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Abstract: Alzheimer’s disease (AD) is the most frequent cause of neurodegenerative dementia and
affects nearly 50 million people worldwide. Early stage diagnosis of AD is challenging, and there is
presently no effective treatment for AD. The specific genetic alterations and pathological mechanisms of
the development and progression of dementia remain poorly understood. Therefore, identifying essential
genes and molecular pathways that are associated with this disease’s pathogenesis will help uncover
potential treatments. In an attempt to achieve a more comprehensive understanding of the molecular
pathogenesis of AD, we integrated the differentially expressed genes (DEGs) from six microarray datasets
of AD patients and controls. We identified ATPase H+ transporting V1 subunit A (ATP6V1A), BCL2
interacting protein 3 (BNIP3), calmodulin-dependent protein kinase IV (CAMK4), TOR signaling pathway
regulator-like (TIPRL), and the translocase of outer mitochondrial membrane 70 (TOMM70) as upregu-
lated DEGs common to the five datasets. Our analyses revealed that these genes exhibited brain-specific
gene co-expression clustering with OPA1, ITFG1, OXCT1, ATP2A2, MAPK1, CDK14, MAP2K4, YWHAB,
PARK2, CMAS, HSPA12A, and RGS17. Taking the mean relative expression levels of this geneset in differ-
ent brain regions into account, we found that the frontal cortex (BA9) exhibited significantly (p < 0.05)
higher expression levels of these DEGs, while the hippocampus exhibited the lowest levels. These DEGs
are associated with mitochondrial dysfunction, inflammation processes, and various pathways involved
in the pathogenesis of AD. Finally, our blood–brain barrier (BBB) predictions using the support vector
machine (SVM) and LiCABEDS algorithm and molecular docking analysis suggested that antrocin is
permeable to the BBB and exhibits robust ligand–receptor interactions with high binding affinities to
CAMK4, TOMM70, and T1PRL. Our results also revealed good predictions for ADMET properties,
drug-likeness, adherence to Lipinskís rules, and no alerts for pan-assay interference compounds (PAINS)
Conclusions: These results suggest a new molecular signature for AD parthenogenesis and antrocin as a
potential therapeutic agent. Further investigation is warranted.
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therapeutic innovation

Pharmaceutics 2021, 13, 1555. https://doi.org/10.3390/pharmaceutics13101555 https://www.mdpi.com/journal/pharmaceutics

https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com
https://orcid.org/0000-0002-0178-6530
https://orcid.org/0000-0003-0676-5875
https://doi.org/10.3390/pharmaceutics13101555
https://doi.org/10.3390/pharmaceutics13101555
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/pharmaceutics13101555
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com/article/10.3390/pharmaceutics13101555?type=check_update&version=1


Pharmaceutics 2021, 13, 1555 2 of 21

1. Introduction

Alzheimer’s disease (AD), which is characterized by functional impairment, progres-
sive cognitive dysfunction, and memory loss, is the most frequent cause of neurodegen-
erative dementia in aging populations, affecting nearly 50 million people worldwide [1].
Worldwide prevalence rates range from 1.0% at 60 years of age to 30–50% by 85 years of
age [2,3]. The etiology of AD is multifactorial and involves complex interactions between
genetic, lifestyle, and environmental factors; however, about 70% of the risk is believed to
be genetic [4].

The pathology of AD is irreversible, and early stage diagnosis is paramount to halting
the progression of the disease and avoiding deterioration [5,6]. Major clinical manifestations
of AD and other dementias are mild cognitive impairment (MCI) and subjective cognitive
decline (SCD). However, the early detection of AD, SCD, MCI, and other dementias is still
challenging [7,8]. The current diagnostic tools have several limitations and are unable to
detect the disease in its early stages [9].

In addition, there is currently no effective treatment for AD, and presently available
drugs do not modify the disease because they are unable to halt its progression [10].
The specific genetic alterations and pathological mechanisms of the development and
progression of dementia remain poorly understood [11], and research in identifying more-
important genes and molecular pathways associated with AD pathogenesis will help
uncover potential treatments.

Gene expression microarrays are widely used to comprehensively measure the genome-
wide expression profiles of clinical samples, aiding in the identification of disease-related
genes [12]. Previous studies have investigated gene expression changes in the brain tissues
of patients with AD and other neurodegenerative dementias [13–18]. The public availability
of the results from those studies offers the possibility of analyzing the transcriptomic data
to identify potential drug targets and to develop appropriate therapeutic strategies.

Natural products, particularly medicinal plants, represent the sources of the lead
compounds for therapeutic development [19,20]. They are perceived as safer and offer
fewer chances of drug resistance than most conventional therapies, which are limited
by their undesirable side effects and drug resistance. Antrodia cinnamomea (AC) is a
unique fungal species that is found exclusively in Taiwan and is traditionally used by
indigenous herbalists to treat various diseases [21]. Among the many phytochemicals
identified in AC, antrocin is a sesquiterpene lactone with established anti-neoplastic and
immune-modulating functions [22]. Our previous data indicated that antrocin suppresses
several biological signaling pathways, including the focal adhesion kinase (FAK)/paxillin
phosphatidylinositol 3-kinase (PI3K)/Akt/mitogen-activated protein kinase (MAPK),
extracellular signal-regulated kinase (ERK)/c-Fos/matrix metalloproteinase (MMP)-2,
Akt/mammalian target of rapamycin (mTOR)/glycogen synthase kinase (GSK)-3β/nuclear
factor (NF)-κB, Janus kinase (JAK)/signal transduction and activator of transcription
(STAT3), β-catenin/Notch1/Akt, and insulin-like growth factor-1 receptor (IGF-1R) [23–27].
In addition, the activation of apoptotic markers including Fas, DR5, Bax, caspase–3, –8, and
–9 were also implicated in the pharmacological activities of antrocin; however, whether
antrocin can modulate the gene alterations associated with AD remains unclear.

We analyzed five AD microarray datasets and identified ATP6V1A, BNIP3, CAMK4,
TIPRL, and TOMM70 as upregulated DEGs that are common in all five datasets (Figure 1).
These genes covered a wide range of biological pathways related to brain function and
disabilities. Furthermore, our in silico blood–brain barrier (BBB) permeability and molecu-
lar docking analysis suggested that antrocin is permeable to the BBB and exhibited robust
ligand–receptor interactions with high binding affinities to CAMK4, TOMM70, and T1PRL,
suggesting its potential as a new therapeutic agent for AD.
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Figure 1. The flow chart of the study design for in silico identification of potential targets for Alzheimer’s disease and
antrocin as a therapeutic candidate.

2. Methods
2.1. Collection of Microarray Data of Early Onset Alzheimer’s Disease (AD)

The microarray AD datasets were collected from the NCBI GEO, a public functional
genomics data repository of high-throughput gene expression data (http://www.ncbi.nlm.
nih.gov/geo/, accessed on 21 September 2021). The five datasets that we used are described
in Table 1. The GSE26927 (GPL6255 (Illumina humanRef-8 v2.0 expression beadchip)
dataset (released on Jan. 29, 2011) consists of the microarray data from postmortem central
nervous system (CNS) tissues of 63 AD patients and 54 control samples [13]. The GSE160208
(GPL29311, NanoString nCounter Human Myeloid Innate Immunity Panel v2) dataset
(released Jan. 8, 2021) consists of gene expression data from the frontal cortex (FC) and
cerebellum (CB) of 27 Creutzfeldt–Jakob diseases (CJD) patients and 20 normal controls
(CT) [14]. The CJD dataset was included in this analysis because both AD and CJD are
conformational disorders that share common clinical, neuropathological, and pathogenetic
mechanisms [28,29]. Unlike typical AD, early onset AD exhibits atypical AD phenotypes
that present high levels of total tau (T-tau) protein and/or positive 14-3-3 protein (p14-3-3)
in the cerebrospinal fluid (CSF), reflecting intense neuronal degeneration similar to what
is found in CJD [30]. GSE5281 (GPL570, HG-U133_Plus_2 Affymetrix Human Genome
U133 Plus 2.0 Array) contains 161 samples, 74 of which are non-demented controls and
87 are affected with AD [15]. GSE36980 (GPL6244(HuGene-1_0-st) Affymetrix Human
Gene 1.0 ST Array (transcript (gene) version) released Apr. 17, 2013) consists of microarray
data from the gray matter of the frontal and temporal cortices and hippocampi derived
from 80 postmortem brains of 33 AD patients and 47 controls [16]. GSE39420 (GPL11532:
(HuGene-1_1-st) Affymetrix Human Gene 1.1 ST Array (transcript (gene) version) released
on Jan. 20, 2015) consists of microarray data from 14 AD patients and 7 controls [17].
The controls were cognitively normal healthy cohorts with no history of AD. No ethics
committee approval or patient consent was required for the present study.

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
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Table 1. Characteristics of the subjects and the microarray datasets included in this study.

Datasets Platform No. of Cases No. of
Controls Total No. Mean Age

(Years)

GSE5281 GPL570 87 74 161 79.8 0 ± 9.10
GSE160208 GPL29311 27 20 47 NA
GSE26927 GPL6255 63 56 119 63.65 ± 10.83
GSE36980 GPL6244 33 47 80 NA
GSE39420 GPL11532 14 7 21 55.66 ± 1.93

NA, not available.

2.2. Identification of Differentially Expressed Genes (DEGs)

DEGs were identified using the LIMMA package of R [31]. The Benjamini–Hochberg
correction method was used for the p-value adjustment of the false discovery rate (FDR).
An FDR of < 0.05 and |log[fold change (FC)]| cut off point were set for DEG selection.
The Multiple List Comparator (https://www.molbiotools.com/listcompare.html, accessed
on 21 September 2021), a web tool, was used to visualize the intersecting DEGs and to
generate a Venn diagram to visualize overlapping DEGs. These overlapping DEGs were
used for further bioinformatics analysis to uncover the molecular mechanism of AD.

2.3. Brain-Specific Gene Co-Expression, Protein–Protein Interaction (PPI) Networks, and
Gene-Set-Enrichment Analysis (GSEA) of DEGs

We explored the NetworkAnalyst server (https://www.networkanalyst.ca/, accessed
on 21 September 2021) [32] to conduct a brain-specific gene co-expression analysis. In
accordance with the protocol described in previous studies [33,34], the DEGs were up-
loaded to the GENELIST module of the server and were analyzed for specific selected
parameters: organism (Homo sapiens), ID type (gene symbol), tissue-specific co-expression
(brain) analysis minimum-order network analysis. The Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways and gene ontology (GO) enrichment analyses of the DEGs
were conducted using the Enrich server [35,36]. The official gene symbols of the DEGs were
uploaded into the Enrich server and were analyzed for the KEGG and GO terms under
the default enrichment cutoff value of p < 0.05. The search tool for retrieval of interacting
genes/proteins (STRING) server (http://string-db.org/, accessed on 21 September 2021,
v10.5) [37] was used to construct the PPI network of the DEGs. The Entrez gene symbols
of the DEGs were uploaded to the multiple protein modules of the STRING server and
were analyzed for known and predicted PPI interactions in Homo sapiens under the high
confidence (0.70) search and at a significant level of p < 0.05.

2.4. Analysis of Gene Disease-Specific Associations of the DEGs

We analyzed the disease-specific associations of DEGs by exploring the disease/phenotype-
specific filters of the OPENTARGET platform (https://www.targetvalidation.org/, ac-
cessed on 21 September 2021) at a search score of 0.15. The OPENTARGET platform
is a bio-web algorithm that integrates genetic, omic, and chemical data to identify the
involvement of genes in diseases and aids in systematic drug target identification and
prioritization [38].

2.5. MicroRNA (miRNA) Regulatory Network Analysis of the DEGs

The miRNA regulatory targets of the DEGs were collected from experimentally veri-
fied databases (TarBase, mir2disease, and miRTarBase) and predicted databases (miRanda
and targetscan). The miRNA regulatory network was visualized using the visNetwork R
packages. In addition, we used the miRNA Enrichment Analysis and Annotation (miEAA)
tool (https://ccb-compute2.cs.uni-saarland.de/mieaa2/, accessed on 21 September 2021)
to conduct a functional enrichment analysis of the miRNA targets [39]. Analysis was
conducted using FDR (Benjamini–Hochberg) a p-value adjustment of 0.05 and a minimum
required hit of four miR.

https://www.molbiotools.com/listcompare.html
https://www.networkanalyst.ca/
http://string-db.org/
https://www.targetvalidation.org/
https://ccb-compute2.cs.uni-saarland.de/mieaa2/
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2.6. In Silico Evaluation of the Drug-Likeness, Pharmacokinetics (PKs), Blood–Brain Barrier (BBB)
Permeability and Acute Rat Toxicity Study of Antrocin

We analyzed the drug-likeness, pharmacokinetics (PKs), medicinal chemistry, and
toxicity of antrocin using SwissADME software (http://www.swissadme.ch, accessed
on 21 September 2021) [40] and computer-aided Prediction of Biological Activity Spectra
(PASS) web resources (http://way2drug.com/dr, accessed on 21 September 2021) [41]. We
used the blood–brain barrier (BBB) prediction server (https://www.cbligand.org/BBB/,
accessed on 21 September 2021), which operates based on support vector machine (SVM)
and LiCABEDS algorithms on four types of fingerprints from 1593 reported compounds [42]
to analyze the BBB-permeation ability of antrocin. The permeation threshold of the server
is 0.02. In addition, we also used the brain or intestinal estimated permeation method
(BOILED-Egg) model [43] to further analyze the brain- and intestinal-permeation abilities
of the compound based on its lipophilicity and polarity. The antrocin SMILES format was
also uploaded to the SwissADME server and was analysed for the presence of pan-assay
interference compound (PAINS) substructures [44]. The GUSAR software for quantitative
structure-activity relationship (QSAR)/quantitative structure-property relationship (QSPR)
modelling was used for the in silico prediction of the 50% lethal dose (LD50) values of
antrocin for rats through four administration routes (intravenous (i.v.), intraperitoneal
(i.p.), oral inhalation, and subcutaneous (s.c.)) [45]. The GUSAR software was developed
based on training datasets from the SYMYX MDL Toxicity Database and consisted of
approximately 104 chemical structures with data on acute rat toxicity represented by LD50
values (log10 (mmol/kg)).

2.7. Molecular Docking Studies

The three-dimensional (3D) structures of CAMK4 (PDB:2W4O), ATP6V1A (PDB:6XBY),
TIPRL (PDB:5WOW), BNIP3 (PDB:2J5D), and TOMM70 (PDB:3FP3) were downloaded
from the protein data bank (PDB). The mol2 file for the 3D structure of antrocin was ob-
tained using the Avogadro molecular builder and visualization tool vers. 1.XX [46] before
subsequently being transformed into PDB format using the PyMOL Molecular Graphics
System, vers. 1.2r3pre. The PDB files of the crystal structures of the targets were trans-
formed to pdbqt format using AutoDock Vina (vers. 0.8, Scripps Research Institute, La Jolla,
CA, USA) [47]. Prior to molecular docking, the receptors were charged, hydrogen atoms
were added, and water (H2O) molecules were removed [48]. Docking experiments were
performed with AutoDock Vina (vers. 0.8) using default settings at a docking exhaustive-
ness of 8 with all of the bonds in the ligand rotated freely while considering the receptors to
be rigid. A grid box of 40 × 40 × 40 Å in the X, Y, and Z dimensions and a spacing of 1.0 Å
were used [49]. The docked complex was visualized and analyzed using the Discovery
Studio visualizer vers. 19.1.0.18287 (BIOVIA, San Diego, CA, USA) [50] and the protein–
ligand interaction profiler (https://plip-tool.biotec.tu-dresden.de/plip-web/plip/index,
accessed on 21 September 2021) [51].

3. Results
3.1. Deregulated Expressions of ATP6V1A, BNIP3, CAMK4, TIPRL, and TOMM70 Associated
with the Pathology of Neurodegenerative Dementia

The flow chart of the study design for the in silico identification of the potential targets
for Alzheime’sr disease and antrocin as a therapeutic candidate is shown in Figure 1. To
retrieve the genes whose expression levels were significantly altered in AD brains compared
to non-AD brains, we analyzed the transcriptomic data of multiple cohorts from microarray
datasets (Table 1). The DEG distributions for each dataset are shown in a volcano plot
(Figure 2A). The overexpressed DEGs were identified from each of the datasets and were
based on an adjusted p < 0.05 when comparing the AD patients and the control subjects
from each dataset (Figure 2B−D). Furthermore, we integrated the overexpressed DEGs
from each dataset to identify overlapping and the most implicated DEGs in AD pathology.
Five significantly overexpressed DEGs were identified: ATPase H+ transporting V1 subunit

http://www.swissadme.ch
http://way2drug.com/dr
https://www.cbligand.org/BBB/
https://plip-tool.biotec.tu-dresden.de/plip-web/plip/index
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A (ATP6V1A), BCL2 interacting protein 3 (BNIP3), calmodulin-dependent protein kinase
IV (CAMK4), TOR signaling pathway regulator-like (TIPRL), and translocase of outer
mitochondrial membrane 70 (TOMM70) (Figure 2C).
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the criteria of log(multiple of change (MC) value) and p < 0.05. (B) Venn diagram of the DEGs across the six datasets. (C,D)
Heatmap showing the Jaccard index of the DEGs in each of the datasets.

3.2. ATP6V1A, BNIP3, CAMK4, TIPRL, and TOMM70 Localization and Differential Expressions
in Brain Regions

To characterize the intracellular localization of the proteins, we acquired the indirect
immunofluorescence data of distributions of the proteins within the nucleus, endoplasmic
reticulum (ER), and microtubules of A-431 and A549 cells. We found that that ATP6V1A,
BNIP3, CAMK4, TIPRL, and TOMM70 were colocalized with the markers of different
subcellular localizations: ATP6V1A (cytosol and nucleoplasm), BNIP3 (cytosol), CAMK4
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(nucleoplasm), TIPRL (vesicles and cytosol), and TOMM70 (mitochondria) (Figure 3A). In
addition, we examined the expression levels of the DEGs in different regions of the brain.
Taking the mean relative expression levels of these genes in different brain regions into
account, we found that the frontal cortex (BA9) exhibited significantly (p < 0.05) higher DEG
expression levels. In contrast, the hippocampus exhibited the lowest ATP6V1A, BNIP3,
CAMK4, TIPRL, and TOMM70 expression levels compared to the other parts of the brain
that were analyzed (Figure 3B, Table 2).
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munofluorescence staining of the subcellular distribution of the proteins. Protein localization was detected based on the
immunohistochemistry from the Human Protein Atlas (HPA) database. Scale bar = 20 µm (B) Bar plots showing differential
expression levels of the genes in different brain regions.

Table 2. Mean expression data of the ATP6V1A, BNIP3, CAMK4, TIPRL, and TOMM70 genes in different brain regions.

GTEx RNA-seq (pTPM)

Brain Region TIPRL TOMM70A CAMK4 ATPV1A BNIPS

Anterior cingulate cortex
(BA24) 12.90 ± 7.90 b 19.10 ± 11.70 b 4.70 ± 3.30 a 53.40 ± 42.60 b 98.90 ± 45.70 b

Cortex (central) 12.30 ± 4.50 b 19.20 ± 7.20 b 7.50 ± 4.00 b 43.81 ± 20.00 b 98.63 ± 33.20 b

Frontal cortex (BA9) 19.90 ± 9.80 c 27.80 ± 13.10 c 9.30 ± 5.20 b 77.60 ± 42.50 b 136.72 ± 55.03 b

Hippocampus 9.70 ± 5.70 a 14.00 ± 8.20 a 4.00 ± 3.30 a 31.70 ± 27.50 a 80.43 ± 45.05 a

Raw data were downloaded from Human Protein Atlas (HPA) repositories. Data were analyzed, and results are presented as the
mean ± standard error of the mean. Values with different superscript letters in a column significantly differ (a > b > c) at p < 0.05. BA24;
Brodmann area 24, BA9; Brodmann area 9.

3.3. MicroRNA (miR) Regulatory Network and Brain-Specific Gene Interactions of ATP6V1A,
BNIP3, CAMK4, TIPRL, and TOMM70

We conducted a tissue-specific gene co-expression analysis and found that each of
the DEGs exhibited brain-specific gene co-expression clustering with 986 clustering nodes
and 1212 clustering edges (Figure 4A). Specifically, we observed higher clustering co-
expression with optic atrophy 1 (OPA1), integrin alpha FG-GAP repeat containing 1 (ITFG1),
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3-oxoacid CoA-transferase 1 (OXCT1), ATPase, Ca++ transporting, cardiac muscle, slow
twitch 2 (ATP2A2), MAPK1, cyclin dependent kinase 14 (CDK14), MAP2K4, tyrosine 3-
monooxygenase/tryptophan 5-monooxygenase activation protein beta (YWHAB), parkin
RBR E3 ubiquitin protein ligase (PARK2), cytidine monophosphate N-acetylneuraminic acid
synthetase (CMAS), heat shock protein family A member 12A (HSPA12A), and regulator of
G protein signaling 17 (RGS17). Furthermore, the PPI interaction network yielded 45 nodes
and 435 edges, with an average local clustering coefficient of 0.813 and PPI enrichment
p-value of <1.0× 10−16. The PPI network revealed that TOMM70A and ATP6V1A exhibited
very high protein family-specific clustering interactions while BNIP3, CAMK4, and TIPRL
formed a very minimal cluster (Figure 4B). We queried the miRNA targets of the DEGs
to gain further insight into their pathological role. We found that DEGs are targeted by
several miR-regulatory networks (Figure 4C) that are significantly associated with the
pathogenesis of several CNS diseases including Parkinson’s disease, Down syndrome,
inflammation, cerebral infarction, and several other diseases (Figure 5).

3.4. ATP6V1A/BNIP3 and CAMK4/TIPRL/TOMM70 Are Associated with Mitochondrial
Dysfunction, Inflammatory Processes, and Various Pathways Involved in AD Pathogenesis

To better understand the most common biological processes and pathways altered
by dementia generation and progression, we analyzed disease associations, KEGG path-
ways, and the ontological enrichment of DEGs. Our results revealed the enrichment
of fatty acid biosynthesis, ferroptosis, long-term potentiation, amphetamine addiction,
adipocytokine signaling, peroxisome proliferator-activated receptor (PPAR) signaling,
synaptic vesicle cycling, and peroxisome as major pathways associated with the DEGs
(Figure 6A), while enriched molecular functions in the signatures were mainly associated
with ATPase and calcium-dependent protein kinase activities (Figure 6B). In addition,
biological processes, including the regulation of myeloid leukocyte differentiation, den-
dritic cell cytokine production, myeloid dendritic cell differentiation, cellular response
to oxygen levels, and the mitochondrial protein catabolic process, were significantly en-
riched (Table 3). The gene–disease analysis further revealed that the ATP6V1A/BNIP3 and
CAMK4/TIPRL/TOMM70 signatures were associated with several brain-related disorders,
including developmental disabilities, schizophrenia, intellectual disabilities, abnormal
cerebral white matter morphology, and mental retardation (Figure 6C). Collectively, the
findings from this study suggest that ATP6V1A/BNIP3 and CAMK4/TIPRL/TOMM70 are
associated with mitochondrial dysfunction, inflammatory processes, and various pathways
involved in AD pathogenesis.

3.5. In Silico Pharmacokinetics, BBB Permeability and Acute Toxicity of Antrocin

The preclinical evaluation of drug PKs can aid in the drug development process by
providing a rationale for the selection of efficacious drug doses and treatment schedules [52].
The BBB is an important factor that limits the effectiveness of most chemotherapies against
AD. Herein, we evaluated the BBB permeation ability (Figure 7) of antrocin, and our
results revealed a BBB permeability score of 0.038 (Figure 7, Table 4) on a BBB permeant
threshold of 0.02, suggesting that antrocin is BBB permeant and thus would be valuable
for AD treatment. Our results also revealed good predictions for ADMET properties,
drug-likeness, adherence to Lipinskís rules, no PAINS alerts, and that it is a non-inhibitor
of CYP1A2, CYP2C19, CYP2D6 and CYP3A4 (Table 5). QSAR modeling of acute toxicity
in rats revealed that antrocin had LD50 values of 618, 26, 804.3, 517.3 g/kg body weight
for the i.p., i.v., o.p, and s.c. administrative routes, respectively (Table 4), suggesting that
the compound has a high safety profile, especially when administered orally. In addition,
antrocin demonstrated high environmental safety, as measured by the bioaccumulation
factor, Daphnia magna, fathead minnow, and Tetrahymena pyriformis.
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Table 3. Biological processes enriched by the target genes.

Index Name p-Value Adjusted
p-Value Odds Ratio Combined

Score

1 catabolism of mitochondrial proteins
(GO:0035694) 0.003296 0.04581 399.68 2284.21

2 response to increased oxygen levels
(GO:0036296) 0.003844 0.04581 333.05 1852.16

3 regulation of myeloid leukocyte
differentiation (GO:0002761) 0.004392 0.04581 285.46 1549.44

4 negative regulation of mitochondrial
fusion (GO:0010637) 0.004392 0.04581 285.46 1549.44

5 positive regulation of dendritic cell
cytokine production (GO:0002732) 0.004392 0.04581 285.46 1549.44

6 mitochondrial fragmentation involved in
apoptotic process (GO:0043653) 0.004940 0.04581 249.76 1326.33

7 negative regulation of membrane potential
(GO:0045837) 0.004940 0.04581 249.76 1326.33

8
positive regulation of mitochondrial
membrane permeability involved in

apoptotic process (GO:1902110)
0.004940 0.04581 249.76 1326.33

9 cellular response to oxygen levels
(GO:0071453) 0.005488 0.04581 222.00 1155.57

10 myeloid dendritic cell differentiation
(GO:0043011) 0.005488 0.04581 222.00 1155.57
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Figure 7. Two-dimensional (2D) structure and blood–brain barrier (BBB) permeation ability of
antrocin. The (A) support vector machine (SVM)/LiCABEDS algorithms and (B) BOILED-Egg)
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Table 4. In silico acute rodent toxicity assays for antrocin.

LD50

Administration Route Log10(mmol/kg) mg/kg OECD classification

Intraperitoneal (i.p) 0.421 618 Class 5
Intravenous (i.v) −0.955 26 Class 3
Oral gavage (o.p) 1.536 804.3 Non-toxic

Subcutaneous (s.c) 0.344 517.3 Class 4

Environmental Toxicity

Bioaccumulation factor Log10(BCF) 1.521
Daphnia magna LC50-Log10(mol/L) 4.594

Fathead Minnow LC50 Log10(mmol/L) −1.648
Tetrahymena pyriformis IGC50-Log10(mol/L) 0.856

The toxicity classification was based on the acute rodent toxicity chemical classification by the OECD Project.
LD50, 50% lethal dose.
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Table 5. Drug-like and properties of antrocin.

Properties Antrocin Reference Value

Formula C15H22O2 −
M.W(g/mol) 234.33 150−500

R-bonds 0 0−9
H-bond ACC. 2 0−10
H-bond DON. 0 0−5

Molar Refractivity 68.17 40 ~ 130
TPSA (Å2) 26.30 20−130

Fraction Csp3 0.80 0.25 ~ < 1
Log Po/w (XLOGP3) 3.44 −0.7 ~ 5
Consensus Log Po/w 3.31 ≤3.5

Drug-likeness (Lipinski rule) Yes (0 violation)
MLOGP ≤ 4.15, M.W ≤ 500,

H-bond ACC ≤ 10, H-bond DON
≤ 5

Bioavailability Score 0.55 >0.1 (10%)
BBB-permeation (SVM_MACCSFP) 0.038 ≥0.02

Synthetic accessibility 4.18 1 (very easy) to 10 (very difficult).
PAINS 0 alert No alert

P-gp substrate No
CYP1A2 inhibitor No
CYP2C19 inhibitor No
CYP2D6 inhibitor No
CYP3A4 inhibitor No

Log Kp (skin permeation) −5.29 cm/s <−3.5

R-bond; Num. rotatable bonds; H-bond ACC; Num. H-bond acceptors, H-bond DON; H-bond donors, TPSA;
topological polar surface area, BBB; blood–brain barrier, P-gp; P-glycoprotein. Kp; permeability coefficients (kp).

3.6. Molecular Docking Profiles of Antrocin with ATP6V1A, BNIP3, CAMK4, TIPRL,
and TOMM70

Our molecular docking analysis revealed that antrocin exhibited strong interac-
tions with the crystal structures of CAMK4 (PDB:2W4O), BNIP3 (PDB:2J5D), TIPRL
(PDB:5WOW), TOMM70 (PDB:3FP3), and ATP6V1A (PDB:6XBY) and demonstrated the re-
spective binding affinities of −6.70, −5.80, −6.60, −6.80, and −5.90 kcal/mol. Our analysis
of interactions between the target gene and antrocin revealed that antrocin interacted with
the gene targets through several hydrogen bonds, π-alkyl, van der Waals forces (Table 6),
and several hydrophobic contacts (Table 7).

Table 6. Molecular docking profiles between antrocin and various targets.

Interaction CAMK4 BNIP3 TIPRL TOMM70 ATP6V1A

∆G = (kcal/mol) −6.70 5.80 −6.60 −6.80 −5.90

Conventional
H-bonds

THR291 (2.72 Å)
HIS156 (1.92 Å)
PRO220 (3.65 Å)

THR208 (2.03 Å)
SER173 (2.97 Å)
PHE254 (3.78 Å)

SER271
(2.40 Å) HIS96 (2.16 Å)

π-alkyl PRO220
LEU169
PHE165
LEU162

ALA182
PRO194
LEU183
HIS179

PHE485
VAL518 TYR69

π-sigma HIS173

van der Waals
forces

MET224
GLU221
THR290
PHE292
ALA153

SER172
LEU169
PHE161
ILE156
LEU166

PHE254
GLU256
PRO255

SER268
THR267
GLY521
THR484
GLU488

ASP99
GLN68

ALA100
GLU72
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Table 7. Hydrophobic contact between antrocin and various targets.

Target Amino Acid
Residue Ligand Atom Protein Atom Distance (Å)

BNIP3 PHE165B 868 628 3.69
PHE165B 863 629 3.66
LEU166A 873 207 3.59
LEU169A 869 231 3.35
LEU169A 872 230 3.85
LEU169B 868 661 3.40

TIPRL HIS179F 42301 19984 3.68
LEU183F 42299 20029 3.63
PRO194F 42295 20139 3.72

TOMM70 THR484A 5020 3672 3.69
PHE485A 5014 3684 3.62
PHE485A 5013 3686 3.51
PHE485A 5020 3685 3.66
VAL518A 5020 4029 3.53

ATP6V1A TYR69L 17251 3978 3.69
GLU72L 17251 4001 3.58
HIS96L 17252 4191 3.64

CAMK4 HIS156A 2587 1013 3.90
PRO220A 2588 2588 3.70

Antrocin bound to CAMK4 with three hydrogen bonds, including THR291, HIS156,
and PRO220, with the respective binding distances of 2.72, 1.92, and 3.65 Å. In addition,
the antrocin–CAMK4 complex was further stabilized by several van der Waals forces that
were formed around the backbone of antrocin with the amino acid residues of MET224,
GLU221, THR290, PHE292, and ALA153 in the binding cavity of CAMK4. However, only
two hydrophobic contacts (PRO220A and HIS156A) existed between antrocin and the
binding cavity of CAMK4 (Figure 8). Antrocin was bound with TIPRL with three hydrogen
bonds, including THR208, SER173, and PHE254, with the respective binding distances of
2.03, 2.97, and 3.78 Å, with several π-alkyl, van der Waals forces, and various hydrophobic
contacts (Figure 9).

No conventional hydrogen bonds were observed between antrocin and BNIP3, while
only a single hydrogen bond was observed between the ligand (antrocin) and the receptors:
TOMM70 (SER271, 2.40 Å) and ATP6V1A (HIS96, 2.16 Å). In addition, several van der
Waals forces and hydrophobic contacts were also observed between antrocin and the
receptors: BNIP3, TOMM70, and ATP6V1A (Figure 10).
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4. Discussion

AD, one of the most common types of dementia, afflicts millions of people globally. In
addition to its negative effects on physical and mental health, AD places a huge burden on
both individuals and societies [53]. Although a number of medications are available for
the relief of AD symptoms, no cure for AD presently exists [54]. Therefore, it is evident
that identifying DEGs that play pivotal roles in AD pathogenesis is an important step
towards the development of appropriate therapeutic strategies. A comparative analysis
of the transcriptomic data between AD subjects and healthy controls revealed important
molecular pathways and biological processes altered by AD generation and progression.

In terms of upregulated genes, our pathway enrichment results included fatty acid
biosynthesis, ferroptosis, long-term potentiation, amphetamine addiction, adipocytokine
signaling, PPAR signaling, synaptic vesicle cycle, and peroxisome, all of which are com-
monly accepted components of the pathogenesis and pathological changes of AD [55–59].

Inflammatory processes play fundamental roles in the pathogenesis of AD [60]. Acti-
vated cells strongly produce inflammatory mediators such as proinflammatory cytokines,
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chemokines, leukotrienes, reactive oxygen species, and other radicals [61,62]. In addition,
the enrichment of biological processes, including the regulation of myeloid leukocyte
differentiation, dendritic cell cytokine production, myeloid dendritic cell differentiation,
cellular responses to oxygen levels, and the catabolism of mitochondrial proteins, indicate
important factors, all of which are associated with activation of the inflammatory processes
involved in the pathogenesis of AD [61,62].

Furthermore, the enrichment of the regulation of myeloid leukocyte differentiation,
the positive regulation of dendritic cell cytokine production, cellular responses to oxygen
levels, and the myeloid dendritic cell differentiation in the biological process ontologies
of DEGs suggest a mitochondrial dysfunction event, which is an important factor in the
pathogenesis of AD and other neurodegenerative disorders such as PD [63]. Collectively,
the findings from this study suggest that ATP6V1A/BNIP3/CAMK4/TIPRL/TOMM70 are
associated with mitochondrial dysfunction, inflammatory processes, and various pathways
involved in AD pathogenesis.

ATP6V1A is a multi-subunit enzyme that is associated with synaptic vesicle proton
gradient generation in the brain, energy metabolism, and ATP synthesis. In agreement with
a previous study [64], our comprehensive analyses of DEGs, enrichment, and PPI networks
strongly suggest that ATP6V1A may play an important role in AD pathogenesis. Moreover,
ATP6V1A maturations were implicated in the onset of developmental encephalopathy
with epilepsy, suggesting its role in regulating neuronal development [65]. A clinical study
by Dutta et al. [66] reported that two patients with de novo mutations (T607I and I554F)
in the C-terminus of the TOM70 protein exhibited white matter abnormalities, hypotonia,
hyperreflexia, dystonia, and cognitive deficits.

Furthermore, our brain-specific gene co-expression analysis revealed that the DEGs
exhibited gene co-expression clustering with OPA1, ITFG1, OXCT1, ATP2A2, MAPK1,
CDK14, MAP2K4, YWHAB, PARK2, CMAS, HSPA12A, and RGS17, all of which were
reported to play essential roles in the regulation of cell proliferation and AD pathogenesis.
Similar to the results obtained in our analysis, Zhang et al. [64] detected the upregulation
of ATP6V1A and OXCT1 in the AD cohorts compared to in the healthy cohorts [64].
Experimental evidence links OPA1 to the pathogenesis of Parkinsonian syndrome and
dementia [63], while OXCT1 plays a central role in extrahepatic ketone body catabolism [67].
Collectively, the results of the present study suggest that CAMK4, BNIP3, TIPRL, TOMM70,
and ATP6V1A are important DEGs that are associated with the pathogenesis of AD and
thus serve as attractive targets in the development of therapeutic intervention.

Molecular docking is widely employed as an in silico model for elucidating the
interactions between proteins and ligands and also in the estimation of the binding affinities
of protein–ligand complexes [68,69]. This enables the depiction of the behavior of a drug
candidate within the binding cavity of a receptor and ultimately gives an idea of the
biological processes that could be modulated by the drug candidate [70,71]. Consequently,
we conducted a molecular docking study to elucidate the potential druggability of the
target genes by antrocin, a bioactive natural product. Interestingly, our molecular docking
study suggested that antrocin exhibited strong interactions with the crystal structures of
CAMK4 (PDB:2W4O), BNIP3 (PDB:2J5D), TIPRL (PDB:5WOW), TOMM70 (PDB:3FP3),
and ATP6V1A (PDB:6XBY), with estimated binding affinities of −6.70, −5.80, −6.60, −6.80,
and −5.90 kcal/mol, respectively. Our analysis of the protein–antrocin complexes revealed
that antrocin interacted with the targets created by several hydrogen bonds, π-alkyl, van
der Waals forces, and several hydrophobic contacts. Non-covalent interactions, such as
hydrogen, hydrophobic and ionic bondings, and van der Waals forces, play crucial roles in
stabilizing the interactions between drug candidates and their protein targets [72,73]. The
higher number of interactions that antrocin has with CAMK4, TOMM70, and T1PRL could
be responsible for the stronger affinities that antrocin has for these proteins than it does for
BNIP3 or ATP6V1A. The van der Waals forces created around the antrocin backbone with
the respective amino acids of the proteins would create a strong cohesive environment,
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which would further stabilize the complexes [74]. However, the lower affinity of antrocin
for BNIP3 could be attributed to the absence of H-bonding in the antrocin–BNIP3 complex.

The BBB is a limiting factor in the therapeutic effects of most medications for treating
AD. Although a number of AD drug treatment trials targeting BBB dynamics have been
conducted, most of them have failed due to inadequate permeability. In addition, a
subset of AD cases with chronic hypoperfusion features is complicated by an inadequate
BBB [75]. Therefore, BBB permeation is an important factor that must be considered in
the development of a new drug for AD. Interestingly, our in silico studies indicated that
antrocin has high BBB permeability potential. Only a small fraction of small molecules cross
the BBB via lipid-mediated free diffusion, and these molecules must have <8 hydrogen
bonds and a molecular weight of < 400 Daltons (Da) [76]. Interestingly, antrocin satisfied
these criteria, with a MW of 234.33 Da, a surface area of 26.30 Å2, and forms two hydrogen
bonds. The MW threshold is a property of all biological membranes [77]. In agreement
with our findings, a screening of CNS-acting drugs showed that all brain drugs have an
MW <426 Da [78]. The BBB permeability decreases 100-fold when the surface area of a
drug is increased from 50 Å2 to 100 Å2 [78], which would be the case when the MW of
a drug increases from 300 Da to 450 Da [76]. Antrocin demonstrated good predictions
for ADMET properties, drug-likeness, and adherence to Lipinskís rules. The pan-assay
interference compounds (PAINS) are known as substructures of promiscuous molecules
that are responsible to yield false-positive biological activities [44]. No alert was evidenced
for antrocin in the PAINS analysis, suggesting that this compound is non-promiscuous and
hence has potential for use in target therapy [79]. Our results suggest that antrocin is a BBB
permeant drug-like molecule and hence may have translational potential for treating AD
and other brain disorders.

Intestinal absorption and brain penetration are important factors to consider for
therapeutic agents that are intended to treat neurodegenerative diseases in response to oral
exposure [80]. Our results showed that antrocin is predicted to be highly absorbed by the
human gastrointestinal tract. Increasing evidence has revealed that that the p-glycoprotein
(P-gp) efflux may interact with drugs and consequently prevent their absorption by actively
repelling them into the lumen of the intestine [81]. Our results indicated that antrocin
is not a p-gp substrate, and this could account for the high predicted GIT absorption of
antrocin. In the case of metabolism, various cytochrome P450 isoenzymes were evaluated,
showing that antrocin is not a substrate for metabolism by CYP1A2, CYP2C19, CYP2D6,
and CYP3A4 isoenzymes. In addition to BBB permeability, the high bioavailability of
antrocin (0.55, Table 5) could ultimately favour its accessibility to the brain. Altogether,
our results suggest that the oral administration of antrocin is likely to result in safer
bioavailability and access to the BBB, thus suggesting its potential for AD treatment.

Taken together, the present study strengthened our understanding of the molecular
pathogenesis of AD, identified disease targets, and suggested the therapeutic potential of
antrocin. The main limitation of our study is the lack of the direct confirmation of these
genes by reverse-transcription polymerase chain reaction (RT-PCR). However, experimental
validation and the detailed therapeutic efficacy of antrocin in an AD animal model is
currently ongoing in our laboratory. In addition, the RT-quantitative (q)PCR validation of
these identified targets in clinical samples is ongoing.

5. Conclusions

Our findings identified a potential new gene signature, ATP6V1A/BNIP3/CAMK4/
TIPRL/TOMM70, as critical molecular markers in mitochondrial dysfunction, inflamma-
tory processes, and various pathways participating in AD parthenogenesis. Additionally,
in silico assays and docking experiments revealed that antrocin interacted well with the
crystal structures of the proteins and exhibited a low acute toxicity level based on the in
silico modelling of the various administration routes. Our results suggest the potential of
antrocin in targeting the DEGs; however, further investigation is warranted for the clinical
translation of antrocin to ameliorate and prevent AD.
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