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Abstract

Gross Primary Production (GPP) is the largest flux in the global carbon cycle. However, large uncertainties in current global
estimations persist. In this study, we examined the performance of a process-based model (Integrated BIosphere Simulator,
IBIS) at 62 eddy covariance sites around the world. Our results indicated that the IBIS model explained 60% of the observed
variation in daily GPP at all validation sites. Comparison with a satellite-based vegetation model (Eddy Covariance-Light Use
Efficiency, EC-LUE) revealed that the IBIS simulations yielded comparable GPP results as the EC-LUE model. Global mean GPP
estimated by the IBIS model was 107.5061.37 Pg C year21 (mean value 6 standard deviation) across the vegetated area for
the period 2000–2006, consistent with the results of the EC-LUE model (109.3961.48 Pg C year21). To evaluate the
uncertainty introduced by the parameter Vcmax, which represents the maximum photosynthetic capacity, we inversed Vcmax

using Markov Chain-Monte Carlo (MCMC) procedures. Using the inversed Vcmax values, the simulated global GPP increased
by 16.5 Pg C year21, indicating that IBIS model is sensitive to Vcmax, and large uncertainty exists in model parameterization.
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Introduction

Terrestrial gross primary production (GPP) is the largest carbon

flux in terrestrial ecosystems, and it is approximately 20 times

larger than the amount of carbon introduced from anthropogenic

sources [1]. Thus, even small fluctuations in GPP can cause large

changes in the airborne fraction of carbon and subsequently

influence future climate change [2]. Vegetation also contributes to

human welfare by providing food, fiber and energy [3–4].

Therefore, regular monitoring and reliable estimation of global

terrestrial GPP is important for improving our understanding of

the global carbon cycle, accurately predicting future climate, and

ensuring the long-term sustainability of terrestrial ecosystem

services.

Ecosystem models serve as a backbone for evaluating large-scale

and global GPP. Two categories of ecosystem models are widely

used: process-based and satellite-based. Satellite-based models are

driven by remotely sensed data and provide simple means of

estimating GPP [5]; however, they are limited in their ability to

model mechanisms. Process-based models typically exhibit de-

tailed expressions of terrestrial processes, such as photosynthesis,

respiration, phenology, and hydrological cycle. Therefore, process-

based models play important roles in investigating the mechanisms

underlying current biases in estimated ecosystem production [6],

predicting the future conditions of the terrestrial carbon cycle, and

exploring its feedback to climate change [7].

Numerous attempts have been made to develop and improve

process-based models. However, a recent study from the North

American Carbon Project (NACP) showed that current models

perform poorly and difference between observations and simula-

tions far exceed the observational uncertainty [8]. Model

parameter uncertainty is a key source limiting the accuracy of

process-based models. Knorr and Heimann analyzed the uncer-

tainties of process-based models [9]. They found that parameter

uncertainties could explain much of the large variance among

models and that the largest uncertainties arose from plant

photosynthesis, respiration and soil water storage.

The maximum rate of carboxylation by the enzyme Rubisco

(Vcmax) is fundamental in modeling photosynthesis [10]. Sensitivity

analysis shows that the projections of ecosystem production are

particularly sensitive to the fixed parameters associated with Vcmax

[11]. Therefore, the parameterization scheme of Vcmax is essential

for GPP simulation, and its impacts on model performance need to

be tested.

Eddy covariance measurements recorded by the increasing

number of eddy covariance (EC) towers provide a great

opportunity for model validation and improvement. Concurrent

measurements include carbon fluxes, latent heat, and sensible
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heat, as well as meteorological conditions such as air temperature

and relative humidity, and provide unprecedented datasets for

model validation and evaluations of parameter constraints [12].

The current network of EC sites covers a wide range of ecosystem

types, thus it has the potential to significantly improve our

understanding of the variation in GPP across time, space and

biomes [13].

The goal of this study was to validate a process-based ecosystem

model (Integrated BIosphere Simulator, IBIS) based on measure-

ments from 62 EC sites [14]. The specific objectives were to (1)

examine the performance of IBIS over several ecosystem types, (2)

compare IBIS model performance with a satellite-based model

(i.e., Eddy Covariance-Light Use Efficiency, EC-LUE), and (3)

investigate the impacts of the parameter Vcmax on model

performance.

Data and Methods

2.1 IBIS model and parameter inversion
The Integrated BIosphere Simulator (IBIS) is designed to

integrate a variety of terrestrial ecosystem processes within a

single, physically consistent modeling framework. It represents

land surface processes, canopy physiology, vegetation phenology,

long-term vegetation dynamics, and carbon and water cycling

[14]. The photosynthesis module of the IBIS model is provided by

the formulations of Farquhar [15].

C3 photosynthesis and C4 photosynthesis are expressed sepa-

rately in the IBIS model. For C3 plants, the gross photosynthesis

rate per unit leaf area, Ag (mol CO2 m22 s21) is expressed as

Ag~ min (Je,Jc,Js) ð1Þ

where Je is light-limited rate of photosynthesis, Jc represents the

Rubisco-limited rate of photosynthesis, and Js is the photosynthe-

sis limited by the inadequate rate of utilization of triose phosphate.

The light-limited rate of photosynthesis is given as

Je~a3Qp

Ci{C�
Ciz2C�

ð2Þ

where a3 is the intrinsic quantum efficiency of CO2 uptake in C3

plants (mol CO2 mol21 quanta), Qp is the flux density of

photosynthetically active radiation absorbed by leaf (mol quanta

m22 s21), Ci is the concentration of CO2 in the intercellular air

spaces of the leaf (mol mol21), and C� is the compensation point

for gross photosynthesis (mol mol21).

The Rubisco-limited rate of photosynthesis is calculated as

Jc~
Vm(Ci{C�)

CizKC(1z
½O2�
KO

)
ð3Þ

where Vm is the maximum carboxylase capacity of Rubisco (mol

CO2 m22 s21) and KC and KO are the Michaelis-Menten

coefficients (mol mol21) for CO2 and O2, respectively.

Under conditions of high intercellular CO2 concentrations and

high irradiance, photosynthesis is limited by the inadequate rate of

utilization of triose phosphate. This limitation is expressed as

Js~3T(1{
C�
Ci

)z
JpC�
Ci

ð4Þ

where T is the rate of triose phosphate utilization.

Photosynthesis in C4 plants is similarly modeled as the

minimum of three potential capacities to fix carbon [16]. The

gross photosynthesis rate is given by

Ag~ min (Ji,Je,Jc) ð5Þ

where Ji~a4Qp is the light-limited rate of photosynthesis, Je~Vm

is the Rubisco-limited rate of photosynthesis and Jc~k is the

CO2-limited rate of photosynthesis at low CO2 concentrations.

The parameter Vcmax (mol CO2 m22 s21) is very important for

simulating the photosynthesis process. In the IBIS model, it is

established as a constant that differs among plant functional types

(PFTs) (Table 1). To validate the IBIS model and investigate the

impact of the Vcmax parameter scheme on model performance, we

conducted two simulations (IBIS and IBIS-Type) for each site.

IBIS simulation used the default values of Vcmax (Table 1). For the

IBIS-Type simulation, the vegetation-specific Vcmax values were

inversed for each PFT. The Markov Chain-Monte Carlo (MCMC)

procedure was used for the parameter inversion, and the

Metropolis-Hastings (M-H) algorithm was used as the MCMC

sampler [17–18] (see Xu et al. [19] and Yuan et al. [20] for

detailed descriptions of the MCMC procedure). We conducted

10000 samples for each site and assigned the Vcmax value with the

highest frequency as the optimal value of Vcmax. Finally, we ran the

model using the inversed Vcmax for each PFT as the IBIS-Type

simulation.

Table 1. The values of Vcmax set in the IBIS model and the initial range of MCMC inversion.

Plant Functional Type (PFT) Vcmax (1026 mol CO2 m22 s21) Vcmax range (1026 mol CO2 m22 s21)

Tropical broadleaf trees 65 1–300

Warm-temperate broadleaf trees 40 1–300

Temperate broadleaf trees 30 1–300

Boreal broadleaf trees 30 1–300

Temperate conifer trees 30 1–300

Boreal conifer trees 20 1–300

Shrub 27.5 1–300

C3 herbaceous 25 1–300

C4 herbaceous 15 1–300

Vcmax set according to Kucharik et al. [47].
doi:10.1371/journal.pone.0110407.t001
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2.2 EC-LUE model
A satellite-based model (i.e. EC-LUE) [5,21–23] was used to

compare the local and global GPP simulations with those of the

IBIS model. The EC-LUE model is based on two assumptions: (1)

ecosystem GPP has a direct relationship with the absorbed

photosynthetically active radiation (APAR) via light use efficiency

(LUE), where LUE is defined as the amount of carbon produced

per unit of APAR; and (2) realized LUE may be reduced below its

theoretical potential value by environmental stressors, such as low

temperatures or water shortages. The EC-LUE model is driven by

four variables: the normalized difference vegetation index (NDVI),

photosynthetically active radiation (PAR), air temperature, and the

ratio of sensible to latent heat flux (Bowen ratio).

2.3 Data
We used the eddy covariance (EC) data to validate the IBIS

model. We used data obtained from the LaThuile dataset (http://

www.fluxdata.org). The daily GPP values were estimated from the

eddy covariance measurements using a community standard

method [24]. Briefly, GPP was estimated from the equation:

GPP~Rday{NEEday ð6Þ

where NEEday is daytime NEE. Daytime ecosystem respiration

Rday was estimated using daytime temperature and an equation

describing the temperature dependence of respiration, which was

formulated from nighttime NEE measurements. For further details

on the algorithm, see Reichstein et al. (2005) [24]. The gap filling

Figure 1. Comparison of predicted and measured GPP. Comparison between gross primary production (GPP) estimated from Eddy Covariance
(EC) measurements and GPP predicted from different model simulations: (a) IBIS, (b) EC-LUE and (c) IBIS-Type. The solid lines are the linear regression
lines and the short dashed lines are the 1:1 lines.
doi:10.1371/journal.pone.0110407.g001
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and quality control of this dataset are conducted according to

standard criteria [25–26], and the uncertainty in annual GPP can

be controlled to some extent below 100 g C m22 year21 [25]. This

dataset is widely used in model studies. In the present study, we

selected 62 EC sites for model validation (Table S1). The selected

data covered six major terrestrial biomes: evergreen needleleaf

forest (ENF), deciduous broadleaf forest (DBF), evergreen broad-

leaf forest (EBF), mixed forest (MF), grassland (GRA) and savanna

(SAV). Additional information on the vegetation, climate and soil

characteristics of each site was collected from the associated

metadata of the LaThuile dataset. Daily average, maximum and

minimum temperature, relative humidity, precipitation, cloud

fraction, photosynthetically active radiation, latent heat and

sensible heat were used to drive the IBIS, and GPP was used to

evaluate its performance.

To decrease model uncertainty, we used the satellite-based leaf

area index (LAI) from the Moderate Resolution Imaging Spectro-

radiometer (MODIS) as a model input. The Normalized

Difference Vegetation Index (NDVI) data derived from MODIS

were used to drive the EC-LUE model. The 8-day MODIS-NDVI

data (MOD13) and the MODIS-LAI (MOD15) data with 1-km

spatial resolution were used for model verification at the EC sites.

Quality control (QC) flags, which signal cloud contamination in

each pixel, were examined to filter out NDVI and LAI data of

insufficient quality. We temporally filled missing or unreliable

values for each 1-km MODIS pixel based on their corresponding

quality assessment data fields, as proposed by Zhao et al. [27]. In

addition, data on soil properties, including soil texture, organic

carbon content and nitrogen content, were required to input soil

information into the model, and were therefore collected from the

sites where EC towers are established.

For global simulation, we used meteorological datasets from the

Modern Era Retrospective Analysis for Research and Applications

(MERRA) archive for 2000–2006 to drive the IBIS and EC-LUE

models. MERRA is a NASA reanalysis dataset for the satellite era

which uses a new version of the Goddard Earth Observing System

Data Assimilation System Version 5 (GEO-5). We used climate

conditions at 10 meters above the land surface and at a resolution

of 0.5u latitude by 0.6u longitude. The Global Gridded Surfaces of

Selected Soil Characteristics datasets were used to supply soil

properties for the IBIS model; detailed information is available

from the website (http://ww.isric.org). The global distribution of

plant functional types (PFTs) was derived by overlapping the

MODIS land-cover type product with the Köppen-Geiger climate

classification map, with the land cover classifications aggregated

into nine PFTs (Table 1). The IBIS model was unable to simulate

carbon cycle processes in cropland or wetland; therefore, these two

vegetation types were replaced with C3 grassland in this study.

2.4 Statistical analysis
Three metrics were used to evaluate model performance:

(1) the coefficient of determination, R2, which represents how

much variation in the observations is explained by the model

simulations;

(2) the root mean square error (RMSE), which represents the

total difference between the simulated and measured values;

(3) the relative predictive error (RPE), which represents the ratio

of error to observation. It is computed as

RPE~
P{O

O
|100 ð7Þ

where P and O are the mean simulated and measured values,

respectively.

One-way ANOVA was employed using SPSS software to test

the significance of the differences in optimal Vcmax for each biome

in the IBIS-Type scheme, and the paired-samples t-test was used

to test the significance of the difference in statistical metrics

between different models.

Results

3.1 Model validation at EC towers
The overall comparison of the estimated GPP with the EC

measurements showed that the IBIS model performed well in

capturing the variability in GPP. Across all study sites, the IBIS

model explained approximately 60% of the variation in site-

averaged GPP (Fig. 1). The coefficient of determination (R2)

varied from 0.11 at the ES-LMa site to 0.94 at the CA-Man site,

with a mean value of 0.71 across all EC sites. The mean R2 values

Figure 2. Comparison among models for different PFTs. Comparisons among IBIS, IBIS-Type and EC-LUE models for each plant functional type
(PFT), where (a) and (b) are the results of R2 and RMSE, respectively. Lowercase letters above the bars indicate significant differences among models.
doi:10.1371/journal.pone.0110407.g002
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were 0.66, 0.55, 0.81, 0.77, 0.76 and 0.48 for deciduous broadleaf

forest, evergreen broadleaf forest, evergreen needleleaf forest,

mixed forest, grassland and savanna, respectively (Fig. 2). The root

mean square error (RMSE) varied from 1.48 to 2.71 g C m22

day21 among the six vegetation types (Fig. 2). On average, the

mean relative predictive error (RPE) of all sites was 29.68%, and

the RPE at most sites was less than 20% (Table 2).

Although the IBIS model explained most of the GPP variability

at individual sites, large differences between the predicted and

estimated GPP values from the EC measurements were apparent

at some sites and for some vegetation types. The IBIS model

underestimated GPP for the majority of PFTs and overestimated

GPP in evergreen broadleaf forest. Specifically, over 40 of the 62

sites had negative RPE values, and the RPEs of 26 sites were

below 220%. The largest underestimation occurred at two

savanna sites, ZA-Kru and BW-Ma1, with PREs of 251.83%

and 248.15%, respectively. The other 24 sites with RPEs below 2

20% were predominantly deciduous broadleaf forest (6 sites),

evergreen needleleaf forest (7 sites) and grassland (8 sites). In

addition, the model overestimated GPP at 6 sites with RPEs

greater than 20%, four of which were evergreen broadleaf forest.

Extreme overestimation occurred at two sites of evergreen

broadleaf forest, FR-Pue and PT-Mi1, with RPEs of 59.41%

and 72.49%, respectively.

3.2 Comparison of IBIS and EC-LUE
Compared to the satellite-based EC-LUE model, the IBIS

model performed comparably at most sites, according to the R2,

RMSE and RPE values (Table 2). The IBIS mean R2 values for

evergreen broadleaf forest, evergreen needleleaf forest, mixed

forest and grassland were similar to those of the EC-LUE model,

which were 0.52, 0.79, 0.75, 0.83, respectively; no significant

differences were found for most PFTs. Comparable results were

also found for the RMSE, and no significant differences in RMSE

were detected for any PFTs except for evergreen broadleaf forest.

However, the EC-LUE model had some advantages for some

PFTs (Figure 2). For broadleaf forest, grassland and savanna, the

R2 of the EC-LUE was significantly higher than that of the IBIS,

particularly for savanna, where the mean was 76% higher than

that of the IBIS (0.74 for EC-LUE and 0.42 for IBIS). In addition,

the EC-LUE had significantly low model error for evergreen

broadleaf forest, with a mean RMSE 22% lower than that of the

IBIS (2.12 g C m22 day21 for EC-LUE and 2.71 g C m22 day21

for IBIS).

3.3 IBIS Performance with inversed Vcmax

Model parameterization did not significantly improve the

performance of the IBIS, as indicated by the R2 and RMSE.

The mean R2 values of the IBIS-Type were 0.64, 0.51, 0.81, 0.77,

0.76, 0.41 for deciduous broadleaf forest, evergreen broadleaf

forest, evergreen needleleaf forest, mixed forest, grassland and

savanna, respectively. These values were very similar to those of

the IBIS model; only the R2 of the deciduous broadleaf forest

differed significantly, being higher in the IBIS-Type model. The

overall R2 increased from 0.60 to 0.68 after revising Vcmax (Fig. 1).

The RMSEs of the IBIS and the IBIS-Type models were also

comparable. The mean RMSE of the IBIS-Type varied from

1.49 g C m22 day21 for evergreen needleleaf forest to 2.60 g C

m22 day21 for deciduous broadleaf forest. Evergreen broadleaf

forest was the only vegetation type yielding a significant difference

in RMSE between the two models.

The IBIS employs a set of parameter values for a given PFT

(Table 1). In the IBIS-Type scheme, the Vcmax value, which was

set to as the mean value of Vcmax inversed from each site within a

given PFT, was largely differentiated from the original parameter

values. Vcmax of the IBIS-Type was 36.67%, 30.00%, 24.29%,

61.09% and 30.00% higher than that of the IBIS for deciduous

broadleaf forest, evergreen needleleaf forest, mixed forest,

grassland and savanna, respectively; it was 50% lower for

evergreen broadleaf forest. In addition, the Vcmax value inversed

at each site did not indicate significant differences among different

PFTs (Fig. 3).

3.4 Temporal and spatial patterns in global averaged GPP
The spatial pattern in average annual GPP estimated using the

original IBIS, the IBIS-Type and the EC-LUE models from 2000

to 2006 were generally consistent (Fig. 4). The highest value was

from the humid tropics (Amazonia, Central Africa and Southeast

Asia), with an annual GPP over 2000 g C m22 year21. Temperate

regions had intermediate levels of GPP, and the lowest GPP was

found in both cold and arid regions.

The magnitude of GPP estimated by the IBIS and EC-LUE

models were comparable, reaching 107.5061.37 Pg C year21 and

109.3961.48 Pg C year21 (mean value 6 standard deviation)

globally, respectively (Fig. 5). Two-model comparisons revealed

consistent GPP estimations for the various PFTs (Table 3) with the

exception of savanna, for which the IBIS model greatly

underestimated GPP. The GPP estimate of the IBIS-Type scheme

was much higher than those of the other two models, with a global

value of 123.9761.76 Pg C year21 (Fig. 5). Larger GPP estima-

tions using the IBIS-Type simulation were found for most biomes

(Table 3).

Discussion

Process-based ecosystem models are one of the most important

components of earth system models used to predict future climate

change [1]. The IPCC AR5 requested that all earth system models

integrate the global carbon cycle module [7]. Previous studies have

shown that the uncertainty in carbon cycle models can produce

40% differences in the predicted temperature by 2100 [28]. The

GPP is the total photosynthetic uptake or carbon assimilation by

plants, and it is a key component of terrestrial carbon balance. Any

errors in the GPP simulations will propagate through the model,

introducing errors into the simulated biomass and net ecosystem

Figure 3. Comparison of Vcmax from the original scheme and
the inversed Vcmax values. Comparison of model Vcmax values with
the inversed values of the IBIS-Type. Same letter on the top of the bar
indicates no significant difference among biomes.
doi:10.1371/journal.pone.0110407.g003
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fluxes. If the simulated GPP is too low or too high, predicted leaf

area index, wood biomass, crop yield, and soil biomass may also

be too low or too high [29].

In this study, we examined the performance of the IBIS, which

has been widely used to evaluate the regional and global terrestrial

ecosystem carbon balance and has been integrated into earth

system models (e.g., Brazilian Earth System) [30]. Our results

indicate that the IBIS model is a good candidate for simulating

GPP at regional-to-global scales, and its performance was

comparable to that of the satellite-based EC-LUE model based

on EC site validation and comparison. The magnitude of global

GPP estimated by the IBIS is also consistent with results of

previous studies. Our estimate of annual global mean GPP was

107.5061.37 Pg C year21(mean value 6 standard deviation).

Beer et al. estimated global GPP as 123.8 Pg C year21 [31]. Two

satellite-based light-use efficiency models revealed similar esti-

mates of global GPP: 109.29 Pg C year21 by the MODIS

algorithm [27] and 111 Pg C year21 by the EC-LUE [21].

Interestingly, we found that the IBIS was consistent with the EC-

LUE model across different PFTs (Table 3), despite the large

Figure 4. The global pattern of GPP. The global pattern of annual vegetation gross primary production (GPP) from 2000 to 2006. (a) estimated
GPP using the IBIS model, (b) estimated GPP using the EC-LUE model, (c) estimated GPP using the IBIS-Type model, (d) the difference between the
IBIS and EC-LUE models and (e) the spatial distribution of plant functional types (PFTs).
doi:10.1371/journal.pone.0110407.g004
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differences between the two approaches (i.e., satellite-based vs.

process-based).

However, the IBIS did not perform well for two PFTs:

evergreen broadleaf forest and savanna. Among the four evergreen

broadleaf forest sites, two (PT-Mi1 and FR-Pue) have subtropical

Mediterranean climate with dry summers and wet winters [322

33], and the AU-Tum site also suffers drought in summer [34]. At

these sites, rainfall is the key driver of water and carbon fluxes

[35]. Leuning analyzed the CO2 and H2O fluxes at the AU-Tum

site [34], and found that carbon uptake was more strongly

constrained by water stress than by temperature, and strongly

affected by soil water availability. Moreover, savannas are

characterized by climate with distinct wet and dry seasons, and

this climate forcing causes savanna to form open, heterogeneous

woodland canopies with grass understories [36].

These particular ecosystem properties result in greater com-

plexity of modeling fluxes [37]. Process-based models need to

simulate variation in soil moisture and plant phenology. However,

previous studies have identified significant biases when simulating

soil moisture [38]. We examined the performance of the IBIS on

soil water at the savanna sites and also found obvious differences

between the simulated values and the EC measurements (Fig. 6).

Moreover, the IBIS integrated temperature-dominated phenology

algorithms developed by Botta et al. [39]. However, field studies

suggest that for many drought-deciduous species, the first large

precipitation event at the start of the rainy season initiates rapid

leaf flush [40241], and leaf senescence is closely related to soil

water availability in the dry season [41242]. This relationship

may explain why the IBIS model did not effectively capture the

variance in GPP at savanna sites.

Parameterization is another large source of uncertainty in

process-based models. Vcmax is the key parameter of the

photosynthesis process [11], and a study by Bonan et al. [43]

suggests that uncertainty in this parameter could account for 30 Pg

C year21 variations in model estimation of global GPP. In the

present study, the differences in setting Vcmax values between the

IBIS and IBIS-Type schemes caused an increase in global GPP of

over 16.5 Pg C year21, which also indicated that Vcmax is a salient

parameter for simulating GPP. Unfortunately, the determination

of Vcmax in current models contains large uncertainty. Rogers

surveyed Vcmax in current state-of-the-art models [44] and found

that Vcmax varied within a wide range of 246 to +77% of the PFT

mean. Thus, the determination of Vcmax and the reduction of

uncertainty in this parameter are important issues for model

development.

Many parameters in process-based models are established by

PFTs, which are based on the assumption that the same type of

vegetation responds similarly to the environment. However, a

current study found that model parameters were more variable

than previously assumed within the given PFTs [45] and that

categorization of vegetation into less than eight PFTs may result in

artificial multiple steady-states in a model of the Earth’s climate-

vegetation system depending on the number of PFTs used [46]. In

the present study, the variation analysis showed that Vcmax did not

significantly differ among PFTs. The predetermined parameter-

ization scheme that sets the Vcmax constant values for each PFT in

the IBIS model may cause systematic error.

We attempted to test the impact of Vcmax on model

performance. However, variations in Vcmax cannot explain the

overall uncertainty of the IBIS model. Validation of the IBIS on

three flux sites demonstrated that parameterization and formula-

Figure 5. Interannual variability in GPP derived from different models. Interannual variability in global mean gross primary production
(GPP) derived from the IBIS, IBIS-Type and EC-LUE models.
doi:10.1371/journal.pone.0110407.g005

Table 3. The magnitude of gross primary production (GPP) in each plant functional type (PFT).

GPP (kgCm22year21) DBF EBF ENF MF GRA SAV

IBIS 0.89 2.00 1.22 1.19 0.68 0.63

IBIS-TYPE 1.05 1.68 1.51 1.53 0.89 0.74

EC-LUE 0.78 1.76 0.96 1.16 0.73 0.92

doi:10.1371/journal.pone.0110407.t003
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tions of phenology also limit the model’s ability to capture seasonal

fluctuations in carbon and water exchange [38]. Particularly in

regions with summer drought, phenology is primarily controlled

by water supply rather than temperature [34]. This relationship

hinders model simulation because biases in phenology and the

dynamics of the leaf area index can affect the simulation of

evapotranspiration. Such errors can pass to simulations of soil

water content and other variables associated with the water and

carbon cycles [38]. Therefore, revisions of not only the param-

eterization of Vcmax but also other parameters and formulations

are needed for model improvement.

Summary

Process-based models are important tools for carbon cycle

research, but current models incorporate substantial uncertainty.

This study examines the performance of the IBIS model at global

EC sites. Our results showed that the IBIS model explained 60%

of the variation in GPP at all EC sites and performed comparably

to the EC-LUE model, which explained 80% of the variation in

observed GPP. At the global scale, the magnitudes of GPP

estimated by the IBIS and EC-LUE models were comparable,

being 107.5061.37 Pg C year21 and 109.3961.48 Pg C year21,

respectively. The parameter Vcmax is a key parameter in the

photosynthesis model. In the IBIS model, Vcmax was set as a

constant for each PFT. The inversed Vcmax value was largely

differentiated from the original setting, and no significant

differences were detected among PFTs.
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