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ABSTRACT: This Article proposes a novel chemometric approach to understanding
and exploring the allergenic nature of food proteins. Using machine learning methods
(supervised and unsupervised), this work aims to predict the allergenicity of plant
proteins. The strategy is based on scoring descriptors and testing their classification
performance. Partitioning was based on support vector machines (SVM), and a k-nearest
neighbor (KNN) classifier was applied. A fivefold cross-validation approach was used to
validate the KNN classifier in the variable selection step as well as the final classifier. To
overcome the problem of food allergies, a robust and efficient method for protein
classification is needed.

■ INTRODUCTION
The mechanisms behind food allergies are not fully under-
stood. At the same time, food allergies are a significant social
health problem. No one person is protected from developing a
food allergy at any time of life. Eight foods cause the most
common allergic reactions: milk, eggs, peanuts, tree nuts, soy,
wheat, fish, and shellfish. In the work of Nagler et al., the
question of why one person tolerates a food while another is
allergenic was outlined,1 and the microbiome was pointed to as
a reason for allergenicity. In recent years, the microbiome has
been explored through many different studies, which has led to
the application of machine learning data to reveal patterns and
trends.2 Many unanswered questions make it difficult for
researchers to develop a proper treatment with broad
applicability against food allergies.
Food allergens are water-soluble proteins that differ

significantly according to their origin, such as whether they
are animal- or plant-derived.3−8 The production of antigen-
specific IgE antibody responses indicates food allergy and
atopic disease.
The allergen-induced activation process occurs on epithelial

barrier surfaces and is caused by the alarmins thymic stromal
lymphopoietin (TSLP), interleukin 33 (IL-33), and interleukin
25 (IL-2). The produced alarmins invoke the production of
type 2 innate lymphoid cells (ILC 2s), which generate Th2
cytokines and prime DCs to stimulate an allergen-specific
immune reaction.3 Methods of allergen identification include
serology and cytology approaches as well as in vivo and in vitro
techniques. Although considered reliable, all these methods are
complicated, expensive, and relatively slow. Therefore, more
attention has recently been given to bioinformatics and

machine learning strategies as potential tools for detecting
and classifying food allergens. Among the great variety of
methods, intelligence neural networks, supervised learning,
support vector machines with linear kernel functions, and
different classifiers such as k-nearest neighbor are used as
reliable options for identifying, modeling, and predicting
allergenic properties.8−11 Wang et al.12 developed a new
deep learning model (transformer with a self-attention
mechanism combining the learning models Light Gradient
Boosting Machine [LightGBM] and eXtreme Gradient
Boosting [XGBoost]) for the prediction of food allergens.
Machine learning is proving to be a tremendously helpful
solution in this field. Comprehensive proteomic analysis still
cannot be completely avoided, but combining it with
complementary techniques will aid the development of a
future coherent model.13

It is worth mentioning that the reported efficiency of an
applied prediction from machine learning is often better than
those of real in vivo and in vitro experiments. According to
recent studies,14,15 classical chemometric approaches can be
used as strategies for the interpretation, modeling, classifica-
tion, and prediction of the allergenic nature of food proteins.
They are characterized by simplicity, rapidity, and sufficient
efficacy.
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Cluster analysis (CA) is an option that provides a calculation
algorithm for grouping a set of objects characterized by various
descriptors (variables) into patterns of similarity. The goal of
CA is to reach an optimal grouping of the objects (or
descriptors) corresponding to the selected measure of
similarity between members of each group (cluster) and to
ensure a difference between identified clusters. In hierarchical
cluster analysis, the grouping of objects is spontaneous (using
an unsupervised pattern recognition method), and the number
of clusters to be formed is not known in advance. On the other
hand, nonhierarchical clustering (most often known as K-
means clustering) is a supervised pattern recognition method
in which the number of clusters is retrieved from previous
steps. The clustering algorithm requires the initial normal-
ization of the raw data (autoscaling or Z-transformation), the
introduction of Euclidean distances as the measure of
similarity, and the selection of appropriate linkages between
the clusters. A tree-like plot (dendrogram) usually illustrates
the hierarchical relationship between clusters. No hierarchical
relation exists in nonhierarchical clustering.
Comparing CA and more traditional classification methods

such as partial least-squares discriminant analysis (PLS-DA),
Zimmerman et al.13 found that the classification results
reached by CA for the separation of allergenic from
nonallergenic proteins are of the same level of efficiency as
those reached by PLS-DA.
Another work14 presented a simple way to classify food

proteins by allergenicity. The methods used for problem
solving were well-established multivariate statistical strategies
(hierarchical and nonhierarchical cluster analysis, two-way
clustering, principal component analysis, and factor analysis),
which are an essential part of exploratory data analysis
(chemometrics). The methods were applied to a data set of
18 food proteins (allergenic and nonallergenic). They
convincingly showed that the classification of two types of
food proteins could be easily achieved by selecting simple and
accessible physicochemical and structural descriptors. Optimal
descriptors were selected by applying principal component
analysis and factor analysis through the successive reduction of
initial descriptor numbers and checking the resolving power for
the chosen descriptors. The results may be of significant
importance for building a model for partitioning allergenic
from nonallergenic food proteins without engaging compli-
cated software methods and resources.
Our study proposes a concept for the still-open niche of

detecting allergenicity in food proteins through chemometrics,
which is a part of the broader field of solving structural
problems of biomolecules through chemometric approaches.

■ MATERIALS AND METHODS
Structure of the Data Set. A data set of 954 food

allergens and nonallergens was collected from the databases of
CSL (Central Science Laboratory) (http://allergen.csl.gov.uk),
FARRP (Food Allergen Research and Resource Program)
(http://www.allergenonline.org), SDAP (Structural Database
of Allergenic Proteins(http://Fermi.utmb.edu/SDAP/sdap_

manhtml). The data set and generated descriptors are available
in the Supporting Information.

■ COMPUTATIONAL FRAMEWORK
The main parts of the computational framework of the
proposed method are shown in Figure 1. After the allergenic
and nonallergenic protein sequences were collected and the
data set was prepared in FASTA format, sequence information
was incorporated to extract compositional and AAindex-based
properties, i.e., the 2 g exchange group frequency (TGR) and
the radius of gyration (GYR). Protein sequences were encoded
in information-rich descriptor vectors and used to build a
classifier to discriminate allergenic from nonallergenic proteins.
To find the most important and valuable descriptors, a
sequential forward-selection strategy with a KNN classifier was
used. The resulting best subset of descriptors was used to build
the final classifier. A fivefold cross-validation (5-fold CV)
approach was used to validate the KNN classifier in the
variable selection step and the final classifier. To perform a 5-
fold CV, protein data sets were divided into five subsets. At
each step of the CV, one of the subsets was left out as the test
set to validate the classification model, which was trained using
the remaining four subsets. These important steps of the
proposed approach will be explained in the next sections.

Feature Extraction. Each amino acid has a unique
chemical structure based on its side chain, and only 20
different amino acids are known in eukaryotes. A protein
consists of a chain of multiple amino acids linked together by
peptide bonds. Different proteins have different numbers and
orders of amino acids, which results in proteins having unique
folding and functionality characteristics in the native state. A
key step in developing an efficient classifier for discriminating
allergens and nonallergens based on sequence information is
encoding the sequences into informative numerical descriptors.
According to previous classification studies and studies on
allergenic proteins, the proposed method utilizes sequence-
based properties as well as the physicochemical properties of
amino acids. The properties of allergenic and nonallergenic
proteins have also been considered in the selection of features,
which is described as follows.

Amino Acid Composition. The amino acid composition
(AAC) is represented by a feature vector consisting of 20
values (AAC1−AAC20), each of which is the frequency of
occurrence for an amino acid in the protein sequence. AAC
contains general information about the proteins in terms of the
amino acid content and does not take the order of amino acids
into account.

Hydrophobic Group. Amino acids can be classified into
hydrophobic and hydrophilic groups based on side-chain
structure and characteristics. Hydrophobic amino acids are {A,
C, F, I, L, M, P, V, W, Y}, and hydrophilic amino acids are {D,
E, G, H, K, N, Q, R, S, T}. By calculating the frequency of
hydrophobic and hydrophilic amino acids along the sequence,
two numerical descriptors can be obtained for the hydrophobic
and hydrophilic frequency, which are abbreviated as HYD1
and HYD2, respectively.

Figure 1. Basic computational framework of the proposed method.
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Electronic Group. This property describes the electro-
negativity of an amino acid. Amino acids have different
electronic properties according to their side-chain structure.
Amino acids were classified into six electrical groups (Table 1).
By listing the amino acids in the protein sequence and
calculating the amino acid frequency for each category, six
numerical descriptors (ELC1−ELC6) can be obtained.

R Group. Amino acids can be clustered into different groups
according to other characteristics of their side chains. In this
study, the clusters provided by Kedarisetti et al.15 were used,
which divided the amino acids into five groups (Table 2). The
frequency of occurrence for each group was calculated along
the protein sequence, and five numerical descriptors (RGR1−
RGR5) were obtained for each protein sequence.

2 g Exchange Group Frequency. To calculate this feature,
the protein is converted into a sequence of the same length
with reduced alphabets (a, b, g, d, e, and z) based on
evolutionary information and the PAM matrix (Table 3).

For example, a sequence of KRDQGKIH will be reduced to
δδββδβδ. The occurrence frequency of all possible 2 g words
(combinations of two consecutive reduced letters) is
calculated. In this study, the method proposed by Eghbal et
al.16 was used to reduce the amino acid alphabet to six letters.
Hence, 36 numerical descriptors (TGR1−TGR36) are
obtained for each sequence. Both the order of amino acids
and the relative mutability during evolution are reflected in this
feature.
Groups of amino acids bases on evolutionary information

AAindex-Based Descriptors. To incorporate the composi-
tional property of protein sequences in the computational
model, several physicochemical properties of amino acids were
used to calculate AAindex-based descriptors. Hydrophobicity is
one of the most important physicochemical factors in the
folding of proteins and the formation of their three-
dimensional structures. Amino acids have different degrees of
hydrophobicity based on their side chains, and this property
can be measured using different hydrophobic indicators. In this
study, the normalized Eisenberg hydrophobicity index17 has
been used (Table 4). The sum of this index is calculated for all

amino acids in the sequence and gives a numerical descriptor
abbreviated as HYS. Similarly, we have calculated indices for
the sum of the accessible surface area18 for hydrophobic and
hydrophilic residues (ASA1 and ASA2), the sum of the
normalized van der Waals volume (VAN), the radius of
gyration (GYR), the partition coefficient (PRT), the sum of
the average flexibility (FLX), the sum of the net charge
(CHR), and the total number of rings (RNG) over all amino
acids in the protein sequence. All mentioned physicochemical
and biochemical properties of amino acids were extracted from
the AAindex database (version 9.2)19 and are summarized in
Table S1 and S2 in the Supporting Information.
Given this set of sequence-related descriptors, the feature

vector of each protein sequence has 79 elements (presented in
the Table S2). The list of descriptor sets and the
corresponding abbreviations are given in Table 4.

Feature Selection. Feature extraction methods can
produce vast numbers of features that may be noise or may
be redundant or irrelevant for modeling purposes. Hence,
using all extracted features in the data classification process can
increase both the computational cost and the chance of
incorrect label prediction, which would decrease the model
performance. Feature selection methods can reduce the
dimensions of the feature space by finding the most suitable
subset including the top-ranked information-rich features.20 In
this study, sequential forward selection21 was used as the
search strategy and the non-error rate (NER) of the cross-
validated KNN model was used to measure the performance of
the subsets during the selection process. Additionally, the
random forest (RF) classifier was used as an embedded feature

Table 1. Electronic Groups of Amino Acids

electronic group descriptor abbreviation amino acids

electron donor ELC1 D, E, P, A
weak electron donor ELC2 V, L, I
electron acceptor ELC3 K, N, R
weak electron acceptor ELC4 F, Y, M, T, Q
neutral ELC5 G, H, W, S
special AA ELC6 C

Table 2. Groups of Amino Acids Based on the Side Chain
Characteristic

residue group description abbreviation amino acids

nonpolar aliphatic RGR1 A, L, I, V
glycine RGR2 G
nonpolar RGR3 F, M, P, W
polar uncharged RGR4 C, N, Q, S, T, V
charged RGR5 D, E, H, K, R

Table 3. Groups of Amino Acids Based on Evolutionary
Information

reduced alphabet amino acids

α K, H, R
β D, E, N, Q
γ C
δ A, G, P, S, T
ε I, L, M, V
ζ F, Y, W

Table 4. List of Descriptors Sets, Number of Numerical
Descriptors for Each Set, and Corresponding Abbreviations

descriptor set abbreviation
number of
descriptors

amino acid composition AAC 20
electronic group ELC 6
hydrophobic group HYD 2
sum of hydrophobicity HYS 1
R-group RGR 5
2 g exchange group frequency TGR 36
accessible surface area ASA 2
sum of the normalized van der Waals
volume

VAN 1

sum of the radius of gyration GYR 1
number of hydrogen bond donors HDN 1
sum of the partition coefficient PRT 1
sum of average flexibility indices FLX 1
net charge CHR 1
number of rings RNG 1
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selection method to evaluate variable importance and select a
reduced subset for classification.

Classification. To build a predictive model, the extracted
features were presented to several classification methods and
the results were compared to decide the best performing
model. In this study, we used three supervised machine
learning methods called k-nearest neighbors (KNN), support-
vector machine (SVM), and the naiv̈e Bayes classifier (NB) to
build a model for the correct classification of allergenic and
nonallergenic proteins.
KNN is a supervised machine learning method that has been

widely used for classification problems in bioinformatics and
data science.22 The KNN method is a sample-based
classification method that predicts the label of the test sample
based on the majority vote of its nearest neighbors.23,24 In this
study, the Euclidean distance was used to measure the distance
of the nearest neighbor and 10-fold cross-validation was used
to decide the best value for the number of neighbors (k).
SVM is one of the widely supervised methods used for

classification in many research fields25−27 and has also been
adopted for the classification of proteins and peptides because
of its ability to handle nonlinear and complex conditions.28−30

The concept behind SVM is to map the data into higher
dimensions using a kernel function and construct a maximum
marginal hyperplane to discriminate classes in high-dimen-
sional feature space. In this study, the radial base function
(RBF) was selected to train the SVM model and the
regularization parameter (C) and the kernel width parameter
(g) were optimized through a grid-search strategy. More detail
about SVM can be found in the literature31

Naiv̈e Bayes is one of the most popular statistical approaches
for solving classification problems and has been successfully
used to classify biological sequences.32−34 Naiv̈e Bayes assumes
that the probability distributions of variables are independent
of each other. Hence, the calculation of conditional
probabilities can be simplified significantly. In this way, the
prediction of the class label can be seen as finding the outcome
of maximum probability given a set of calculated descriptors.
Among the ensemble learning methods used for classi-

fication, RF is a popular technique that is widely used in the
field of computational biology.35,36 The decision trees are the
building blocks of the RF classifier and operate as an ensemble.
Each decision tree predicts a class membership, and the class
with the most votes decides the final class predicted by the RF
model. By randomly splitting features into different decision
trees, relatively uncorrelated trees operating as an ensemble
can outperform the individual decision trees.

Performance Evaluation. The classification performance
of the classifiers was evaluated by various criteria, including
sensitivity (Sn), specificity (Sp), accuracy (Acc), nonerror rate
(NER), and Matthew’s correlation coefficient (MCC), as
follows:

=
+

Sn
TP

TP FN (1)

=
+

Sp
TN

TN FP (2)

= +
+ + +

Acc
TP TN

TP FN TN FP (3)

= +
NER

Sn Sp
2 (4)

= × ×
+ × + × + × +

MCC
(TP TN) (FP FN)

(TP FP) (TP FN) (TN FP) (TN FN)
(5)

TP, TN, FP, and FN represent the number of the correctly
classified allergenic proteins, the number of the correctly
classified nonallergenic proteins, the number of nonallergenic
proteins recognized as allergenic, and the number of allergenic
proteins recognized as nonallergenic proteins, respectively.
Furthermore, the area under the curve (AUC) from the
receiver operating characteristics (ROC) is also reported.37

■ RESULTS AND DISCUSSION
To investigate the performance of the classifiers and the effect
of variable selection on the prediction result, several experi-
ments were conducted. The prepared data set of allergen and
nonallergen proteins was analyzed following the provided
computational framework and the classification models
adopted, and fivefold cross-validation was used to evaluate
the performance of the model at different conditions. Classifier
performance was assessed using the performance measures
presented in the previous section according to two general
approaches: (i) using all 79 calculated descriptors to define
feature space and (ii) applying feature selection to find an
optimal feature set to reduce the dimensionality of the feature
space and improve the classification model performance.

Performance Analysis Using All Descriptors. This
section examines the results obtained by different classifiers
using four different descriptor sets. In the first case, the
descriptor set includes only AAC, ELC, HYD, and RNG
features, which are composition-based features. In the second
case, only the TGR descriptors are included as evolutionary
based descriptors. The third descriptor set includes the
AAindex-based feature descriptors HYS, ASA, VAN, GYR,
HDN, PRT, FLX, CHR, and RNG. In the fourth case, all 79
properties are used in the construction of the classification
model. The hyperparameters of all classifiers were optimized to
ensure they performed at their optimal setting. The efficiency
of the KNN classifier was evaluated at different numbers of
neighborhoods k; k = 1 was the optimal number of
neighborhoods and performed significantly better than the
other cases. The best performance for the SVM classifier was
obtained using a radial basis function as the kernel function,
and the box constraint and kernel scale parameters were set at
14.09 and 3, respectively. The optimal kernel for the NB
classifier was the normal distribution function with a width of
0.0346. The performance of the classifiers with different
descriptor sets is summarized in Table S2. The results compare
the overall performance of the KNN, SVM, and NB classifiers
for the highest-performing descriptor sets in terms of different
classification measures. For allergenic and nonallergenic
sequences, it can be seen that KNN performs better than
classifiers that use composition- and evolution-based descrip-
tors. The classification results of KNN using all 79 descriptors
are also comparable to the SVM classifier, which performs
better than classifier feature spaces.

Feature Selection Results. To determine the most-
relevant features and decrease feature redundancy, we used a
sequential forward-selection strategy to find the best subset of
descriptors. The search strategy starts with an empty set and
adds descriptors to the subset sequentially to minimize an
objective criterion. The objective criterion used here is 1 −
MCC, which is calculated using the fivefold cross validation of
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the KNN classifier on the reduced set of descriptors at each
step. Figure 2 shows the objective values at each forward-
selection step. As shown in the figure, the best model was
obtained using 42 descriptors (Table S2). The descriptors
added at each step of the sequential feature selection, including
the objective criterion value and a short description of the
descriptor, are summarized in Table S4. Representing the
evolution-based descriptors, the 2 g exchange group frequency
(TGR) has the largest share among the 42 selected descriptors.
Taking a closer look at the selected TGR descriptors, the (εα)
exchange group (TGR5) is contributed the most frequently.
The selection of the TGR group will be an improvement for
the obtained classification accuracy based on an appropriate
feature selection technique.
This means the adjacency of the amino acids {I, L, M, V}

followed by {K, H, R} has the most effect on the classifier
performance. Additionally, according to the selection of TGR9,
TGR13, TGR15, TGR16, TGR17, and TGR21, the presence
of g group (cysteine) and its adjacency with other exchange
groups plays a significant role in the discrimination of
allergenic and nonallergenic proteins. The selection of AAC5
(cysteine) as an important descriptor in the fifth step of
variable selection confirms the role of cysteine, as claimed
previously. The normalized van der Waals volume (VAN) and
partition coefficient (PRT) of the amino acids in the protein
sequence are AAindex-based descriptors and have a significant
impact on the classification performance. Glutamine (AAC6)
and arginine (AAC2) are other relevant compositional
descriptors that significantly improve the model performance.

The presence of electron-donor amino acids is also another
important factor, as demonstrated by the selection of the ELC1
descriptor.
Table 5 summarizes the classifiers that were rebuilt using the

set of 42 descriptors chosen by feature selection and

classification measures. Similarly, fivefold cross validation has
been employed to make a fair comparison among all the
classifiers. It is clear that the SVM classifier, which uses a
reduced descriptor set, in general performs better than KNN,
RF, and NB for all metrics. The result obtained using SVM and
variable solution is superior to that obtained in the case of
using all descriptors for classification.
In order to show the efficiency of the feature selection result,

the RF classifier method was used to determine the importance
of features in an embedded way. In this manner, the features
with importance higher than the average importance of all

Figure 2. Objective criterion (1 − MCC) at the steps of the forward selection strategy.

Table 5. Performance of Classifiers on Test Set Using
Selected Descriptors and Fivefold Cross Validation

performance measures

classifier Sen Spec Acc NER MCC AUC

KNN 0.91 0.92 0.92 0.93 0.84 0.96
RF 0.89 0.92 0.91 0.93 0.82 0.97
RF (embedded)a 0.88 0.91 0.90 0.93 0.80 0.97
SVM 0.90 0.95 0.93 0.93 0.86 0.98
NB 0.47 0.86 0.66 0.71 0.36 0.78

aThe reduced feature set was selected using RF.
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features were used as the selected feature set to construct the
classification model using random forest. The selected feature
set that used RF as an embedded method included 41
descriptors and was used to build a different RF classifier.
Clearly, the subset selected by RF shares many features with

the subset selected with forward selection, and the selection of
several AAC-related and TGR variables as highly important
descriptors is in accordance with the result of feature selection
by forward selection. Hence, regarding the classification
performance, particularly the MCC value and the area under
curve (AUC) for the test set using the reduced feature set, it
can be concluded that the SVM classifier outperforms the
others. Figure 3 compares the classification performance of the
classifiers for the test set.

■ CONCLUSIONS

With this work, we want to bring a sustainable and coherent
approach to building models for predicting the allergenic
nature of proteins. The presented model can be a relevant and
valuable tool that combines different stages to analyze allergens
using the descriptor set. The level of predictor accuracy is close
to those of other described methods. The model’s main
chemometric procedure for partitioning the data set into three
specific clusters is based on knowledge obtained from these
previous methods.
It appears that the complete separation of the objects into A

and NA protein patterns depends not only on these specific
allergenicity descriptors but also on other structural and
physicochemical parameters. This possibility is well-illustrated
by the formation of three patterns of proteins encompassing
not only the “allergenic” and “non-allergenic” groups but also a
“mixed” cluster.
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