations. Pairwise FST and dXY values were significantly
higher in comparisons between Ust-Kulom and other populations

Figure 7 Linkage disequilibrium coefficients (r2) based on all pairwise
SNP comparisons for all samples. Black line shows the squared corre-
lation of allele frequencies r2 against physical distance between the
SNPs (Hill and Weir 1988).
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within the haplotype area compared to the permuted data (Figures S6
and S7). Values of p in the Ust-Kulom population were very low
between the five samples containing the haplotype structure (0.0006).
However, the values between the five samples containing the
haplotype and the two samples not containing the haplotype were
particularly high (0.0061), as one might expect to observe between
diverged haplotypes. This resulted in mean value of p within Ust-
Kulom population to be on a similar level to other populations
(Figure S8). In other populations where the haplotype pattern was
detected in low frequency, the meanp values were particularly high in
the affected area due to the high number of pairwise comparisons
between the peculiar and normal haplotypes.

DISCUSSION
This first genome-wide analysis of P. sylvestris genetic diversity cov-
ering a large proportion of its distribution show estimates of genetic
diversity and population structure largely in line with previous studies.
Outlier scans used for uncovering loci contributing to local adaptation
detected many candidate genes, of which many have been shown to be
targets of selection in previous studies (Table S1) for example in A.
thaliana (Knoth and Eulgem 2008) and Eucalyptus (Jordan et al. 2017)
even though such coincidence does not verify the effect of natural
selection in these loci. Furthermore, a previously unidentified large
structural variation, possibly related to local adaptation, was uncovered.

Indications of population structure
The neutral nucleotide diversity found in this study is similar to what
has been observed in previous studies of this species (Kujala and
Savolainen 2012) and in several other conifers (Brown et al. 2004;
Eckert et al. 2013; Grivet et al. 2017). Given the mostly continuous
distribution of wind-pollinated P. sylvestris and the previous findings
of near-absent population structure, only very negligible differences
between populations were anticipated, with the exceptions of geo-
graphically isolated populations (Pyhäjärvi et al. 2007; Wachowiak
et al. 2009; Kujala and Savolainen 2012). It has been suggested that
putative P. sylvestris refugia during the last glaciation has existed in
the Mediterranean area, northern Europe and also in the east,
possibly in Ural Mountains (Naydenov et al. 2007). Therefore, weak
genetic structure resulting from expansion from two distinct refugia,
from east and west, was expected.

All approaches of population structure analysis uniformly in-
dicated that the Baza population, geographically isolated from the

main distribution, was most, although still weakly differentiated from
the other populations. STRUCTURE and PCA analysis also gave
some indication that the most likely number of groups is three.
However, the models of these frequently used methods do not
explicitly account for geographic isolation-by-distance, which can
be assumed to exist within the distribution of many species, including
P. sylvestris. Omission of this phenomenon from the models may
cause these methods to spuriously assign populations to separate
groups, when the genetic variation could in fact be explained by
continuous isolation-by-distance (Bradburd et al. 2018). This also
seems to have happened with our P. sylvestris analysis, where
STRUCTURE suggested three distinct clusters, but the conStruct
spatial model explains the vast majority of genetic covariance by
within-sampling-location effect accompanied with weak isolation-
by-distance pattern across populations.

Our results are in contrast with results from many other tree
species, such as Picea abies where considerable structure has been
detected despite many similarities in distribution, population size and
reproductive biology (Chen et al. 2019). Several studies in Populus
have also suggested the presence of distinct population structure
(Keller et al. 2010; Evans et al. 2014; Geraldes et al. 2014). P. sylvestris
rarely hybridizes with other species, and is not capable of clonal
reproduction, but the exact connection between these characteristics
and lack of major population structure is not understood. This lack of
genome-wide structure is an advantage when investigating the genetic
basis of adaptation, as such structure is a complicating factor in
selection scans (Hoban et al. 2016).

Putative signs of local adaptation
As P. sylvestris is known to be locally adapted to various environ-
mental conditions within its vast distribution (Savolainen et al. 2007),
we anticipated to identify signs of natural selection in the genomic
variation. We performed an FST -based outlier scan, which identified
only single statistically significant outlier SNPwith an allele frequency
cline in western transect and a particularly strong cline in the eastern
transect, with another non-significant variant exhibiting very similar
allele frequency cline to the top outlier. The first outlier did not have
any reliable annotation, but the second variant was located within an
intron of a Rubisco gene, which has been suggested to have a role in
ecological adaptation to different temperatures and CO2 concentra-
tions (Hermida-Carrera et al. 2017). A large number of outliers in FST
based selection scan would have been unexpected considering earlier

Figure 8 A) Heatmap visualiza-
tion of allelic correlation coeffi-
cient ðr2Þ values below diagonal
calculated between all SNPs
identified as being part of an
inversion, and all variants within
their surrounding 1 kbp areas.
Alternating thick and thin X and
Y axis borders denotes variants
belonging to the same scaf-
folds. B) Similar heatmap to A,
but random variants with similar
allele frequency to the inversion
were selected along with their
1 kbp surrounding areas to vi-

sualize typical linkage disequilibrium patterns. Some scaffolds show LDwithin them, but between scaffoldsmostly only low values r2 can be seen. C)
Means of r2 values for 10,000 random 1kb areas (one of which is visualized in 1B heatmap) marked in black and the mean r2 value of blocks
containing the putative inversion haplotype marked with red asterisk.
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findings (Kujala and Savolainen 2012) and most theory suggesting
that the nature of the underlying genetic architecture is likely highly
polygenic, but observing only single outlier is surprising. It is possible
that higher number of populations and samples for bayescan analysis
would have allowed more outliers to be uncovered or that most of the
adaptive variation is in the non-coding regulatory regions not in-
vestigated here.

We also applied the pcadapt method, which accounts for the
possible population structure via principal component analysis and
identifies outliers relative to this structure and is well suited for
scenarios involving continuous population structure (Forester et al.
2018). The approach yielded 489 putative outliers. As expected, the
outliers also included the SNPs identified as part of the haplotype
structure discussed below. These SNPs were also top outliers in
the linear regression analysis of allele frequencies, which also iden-
tified some other interesting genes. However, low q-values suggest
low probability of true positive outliers in this test.

Several putative explanations exist for detecting low number of
outliers in the bayescan and linear regression outlier analysis. First, as
the targeted sequencing approach by definition will only allow
examination of very small proportion of the genome, much of the
adaptive variation cannot be detected. In species with large genomes,
proportionately more adaptive variation is expected to be found
outside coding region (Mei et al. 2018), which may also explain
the lack of adaptive signal in the data obtained by exome capture.
Second, as discussed above, it is possible that the eastern and western
parts of our sampling have in fact originated from different refugia
after the most recent glacial period, or several periods as the same
refugia may have existed during many or most such periods. There-
fore distinctive genetic adaptations may have evolved within each
refugium, as suggested for instance by Naydenov et al. (2007),
rendering in particular landscape genetics approaches ineffective
and requiring larger amount of populations sampled from both east
and west. Third, as the genetic basis of local adaptation has shown to
be mostly polygenic, only a small proportion of all variants can be
expected to be under strong enough selection for prolonged period to
be detected. Detection of alleles with small effect may require
considerably larger sample size. Powerful approaches exist for
exploiting very large numbers of samples (Berg and Coop 2014;
Field et al. 2016; Racimo et al. 2018), but even when applying such
methods it may be challenging to control for population structure to
avoid false positive signal (Berg et al. 2019).

Linkage disequilibrium patterns and putative
large inversion
Earlier work has shown that LD decays very rapidly within the P.
sylvestris genome (Dvornyk et al. 2002; Pyhäjärvi et al. 2007;
Wachowiak et al. 2009) and also in other conifers such as P. taeda
(Lu et al. 2016; Acosta et al. 2019). This study allows for examining
longer range patterns of LD than before as in many cases multiple
target sequences are positioned within the same scaffold. Our findings
are in line with the previous studies showing that r2 fall below 0.2
within 145 bp. An advantage of low the level of genome-wide LD
observed previously, and in this work, is that variants detected in the
outlier scans are probably very close to the causative polymorphism
(Neale and Savolainen 2004).

Interestingly, the linear regression, bayescan and PCAdapt anal-
ysis revealed a large number of SNPs forming an unexpected
haplotype structure. Permutation test shows that the LD pattern
detected is not expected by chance alone. Analysis of pairwise

nucleotide differences of the affected region shows that very low
level of nucleotide diversity can be observed within the samples
where the haplotype is present, but in the other samples the diversity
level seems comparable to average genome-wide level. Simple
estimates indicate that it is very likely to be several hundred million
base pairs long.

Several biological explanations exist for detecting such haplotype
pattern. First, they can be created by partial selective sweeps but
considering that the haplotype structure spans 43 cM in the P. taeda
genetic map, this explanation of sweep does not seem possible under the
normal recombination rates. Nonetheless, this explanation cannot be
completely dismissed. Extended haplotype patterns may also be caused
by natural recombination rate variation along the genome, but this
explanation is unlikely in this case, as the haplotype is strictly limited
only to specific samples and geographically to the east and it seems
unlikely that local recombination rate would be such different only in a
subset of individuals. Also, the fact that LD is complete suggests that no
recombination events have occurred between the haplotypes.

Considering all the observations we have made of the haplotype
structure, an inversion contributing to local adaptation seems to be
the most probable cause. Inversions, unlike the other putative ex-
planations discussed above, can create large areas of restricted re-
combination as they prevent proper chromatid pairing (Andolfatto
et al. 2001). Several specific methods do exist for identifying inver-
sions (Kosugi et al. 2019), but to our knowledge none is applicable to
our data, as they require a good quality reference genome, and
preferably a whole genome sequence data set. When a complete
reference genome for P. sylvestris becomes available, a whole genome
sequencing combined with a method such as DELLY (Rausch et al.
2012) or GRIDSS (Cameron et al. 2017) could be used to confirm the
existence of a structural variation. Alternatively, it might be possible
to compare genetic maps generated from two crosses, with and
without the inverted haplotype.

We could find no previous observations of long haplotypes in P.
sylvestris literature, and only very few mentions of putative inversions
in an earlier cytological study (Muratova 1997) in line with relatively
strong synteny e.g., beween P. sylvestris and P. taeda (Komulainen
et al. 2003). Large inversions have been suggested as being targets of
selection in many species (Wellenreuther and Bernatchez 2018), with
the largest such inversions exceeding 200 Mbp between two Heli-
anthus sister species (Barb et al. 2014). To our knowledge, the
putative inversion detected in our study remains as the largest one
to show any indication to contribute to local adaptation to date,
although the relative size the inversion compared to whole genome
size is certainly not as large as inversions in some other species. The
samples containing the inversion polymorphism seem to be located
broadly in the similar, but not identical, geographic area where
STRUCTURE and PCA analysis indicate slight population structure
border. This may suggest that the inversion event may have occurred
within the speculated eastern refugium, but further investigation
would be required to uncover the possible origin.

It is plausible that this area is an inversion undergoing rapid
increase in frequency due to selection, as it was not only picked out by
outlier scans, but also further evidence from the permutation analysis
of pairwise FST and dXY show patterns congruent with ongoing
selection as extreme divergence of Ust-Kulom population (Figure
S6-S7). However, further empirical studies are needed to confirm the
phenotypic and fitness effects of the inversion and to examine
whether the pattern is caused by recent locally adaptive allele or a
global sweep that has not yet spread into lager geographic area. The
ongoing spread of globally beneficial alleles may produce outliers in
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allele frequency based analysis (Booker et al. 2019). The latter scenario
is not as plausible, as globally beneficial allele would likely already
have spread in wider geographic area via efficient pollen flow.

Possible role of inversions in local adaptation had been recognized
in genetics research early on (Dobzhansky 1970), and the concept of
‘supergenes’ has since been further explored (Thompson and Jiggins
2014). Inversions may contribute to local adaptation if they encom-
pass more locally adapted alleles than alternate haplotypes
(Kirkpatrick and Barton 2006), if the inversion contains alleles with
positive epistasis (Feldman et al. 1996) or if there is particularly low
deleterious mutation load within the inversion (Nei et al. 1967). If
fitness advantage arises, the inversion will rise in frequency within the
geographic area it provides selective advantage until it reaches
migration-selection balance. Empirical studies have uncovered in-
versions contributing to local adaptation for instance in D. mela-
nogaster (Kapun and Flatt 2018), sticklebacks (Jones et al. 2012),
yellow monkeyflower (Gould et al. 2018), teosinte (Pyhäjärvi et al.
2013), humans (Puig et al. 2015) and in many others (Wellenreuther
and Bernatchez 2018).

Further studies are required to examine how the haplotype
structure and the other detected outliers affect fitness and if they
contribute to local adaptation. Regardless of the mechanistic reason
for the haplotype pattern, the existence of such geographically re-
stricted haplotype is significant, because they have not been reported
in large conifer genomes before.

CONCLUSIONS
In this work we have examined the genetic diversity of P. sylvestris
along a large portion of its range. Some patterns of population
structure can be seen in a marginal population but within the
continuous main range the isolation-by-distance explains well any
differentiation detected, unlike in many other tree species. This
mitigates the issues caused by structure in detecting signs of selection,
but our results also show that while clear phenotypic signals of local
adaptation have been detected, the molecular background remains
largely elusive even if many well-established approaches were used
here to detect the signature of selection. However, many interesting
outliers were detected that have been shown to contribute to local
adaptation in earlier studies. Furthermore, in this study we find a
very large putative inversion, likely spanning an area equivalent to
several Arabidopsis thaliana genomes. To our knowledge, this is the
first time that a potentially non-neutral inversion has been shown to
segregate in conifers, even though such occurrences can certainly be
expected by theory and evolutionary important inversions have
observed in wide set of plant species (Yeaman 2013; Huang and
Rieseberg 2020).
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