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Abstract: Choline, an essential dietary nutrient for humans, is required for the synthesis of the
neurotransmitter, acetylcholine, the methyl group donor, betaine, and phospholipids; and therefore,
choline is involved in a broad range of critical physiological functions across all stages of the life
cycle. The current dietary recommendations for choline have been established as Adequate Intakes
(Als) for total choline; however, dietary choline is present in multiple different forms that are both
water-soluble (e.g., free choline, phosphocholine, and glycerophosphocholine) and lipid-soluble
(e.g., phosphatidylcholine and sphingomyelin). Interestingly, the different dietary choline forms
consumed during infancy differ from those in adulthood. This can be explained by the primary
food source, where the majority of choline present in human milk is in the water-soluble form,
versus lipid-soluble forms for foods consumed later on. This review summarizes the current
knowledge on dietary recommendations and assessment methods, and dietary choline intake from
food sources across the life cycle.

Keywords: choline; dietary choline forms; human milk; breast milk; dietary recommendations;
adequate intake; dietary assessment

1. Introduction

Choline (2-hydroxyethyl-trimethyl-ammonium salt; molecular weight of 104 g/mol) is an essential
nutrient for humans. While choline can be obtained through endogenous synthesis [1], this is
not normally enough to support body needs. As such, choline needs to be obtained from the
diet [2]. Choline has important and diverse functions in both cellular maintenance and growth
across all life stages, including roles in neurotransmission, membrane synthesis, lipid transport,
and one-carbon metabolism [3-5]. Signs of choline deficiency have been reported in humans fed
experimental choline-deficient diets and also in patients receiving total parenteral nutrition [6,7].
In 1998, the Institute of Medicine recognized choline as an essential nutrient and established
dietary intake recommendations [8]. Similarly, the European Food Safety Authority set dietary
recommendations for choline in 2016 [9]. In foods, choline is found as both water-soluble (free
choline, phosphocholine, and glycerophosphocholine) and lipid-soluble forms (phosphatidylcholine
and sphingomyelin) (Figure 1) [2].
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Figure 1. Structures of different choline forms: (a) Water-soluble forms; (b) lipid-soluble forms. Dashed
box indicates free choline, R represents a fatty acid chain.

Different forms of choline vary in how absorption and metabolism occur. After absorption,
water-soluble forms of choline reach the liver through portal circulation while lipid soluble forms are
packaged into chylomicrons, which are absorbed and transported through lymphatic circulation [10].
Interestingly, the different dietary choline forms consumed during infancy differ from those in
adulthood. This can be explained by the primary food source, where the majority of choline present
in human milk is in the water-soluble form, versus lipid-soluble forms for foods consumed later
on. Hence, it has been suggested that the form in which dietary choline is consumed should be
considered [11]. Evidence from animal studies have shown that different forms of choline present in
milk will be utilized differently, as evidenced by the fact that maternal and offspring immune systems
respond differently to various forms of choline consumed [12-15]. Therefore, the intake of different
forms of choline should be considered relevant at specific stages of development. Here, we review
the current knowledge on choline food composition, dietary recommendations, dietary assessment
methods, and dietary choline intake across the life cycle. A brief section on metabolism and biological
functions of choline is also included to provide context to the different forms of choline discussed in
the review.

2. Overview of Choline Metabolism and Biological Functions

2.1. Choline Metabolism

Choline metabolism can be divided into four main pathways which are involved in the synthesis
of acetylcholine, trimethylamine (TMA), betaine, and phospholipids (Figure 2). Choline is used as
the precursor for the synthesis of the neurotransmitter, acetylcholine, by choline acyltransferase in
the cytosol of pre-synaptic cholinergic neurons [16]. Acetylcholine is subsequently packaged into
vesicles and released into the synaptic cleft, where it binds to receptors of the post-synaptic neuron in
the central and peripheral nervous systems [17]. Acetylcholine synthesis has also been reported in
tissues, including placenta, muscle, intestine, and lymphocytes [18,19]. In the large intestine, choline is
metabolized to TMA by the gut microbiota prior to absorption [20,21]. After absorption, TMA is
metabolized to trimethylamine-N-oxide (TMAO) by flavin monooxygenases in the liver [22].
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Figure 2. Simplified overview of choline metabolism. Abbreviations: SAM, S-adenosylmethionine;
SAH, S-adenosylhomocysteine; TMA, trimethylamine; TMAO, trimethylamine-N-oxide.

Choline can be irreversibly oxidized to yield betaine in a two-step process catalyzed by choline
dehydrogenase and betaine aldehyde dehydrogenase mainly in the liver and kidney [23,24]. Betaine is
an important osmolyte and a methyl group donor. As a methyl group donor, betaine participates
in the re-methylation of homocysteine to methionine by betaine-homocysteine S-methyltransferase
(BHMT), also producing dimethylglycine [25,26]. This reaction is an alternative pathway, parallel to the
ubiquitous vitamin B12-folate-dependent pathway for homocysteine re-methylation [27]. The BHMT
accounts for up to half of the hepatic homocysteine re-methylation activity [28]. Methionine is
the precursor of the universal methyl donor, S-adenosyl methionine (SAM), which is involved in
several methylation reactions, such as epigenetic regulation of DNA as well as the synthesis of
phosphatidylcholine [29,30]. As for betaine, dimethylglycine synthesis occurs primarily in the liver
and kidney [31-33], and further demethylation of dimethylglycine produces sarcosine, which is
subsequently metabolized to glycine, resulting in a carbon unit transferred to the folate pool [34].

Finally, choline is a precursor for the synthesis of phosphatidylcholine, the most abundant form
of phospholipid in the body. Phosphatidylcholine is synthesized through the cytidine diphosphate
(CDP)-choline pathway, which occurs in all nucleated cells [35]. It has been estimated that 70%
of total phosphatidylcholine in the liver is synthesized by this pathway [36-38]. Alternatively,
phosphatidylcholine can be generated by the de novo synthesis pathway by the sequential methylation
of phosphatidylethanolamine by phosphatidylethanolamine N-methyltransferase (PEMT) [39—41].
This reaction consumes three molecules of SAM, which in turn generate three molecules of S-adenosyl
homocysteine (SAH), a precursor of homocysteine [1,42]. It has been estimated that up to 50%
of homocysteine production may originate from PEMT activity, with the highest activity being
detected in the liver (although activity is also observed in other tissues, such as the mammary
gland) [1,37,39,43-46]. In humans, this is the only known endogenous de novo pathway for choline
synthesis. Recently, it has been reported that phosphatidylcholine produced by the PEMT pathway
differs from that originating from the CDP-choline pathway, particularly in the fatty acid composition,
with the first characterized by having a higher composition of long-chain fatty acids, such as
docosahexaenoic acid [47,48].

2.2. Biological Functions of Choline

Choline has received considerable attention due to its inverse association with adverse health
outcomes that can occur across the life cycle, including birth defects, neurodevelopment and cognition
alterations, hepatic steatosis, cardiovascular disease (CVD), and cancer [5,7,49-59]. Oxidation of choline
to betaine and subsequent SAM synthesis are critical methylation reactions that represent a cornerstone
for epigenetic regulation of gene expression [60,61]. In rodents, maternal choline-deficient diets
during the perinatal period altered DNA and histone methylation in the offspring [62-64]. In humans,
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low maternal choline intake during pregnancy can alter DNA methylation in the placenta and cord
blood [65]. Notably, there is an inverse relationship between the risk of neural tube defects and maternal
choline intake or plasma choline concentrations, independent of dietary folate or supplemental folic
acid intakes [49,52]; to some extent, this is analogous to that reported for folate. In addition, other birth
defects associated with choline deficiency include cleft lip, hypospadias, and cardiac defects [66—-69].

The role of choline in neurodevelopment and cognition involves not only the synthesis of
acetylcholine and components of cellular membranes, but also gene expression. In rodents, maternal
choline intake during the perinatal period impacts both anatomical and biochemical aspects of
cognitive function, along with lifelong effects, including memory decline in the offspring as they
age [70]. The neuroprotection effect of choline observed in animal studies has also been studied in
humans; however, results are inconclusive [53,54,71-73]. In children, only two studies have been
published, and no association was found between plasma free choline concentrations and child
cognition, albeit plasma betaine concentrations were positively associated with language [55,74].
In adults, positive associations between cognition and plasma free choline concentrations, and between
dietary choline intake and better cognitive performance, have been described [75,76]. However,
other researchers examining choline supplementation, in adults, have reported inconsistent
results [77-82]. Therefore, more research is required to clarify the relationship between choline and
cognitive function in different age groups.

In humans, liver damage (e.g., elevated serum alanine aminotransferase concentration) occurred
in healthy men after only three weeks of dietary choline restriction (n = 7, 0.42 to 0.62 pkat/L),
which was not observed in the control group (n = 8, 0.40 to 0.32 pkat/L) [7]. In the same study, a 30%
decrease in plasma free choline concentration was observed in the choline-deficient group. Similarly,
muscular damage (e.g., elevated serum creatine phosphokinase concentration) was reported after
three weeks of dietary choline restriction [83]. These examples of tissue damage were attributed
to altered structural integrity and increased cellular membrane permeability that arises due to a
decreased phosphatidylcholine to phosphatidylethanolamine ratio [84-87]. In addition, the production
of very low-density lipoproteins requires phosphatidylcholine synthesis in the liver [88,89]. Without
an adequate supply of choline for phosphatidylcholine synthesis, triacylglycerides will accumulate,
which leads to fatty liver condition [90,91]. Similar alterations have been reported in patients receiving
long-term total parenteral nutrition devoid of choline [92,93]. These data supported the classification
of choline as an essential nutrient by indicating that de novo synthesis of choline is not sufficient to
meet the body’s requirements in some instances.

The reported association between choline status and CVD risk is linked to homocysteine and
TMAO concentrations; however, this area is not fully understood, and that evidence exists for
pathways that could, at least in theory, either increase or decrease CVD risk. Elevated homocysteine
concentrations have been positively associated with a risk of CVD [94,95]. In prospective cohort studies,
dietary choline intakes were negatively associated with homocysteine concentrations, and plasma
betaine concentrations were also negatively associated with risk of CVD [96,97]. In contrast, a recent
meta-analysis reported no evidence of a positive association between dietary choline or betaine and
CVD incidence [98]. Intervention studies, with betaine or phosphatidylcholine supplementation,
have reported a reduction in homocysteine concentrations [99-101]. However, lowering homocysteine
concentrations with B-vitamins, such as folate and B12, does not reduce CVD risk [102,103].
Furthermore, a concern about choline intake and CVD is related to a possible increase in TMAO
concentration, which has been positively associated with CVD risk [104-106]. It has also been reported
that only a low proportion of choline intake derived from eggs is converted to TMAO [107], which is
then excreted and does not accumulate in the blood [108]. In addition to choline intake and gut
microbiota, TMAO levels are also controlled by renal excretion [109]. To date, the mechanisms by
which TMAO increases CVD risk and the identification of the type of bacteria involved in TMA
synthesis are now becoming understood [21,110]. However, it is important to recognize that TMAO



Nutrients 2018, 10, 1513 5o0f 24

content is high in seafood [111], and only a small variation of TMAO concentrations can be explained
by dietary intake [112].

3. Choline Content in Dietary Food Sources

3.1. Choline Concentration in Human Milk

Human milk is the only source of choline for exclusively breastfed infants during the first six
months of life, and is considered the optimal source of nutrition for infants by the World Health
Organization [113]. Neonates and infants require large amounts of choline to support a rapid growth
rate and optimal development [114]. It has been previously reported that total choline content in
human milk increases from colostrum to two weeks after birth, and then stays stable beyond six
months [115-118]. Studies have reported a total choline content in mature human milk ranging from
125 to 166 mg/L (1198 to 1600 umol/L) (Table 1) [118,119]. In mature human milk, phosphocholine
is the predominant form of choline, followed by glycerophosphocholine; thus, the water-soluble
forms of choline account for approximately 84% of the total choline [115,116,120,121]. In contrast,
the lipid-soluble forms of choline (phosphatidylcholine and sphingomyelin) are mainly present as a
minor component of the milk fat globule membrane, and thus make up a relatively small fraction of the
total choline in human milk [122,123]. Milk choline is either transported from the maternal circulation
or obtained through de novo synthesis via the PEMT pathway in the mammary gland [124,125]. It has
been described that the concentrations of total choline in human milk increase almost two-fold during
the first week after birth and remain relatively constant thereafter in mature milk [115,116,126].

Table 1. Studies reporting choline concentrations in mature human milk.

Count Betaine Choline (umol/L) ! TC
oumy " (umol/L)  FC  PCho GPC PC SM TC (mg/L) Reference

Us 10 - 85 - - 180 206 - - [127]
uUs 16 - 116 570 362 82 124 1254 130 [121]
Us 48 7 83 553 388 107 67 1198 125 [119]
Us 60 - 158 - - - - - - [128]
Us 28 3.8 84 500 403 63 175 1225 128 [120]
Turkey 12 - 286 438 465 155 97 14412 150 [116]
Turkey 3 54 - 93 351 958 - - 1532 159 [129]
Japan 62 - - - - - - 950 99 [117]
Korea 36 31 283 - - - - 1600 166 [118]
Sweden 1 - 188 704 672 - - - - [130]
Canada 301 48 155 535 416 - - - - [131]
Cambodia 67 5.1 143 562 390 - - - - [131]

! Data are presented as mean concentrations, unless otherwise noted; 2 TC is reported as the sum of all individual
choline forms when a discrepancy was found with the value reported for TC in each study; 3 median is presented.
Abbreviations: FC, free choline; PCho, phosphocholine; GPC, glycerophosphocholine; PC, phosphatidylcholine;
SM, sphingomyelin; TC, total choline (sum FC + PCho + GPC + PC + SM).

Some authors have suggested that maternal dietary choline intake may influence the milk choline
concentration [127,132,133]. Choline supplementation studies have reported a significant increase in
the concentrations of free choline, phosphocholine, glycerophosphocholine, and total choline (ranging
between 20% and 38%) in mature milk [119,120]. Studies of the choline concentration in human milk
have been reported mostly from high-income countries, where the consumption of food of animal
origin, the richest source of choline, is presumably higher compared to low-income countries [134-136].
A small study comparing choline concentrations, including free choline, phosphatidylcholine, and
sphingomyelin, in milk samples from lactating women in the US and Ecuador reported that women
from Ecuador had a lower concentration of free choline than that in the US, but lipid-soluble forms
did not differ [133]. This observation was attributed to a possible difference in dietary choline intake;
however, the actual intake of choline was not assessed in the study. Furthermore, free choline represents
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only a small fraction of the total choline in human milk; thus, this difference may not be of biological
relevance. Recently, we published the first report on concentrations of the water-soluble forms of
choline in mature milk samples from lactating women in Canada and Cambodia [137]. Our results
indicated that the concentrations did not differ between Canadian and Cambodian women.

Different methodologies used for human milk sampling and determination of choline
concentration have been used, and this fact is important in reviewing differences in population-based
choline intakes of breast-fed infants. For example, milk samples have been collected as full
breast expression as well as mid-feed samples, and the time of day of milk collection varies
across studies. [138]. There is also range of different methodologies used to analyze milk choline,
which include radio-enzymatic assay, detection using proton nuclear magnetic resonance, isolation and
quantification using gas chromatography, and high-performance liquid chromatography coupled with
mass spectrometry [119,121,126,127]. One advantage of using radiolabeled or stable isotopes is the
allowance for simultaneous detection and analysis of choline metabolites [139-141]. Notwithstanding
this, these differences in methodologies used in human milk collection and analyses of choline are
potentially important factors to be aware of in comparing choline and metabolite concentrations
among studies.

3.2. Choline Concentration in Infant Formulas

When breastfeeding is not possible, infant formulas are often used, and the nutrient content
in mature human milk may be used as a guideline to develop the nutrient composition of human
milk substitutes and enteral formulas for infants [142]. Current guidelines for total choline content
in infant formulas recommend a minimum of 7 mg/100 kcal and a maximum of between 30 to
50 mg/100 kcal for choline content [143,144]. This range is equivalent to a total choline intake
between 37 to 265 mg/day, based on a volume consumption of 0.78 L/day and energy content of
68 kcal /100 mL [143]. Although choline is included in infant formula, the individual choline forms
can vary across different formulations and commercial brands, and certainly between formulas and
different human milk samples [145]. Most of the commercially available infant formulas add choline
as choline chloride and also may include a small amount from soy lecithin. Total choline content
can vary up to two-fold in infant formulas, even among those formulas manufactured by the same
manufacturer (52 to 104 mg/L) [146]. Commercial and hospital infant formulas available in different
countries have been analyzed to have a total choline content ranging from 82 to 209 mg/L [147].
Studies conducted in the US reported that bovine milk-based formulas have lower free choline and
phosphatidylcholine, with higher phosphocholine, glycerophosphocholine, and total choline content,
compared to soy-based formulas [121,127]. When compared with human milk, bovine milk-based
formulas had lower phosphocholine and sphingomyelin, and higher glycerophosphocholine, with a
similar total choline content [121,127]. Later studies from the UK and Turkey have reported similar
findings [115,116].

The significance of the different dietary choline forms has not been clearly explained at present.
As mentioned before, studies in rodents have suggested that the different forms of choline vary
in bioavailability and impact infant development, reflecting different absorption efficiencies and
rates of tissue uptake [12,13]. Also, dietary phosphatidylcholine compared with free choline altered
the form of choline present in milk, while the total choline concentrations in milk did not differ
between groups [13]. However, in humans, the relationship between the different chemical forms of
choline in milk and infant development is not well understood. There is only one study from Turkey
reporting that exclusively breastfed infants have higher concentrations of free choline compared with
formula-fed infants [116]. More research in this area is required to substantiate the difference in choline
concentrations between different infant feeding practices at different intake levels.
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3.3. Choline Content in Dietary Food Sources

The first database on the total choline and its individual forms, in foods that are common in North
American diets, was made available in 2004 by the US Department of Agriculture (USDA). The data
set listed 434 food items [148], which was updated and expanded in 2008 [2]. These databases
include values for free choline, phosphocholine, glycerophosphocholine, phosphatidylcholine,
and sphingomyelin, as well as values for total choline and betaine. Although betaine is a choline
metabolite, it is generated by two successive irreversible reactions [149]; therefore, it is not a
choline-containing molecule, nor can it be used to resynthesize choline [150]. Therefore, betaine
is not included in the total choline value. However, dietary betaine may have a choline-sparing effect,
particularly decreasing the use of choline used to synthesize betaine [151]. It is relevant to note that the
first released version of the database for choline content in foods contained erroneously high betaine
values, which were rectified in the second edition. This is important to mention when comparing
betaine intake from studies using different available nutrient databases. Total choline, individual forms
of choline, and betaine content in selected food sources are presented in Table 2.

Table 2. Choline and betaine content in different food sources (mg per 100 g of weight).

Choline
Food Item Betaine

FC PCho GPC PC SM TC
Beef liver, cooked 5.6 62.0 12.0 83.0 250.0 24.0 431.01
Egg, hard boiled 0.6 0.7 0.5 0.5 210.0 14.0 225.71
Beef steak, cooked 13.0 0.7 1.3 5.2 86.0 11.0 104.21
Salmon, cooked 1.8 7.8 1.2 41.0 37.0 3.4 90.41

Pork chops, cooked 2.8 1.1 0.6 12.0 57.0 7.5 78.2

Chicken breast, cooked 6.4 3.2 2.1 1.6 46.0 8.9 61.8
Nuts, almonds 0.5 9.4 1.9 1.2 40.0 0.0 5251

Broccoli, cooked 0.1 8.5 9.3 1.3 21.0 0.0 40.1
Beans, baked canned 0.1 17.0 0.8 1.3 12.0 0.0 31.11
Milk, 2% fat 0.9 2.8 1.6 10.0 1.2 0.9 1651

Red potato, cooked 0.2 8.5 1.2 3.8 5.3 0.0 18.8

White rice, cooked 0.3 0.7 0.0 1.0 0.4 0.0 2.1

1 TC is reported as the sum of all individual choline forms when a discrepancy was found with the value reported
for TC in the database. Abbreviations: FC, free choline; PCho, phosphocholine; GPC, glycerophosphocholine;
PC, phosphatidylcholine; SM, sphingomyelin; TC, total choline (sum FC + PCho + GPC + PC + SM). Source: USDA
choline content database release two [2].

Total choline content has been well documented to be higher in foods of animal origin, compared
to foods of vegetable origin on a per unit of weight basis [2]. Foods that contain the highest content
of choline include liver, eggs, beef, fish, pork, and chicken [2]. In these foods, the majority of choline
is present as phosphatidylcholine, a lipid-soluble form, as part of the cell membrane. Milk is also a
good food source for total choline, as it is usually consumed on a daily basis. Information on choline
from specific food groups continues to be expanded, with recent data for choline content in pulses
and meats becoming available from Canada [152,153]. However, the information on choline content
of many foods from outside North America remains limited, thus making it difficult to accurately
estimate dietary choline intake worldwide.

4. Dietary Recommendation for Choline

4.1. Adequate Intake Recommendation by Stage of the Life Cycle

In 1998, the Food and Nutrition Board of the Institute of Medicine (IOM) published Dietary
Reference Intakes (DRIs) for choline (Table 3), as part of a set of reference values for nutrient intakes
for healthy populations in the United States (US) and Canada [8]. Due to the lack of sufficient
evidence at that time, an Estimated Average Requirement (EARs) for choline could not be calculated;



Nutrients 2018, 10, 1513 8 of 24

instead, intake recommendations were set as Adequate Intakes (Als) for total choline. The Al
for choline for infants from 0 to 6 months old was set at 125 mg/day, based on a milk volume
intake of 0.78 L/day and total choline content of 160 mg/L (1500 pmol/L) [8]. The mean milk
volume intake was estimated from test weighing before and after each feeding by healthy, full-term
birth infants who were exclusively breastfed [154,155]. It is important to mention that at the time
the Al for choline was set, the only one available study, measuring all five individual forms of
choline present in mature human milk, reported a lower mean milk concentration of 134 mg/L [121].
However, no rationale was given for the 20% increase in total choline concentration in human milk
(134 rounded to 160 mg/L) to establish the Al for early infancy. For infants from 7 to 12 months
old, the Al was set at 150 mg/day using a body weight ratio calculation to extrapolate the Al from
early infancy. For adults, the Al for choline was set at 550 mg/day for men and 425 mg/day for
women. These values were based on the amount (7 mg/kg/day) that prevented hepatic alteration
in men, defined as elevated alanine aminotransferase concentration in serum [7], and reference body
weights of 76 kg and 59 kg for men and women, respectively [8]. It should be noted that the small
depletion-repletion study used to derive these values was conducted only in men and did not provide
information on whether less choline would be effective, as researchers only studied one dose [7].
From this, the Als for children and adolescents were extrapolated using the following formula:
Al = Al adult (weight child /weight adult)’”® (1 + growth factor). The growth factors for children are
0.30 between 7 months to 3 years, 0.15 between 4 to 13 years, 0.15 for males between 14 to 18 years,
and 0.00 for females between 14 to 18 years [8]. For pregnant women, the Al for choline was set at
450 mg/day for all trimesters, which was calculated as the Al for adult women plus fetal and placental
choline accumulation, based on animal data [156-158]. For lactating women, the Al for choline was
set at 550 mg/day, calculated as the Al for adult women plus an increment to cover choline output in
mature milk, using the Al set for early infancy.

Table 3. Current adequate intake recommendations for choline.

IOM—1998 1 EFSA—2016 2
Sta
8¢ Age Al (mg/day) UL (mg/day) Age Al (mg/day)
Males Females
0-6 month 125 125 - 0-6 month 120
Infants 7-12 month 150 150 - 7-11 month 160
Children 1-3 year 200 200 1000 1-3 year 140
4-8 year 250 250 1000 4-6 year 170
9-13 year 375 375 2000 7-10 year 250
14-18 year 550 400 3000 11-14 year 340
15-17 year 400
Adults >19 year 550 425 3500 >18 year 400
Pregnancy - - 450 3000 - 480
Lactation - - 550 3500 - 520

1 Dietary Reference Intakes for choline from the Institute of Medicine (IOM) [8]; 2 Dietary Reference Values for
choline from the European Food Safety Authority (EFSA) [9].

The Panel on Dietetics Products, Nutrition, and Allergies from the European Food Safety Authority
(EFSA) published the Dietary Reference Values for Choline in 2016 [9]. Similar to IOM, EFSA considered
that requirements for choline cannot be estimated, and therefore set Als for total choline (Table 2).
For infants from 7 to 11 months of age, the Al was set at 160 mg/day based on the extrapolation
from choline intake of exclusively breastfed infants from 0 to 6 months old (120 mg/day) [9,121,129].
For adults, the Al was set at 400 mg/day based on the mean choline intake from healthy populations
observed in the European Union [159,160], and the amount needed to replete most of the depleted
subjects with liver/muscle damage [161]. Like the IOM, the Als for the other stages were extrapolated
from the adult value considering growing factors for children, gestational body weight increase for
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pregnant women, and human milk output for lactating women [9]. Although the majority of the
Als set by the IOM and EFSA are similar, the major difference was for adults; the EFSA set the Al at
400 mg/day for men and women, while the IOM set a different higher Al for men (550 mg/day) in
comparison to women (425 mg/day for women).

4.2. Tolerable Upper Intake Levels

The IOM set the UL for choline at 3.5 g/day for adults based on the prevention of hypotension [8].
One study reported a hypotensive effect after the oral administration of 10 g/day of choline chloride
(equivalent to 7.5 g choline) [162]. A lowest-observed-adverse-effect level of 7.5 g/day was divided
by an uncertainty factor of 2 to obtain a UL of 3.75 g/day for adults, which was rounded down to
3.5 g/day. This value was also used to set a UL for pregnant and lactating women, and the ULs for
children and adolescents were extrapolated using body weight.

In light of the findings of studies conducted after the DRIs were published, it is apparent that
the occurrence of fatty liver or muscle damage in individuals consuming choline-deficient diets
differs between gender and age groups [161,163]. Specifically, men and postmenopausal women
are more susceptible to organ dysfunction compared to premenopausal women, when consuming
choline-deficient diets [161,163]. This observation was related to higher estrogen concentrations in
premenopausal women, which may enhance the endogenous synthesis of phosphatidylcholine via the
PEMT pathway [119]. Recent studies have also identified several single nucleotide polymorphisms
that impact PEMT and other enzymes involved in one-carbon metabolism, thus influencing the
susceptibility to organ dysfunction [164,165].

5. Dietary Assessment Methods and Validation

5.1. Dietary Assessment Methods

Dietary intake can be assessed by different methods, including food records, 24-h recalls (24HRs),
and food frequency questionnaires (FFQs). FFQs are widely used to estimate usual dietary intake
in large epidemiological surveys [166,167] because of their low participant burden and cost [168].
The purpose of an FFQ is to obtain information on the usual frequency of food consumption and to
rank individuals according to their intake level [169]. In some cases, FFQs also include information
on portion sizes, allowing the estimation of absolute daily intakes [170]. However, absolute daily
intakes from an FFQ are not usually as accurate as those derived from other methods, such as
a 24HR or weighed food record, which allow the collection of more detailed information on the
portion size of foods consumed [170-173]. The administration of only one 24HR does not adequately
represent the usual intake of an individual, and the number of days required to estimate usual nutrient
intakes at the individual level varies considerably, with a range of three to 41 days depending on the
nutrient [174]. The numbers of days necessary to assess dietary intake of choline or betaine are not
known, and the mean of at least two 24HRs has been suggested for energy intake estimation [175].
Therefore, the method selected to collect dietary intake data can influence the estimation of the nutrient
of interest.

An adequate dietary intake assessment of usual choline and betaine intakes, reflecting long-term
daily intake, is a prerequisite for the association with health and disease outcomes. The richest
sources of total choline are foods of animal origin [2], which may not be consumed on a daily basis.
The relationship between low choline, or betaine, intakes and an increased risk of adverse health
outcomes has been described in several studies [49-51,75,176,177]. However, other studies have
found no or only a weak association between choline or betaine intakes and these adverse health
outcomes [73,96,178]. The inconsistency of the results that attempt to show the influence of dietary
choline and betaine intakes in health outcomes raises the question of the validity of the methods used
to assess dietary choline and betaine intakes.
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5.2. Dietary Assessment Validation

Valid dietary methods for assessing choline intake are critical to obtaining an estimation of
dietary intakes. Given there is often no ‘gold standard’ methodology for assessing dietary nutrient
intakes, relative validity is often assessed where a selected method is compared to another reference
method [168]. Before using an FFQ), it should be validated in the population and for the nutrient of
interest. The mean of multiple 24HRs has frequently been used as a reference method to assess the
validity of FFQs [169]. The relative validity is often assessed by the use of different statistical analyses,
including correlation coefficients, Bland-Altman plots, cross-classification, and weighted Cohen’s
kappa coefficients [179-184]. However, only a few recent studies have reported on the validation of
methods to assess choline and betaine intakes [159,185-187]. This could be related to the fact that the
first food composition database for these nutrients only became available for use less than 15 years
ago [148]. Moreover, no validation studies assessing the intake of the individual forms of choline have
been published to date.

A tendency for higher absolute choline and betaine intakes estimated from an FFQ compared to the
mean intake from the reference method has been reported in the United States and Europe [159,186,187].
In addition, the estimated energy intake tended to be higher in the FFQ compared to 24HR,
which supports the overestimation of intakes. A possible explanation for this could be the long
list of food items included in FFQs, as participants may lose focus after a while, or the difficulty
in assessing portion size or frequency of consumption. Another possibility is that the time frame
during which the reference method was administrated was not long enough to adequately quantify
the usual intakes of the participants. However, similar time frames have been used in other validation
studies [188]. In addition, similar to choline, betaine-rich food sources, such as beets and quinoa [2],
may not be frequently consumed and therefore may be captured in the FFQ, but not in the three 24HRs.
Based on estimates of within-subject variability for other nutrients, it is probable that additional days
of dietary recalls would have been required to improve the accuracy of the 24HRs at the individual
level [174,189]. This limitation is inherent in most studies that use 24HRs as the reference method for
validation, as reporting accuracy in 24HRs may diminish as the respondent burden increases. It has
been recommended to adjust by energy intake before assessing the association of estimated intake
values between methods [190].

6. Dietary Choline Intake by Stage of Life Cycle

6.1. Dietary Choline Intakes in Adults

Dietary choline intake information is currently available mainly from North American and
European countries (Table 4). The first report describing dietary choline intake in adults was published
in 2005 in the US [191]. The 2007-2008 National Health and Nutrition Examination Survey (NHANES),
which is a population representative sample survey of the US, indicated that the mean choline intake
was 396 mg/day for men and 260 mg/day for women using two 24HRs [192]. This report also included
information indicating that choline intakes can differ by ethnic background [192]. Comparable
estimated mean choline intakes have been reported from 2009-2010, 2011-2012, and 2013-2014
NHANES [193,194]. In Canada, mean total choline intake in adults has been recently estimated
at 372 mg/day for men and 292 mg/day for women in Newfoundland using a food frequency
questionnaire [195].

A recent report describes the dietary choline intake and food sources from national surveys
performed in nine European countries [160]. These data showed that the highest dietary intake
was collected from people in the Northern countries, whereas Mediterranean countries had the
lowest intakes [160]. Other studies reporting dietary choline intake have originated from China [56],
Mexico [196], New Zealand [196], and Taiwan [197]. Worldwide, total choline intake in adults
ranges from 284 mg/day to 468 mg/day for men, from Taiwan and Sweden, respectively; and from
263 mg/day to 374 mg/day for women, from Mexico and Sweden, respectively. Given that the Als
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established by the IOM were set based on a single study conducted in men where only one choline
dose was used, it is interesting to note that a common finding is that mean intakes are below the
corresponding dietary choline recommendation. The evaluation of choline intake must be done with
caution, as intake levels above the Al imply a low probability of inadequate intake, but intake below the
Al does not necessarily indicate inadequacy [198]. Therefore, given the definition of Al, no conclusion
on the prevalence of choline intake deficiency can be made.

Table 4. Studies reporting on dietary total choline intake in healthy adults.

Total Choline Intake (mg/day) !

Dietary

Country Method Men Women Reference
n Intake n Intake

Canada FFQ 822 372 4 287 2232 292 + 213 [195]
China FFQ 18,763 318 + 92 37,432 289 + 85 [56]
Finland * 48HR x2 585 450 (425) 2 710 344 (327) 2 [160]
France * DR x7 936 370 (362) 2 1340 291 (283) 2 [160]
Greece FFQ 1514 291 4+ 79 1528 285 + 75 [50]
Japan FFQ 13,355 445-5133 15,724 388-4423 [199]
Italy 4 DR x3 1068 357 (341) 2 1245 293 (282) 2 [160]
Ireland * DR x4 634 461 (443) 2 640 318 (314) 2 [160]
Mexico FFQ - - 1027 263 + 105 [196]
New Zealand WER x3 - - 125 316 + 65 [200]
Sweden * DR x4 623 468 (442) 2 807 374 (356) 2 [160]
Taiwan FFQ 321 284 + 145 227 230 + 120 [197]
The Netherlands ¢ 24HR x2 1023 448 (425) 2 1034 334 (317) 2 [160]
UK * DR x4 560 407 (385) 2 706 294 (282) 2 [160]
Us+ 24HR x2 2563 421 (408) 2 2704 279 (271) 2 [194]

1 Data are presented as mean =+ SD, unless otherwise noted; 2 mean (median); 3 interquartile range; 4 data were
obtained from national representative surveys. Abbreviations: 24HR, 24-h recall; 48HR, 48-h recall; DR, dietary
record; FFQ, food frequency questionnaire; WFR, weighted food record. x1-x7 = number of days collected.

Only a small number of studies have reported on the individual choline forms in addition to
total choline intake. In adults, lipid-soluble choline forms contribute between 45 to 60% of total
choline intake, with phosphatidylcholine being the major form [199,201-205]. Intakes of water-soluble
choline forms (free choline and glycerophosphocholine) contribute approximately 25% and 15% of
total choline, respectively [167,185]. The richest food groups identified contributing to dietary choline
intake in the US are animal-food sources: Meat, poultry, and fish [192]. Major food sources of dietary
choline vary by country. For example, eggs, meat, and dairy are the major sources of total dietary
choline in New Zealand [200]. In contrast, eggs, seafood, meats, and soy products are the predominant
sources in Japan and China [56,199].

6.2. Dietary Choline Intakes in Other Age Groups

In comparison to data obtained from adults in general, there is less information available on dietary
choline intake levels related to major food group sources for specific stages of the life cycle, including
toddlers, children, adolescents, pregnancy, lactation, and the elderly (Table 5). In North America,
the estimated mean choline intake during pregnancy is similar to the choline intake estimated during
lactation [54,206]. During pregnancy and lactation, phosphatidylcholine and glycerophosphocholine
sources have been described as the main contributors to total choline intake [54,207,208]. As for
adults, the estimated mean total choline intakes in pregnant and lactating women are commonly below
the recommended Als [8,9]. A similar situation exists for the elderly [160,194,209]. On the contrary,
the mean intake reported for children in Germany is above the current recommended AI [160].

Interestingly, no differences have been reported in total choline intake during lactation compared
to pregnancy [72,206,210]. This observation is relevant since the Al for choline is higher for lactation
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compared to pregnancy [8,9]. In humans, higher dietary choline intakes are inversely associated
with a risk of neural tube defects [49]. Choline supplementation studies during pregnancy and
lactation suggest that maternal choline above the current Al intakes (980 vs. 430 mg/day) decreases
preeclampsia risk markers [211] and increases milk choline concentrations [120]. Currently, most of the
commercially available prenatal supplements do not contain choline, and the estimated choline intake
from supplements has been estimated to be low, ranging between 14 to 25 mg/day [194]. Recently,
the American Medical Association adopted the inclusion of choline in all prenatal supplements [212].
However, more research is still required to determine the specific choline requirements for both
pregnant and lactating women.

Table 5. Studies reporting on dietary choline intake in other age groups.

Ave G q Diet Total Choline Intake
e Group an ieta 1
& Countfy Meth(l;g Subgroup (mg/day) Reference
n Intake
Toddlers (1-3 year)
Canada DR x3 1 year 110 174 4+ 56 [74]
Finland > DR x3 1-3 year 500 176 (172) 24 [160]
Us? 24HR x2 2-3 year 1316 224 (217) 2 [194]
Children (4-9 year)
Canada FFQ 6 year 193 302 + 100 [213]
Germany ° DR x3 6-10 year 835 288 (276) 24 [160]
Romania DR x3 4-6 year 71 215+ 32 [214]
Us>® 24HR x2 4-8 year 2774 243 (235) 2 [194]
Adolescents (10-18 year)
Bangladesh FFQ Boys and girls 47 128 +3.23 [215]
The Netherlands 24HR x2 10-18 year, boys 566 353 (338) 2 [160]
10-18 year, girls 576 291 (279) 2
Us>® 24HR x2 14-18 year, boys 1207 295 (288) 2 [194]
14-18 year, girls 1147 244 (237) 2
Pregnancy
Bangladesh 24HR x1 T3 103 190 £ 98 [216]
Belgium FFQ T2 85 268 +7.43 [210]
Canada FFQ T3 290 302 £ 122 [208]
Jamaica FFQ T1 16 279 + 116 [217]
Latvia 24HR x2 T1-T3 990 356 (330) 2 [160]
Us>® 24HR x2 T1-T3 593 319 (309) 2 [194]
Lactation
Belgium FFQ 6 mpp 60 268 +£7.83 [210]
Canada 24HR x1 3 mpp 488 346 £+ 151 [206]
Us DR x3 1.5 mpp 98 356 + 109 4 [72]
Elderly (> 65 year)
Ttaly ® DR x3 Men 69 335 (320) 2 [160]
Women 159 269 (269) 2
Poland FFQ Women 122 392 + 263 [209]
Us? 24HR x2 Men 1099 363 (351) 2 [194]
Women 1145 266 (259) 2

1 Data are presented as mean £ SD, unless otherwise noted; 2 mean (median); 3 mean + SE; 4 mean data are
presented; 5 data were obtained from national representative surveys. Abbreviations: 24HR, 24-h recall; DR, dietary
record; FFQ, food frequency questionnaire; mpp, months postpartum; T1, first trimester; T2, second trimester;
T3, third trimester. x1-x3 = number of days collected.

7. Summary and Future Directions

Choline is a complex essential nutrient involved in several diverse body functions. It must be
obtained from the diet as endogenous synthesis is insufficient to cover the body’s needs. Additionally,
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choline exists in different water-soluble and lipid-soluble forms in foods; these forms may differ
in metabolic fate and subsequent impact on growth and development. Our current knowledge of
choline in human milk is limited to relatively few studies, mostly from high-income countries where
maternal animal source food consumption is likely higher than that of counterparts from low-income
countries. Studies with large sample sizes of healthy lactating women from different countries that
assess both total and individual milk choline concentration are needed, as these data may help to
generate a potentially more appropriate reference for assessing choline concentrations in human milk.
Although the estimations of dietary choline intakes in different studies worldwide are based on the
same single database, this source contains information on a limited number of samples per food item
and were obtained only from the US. More work is needed to expand the current database as it may
not be totally representative of certain foods consumed by a particular population and it is uncertain
whether the choline content of foods differs between countries. Is important to mention that only a
fraction of the studies on dietary choline intakes are based on data from national surveys; thus, studies
with large sample sizes of randomly selected participants are needed. Moreover, direct comparison
of the estimates of choline intake from different studies should be done with caution, as different
dietary assessment methods used to estimate choline intake may influence the dietary choline intake
estimation. At present, there remains limited information available on the usual dietary choline intake
across different age groups in the life cycle, particularly for early childhood. Clearly, more research on
choline requirements and physiological benefits associated with dietary intake is needed to properly
assess the importance of this nutrient.
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