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Abstract

Purpose: The aim of this study was to extend current half-sarcomere models by involving a recently found force-mediated activation of the thick

filament and analyze the effect of this mechanosensing regulation on the length stability of half-sarcomeres arranged in series.

Methods: We included a super-relaxed state of myosin motors and its force-dependent activation in a conventional cross-bridge model. We simu-

lated active stretches of a sarcomere consisting of 2 non-uniform half-sarcomeres on the descending limb of the force�length relationship.

Results: The mechanosensing model predicts that, in a passive sarcomere on the descending limb of the force�length relationship, the longer

half-sarcomere has a higher fraction of myosin motors in the on-state than the shorter half-sarcomere. The difference in the number of myosin

motors in the on-state ensures that upon calcium-mediated thin filament activation, the force-dependent thick filament activation keeps differen-

ces in active force within 20% during an active stretch. In the classical cross-bridge model, the corresponding difference exceeds 80%, leading

to great length instabilities.

Conclusion: Our simulations suggest that, in contrast to the classical cross-bridge model, the mechanosensing regulation is able to stabilize a sys-

tem of non-uniform half-sarcomeres arranged in series on the descending limb of the force�length relationship.

� 2018 Published by Elsevier B.V. on behalf of Shanghai University of Sport. This is an open access article under the CC BY-NC-ND license.

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Until recently, it was well accepted that the main regulator of

active force production after calcium-mediated activation in sar-

comeres is the amount of actin�myosin overlap and, therefore,

the length of a half-sarcomere.1�3 When half-sarcomeres are

arranged in series in equilibrium, they are supposed to exert

exactly the same force; however, it has been consistently

reported that half-sarcomeres in myofibrils are highly non-

uniform in length.4,5 With length as the main regulator, non-uni-

formities in sarcomere length translate to non-uniform

regulation of active force production. Therefore, it has been

hypothesized that a myofibril, consisting of sarcomeres arranged

in series, is inherently unstable:1,6,7 Under perturbation, due to

the negative slope of the force�length curve on the descending

limb of the force�length relationship, stronger sarcomeres will

shorten or stretch only slightly, whereas weaker sarcomeres will
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eventually yield. The yielding sarcomeres are stretched rapidly

beyond the actin�myosin overlap until they reach a length where

the passive force equals the active force of the stronger sarco-

meres.8,9 This so-called sarcomere popping is supposed to be

most prominent under significant perturbations such as active

stretches on the descending limb of the force�length relation-

ship.7,8,10 However, although sarcomeres are clearly non-uniform

in length, these non-uniformities do not appear to increase during

active stretches,11,12 and in a number of studies13�17 popping

events have not been observed. Moreover, sarcomeres cover a

variety of different lengths rather than being grouped into

2 distinct populations after active stretches.18 In addition, half-

sarcomeres that are longer during an isometric contraction are

not necessarily the ones with the greatest elongations during a

subsequent active stretch.13,16 A recent study showed sarcomere

popping during active stretches, but sarcomere popping was even

more frequently observed under supposedly stable isometric

conditions.12 These results indicate that sarcomere popping

might occur if non-uniformities are extreme but is not limited to

perturbations of the system.
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To conclude, while sarcomeres arranged in series in a myo-

fibril are clearly non-uniform in length, they seem to be stable

and able to produce similar forces at different degrees of

actin�myosin overlap. Therefore, it seems highly likely that

actin�myosin overlap is not the only active isometric force

regulating mechanism.

A candidate for an additional regulating mechanism introduc-

ing stability in a myofibril is the recently discovered tension-

dependent activation of thick filaments.19 Electron microscopy

studies have shown that a subpopulation of myosin motors is in

a “super-relaxed” state bound to each other along the myosin fil-

ament core.20�23 These super-relaxed myosin motors inhibit

ATP-ase activity in non-activated muscles.24 Myosin motors

have to transit from the super-relaxed state to an on-state in order

to participate in the cross-bridge working cycle. This transition is

regulated by different mechanisms in different muscle types. In

some invertebrate striated muscles, it is regulated by calcium

binding to myosin;25 in smooth vertebrate muscle cells, it is reg-

ulated by the phosphorylation of the myosin regulatory light

chain.26,27 In vertebrate skeletal muscles, it has been proposed

that the transition from super-relaxed state to on-state is gov-

erned by the mechanical stress in the thick filament.19 Linari

et al.19 used X-ray diffraction to show that in relaxed muscle

fibers at optimal myosin�actin overlap, only a small fraction,

around 5%, of myosin motors are in the on-state. These 5% of

myosin motors are sufficient for a muscle to react upon calcium

activation when the external load is low. At high loads, the

increase in active force triggers a positive-feedback loop by

enhancing the transition of myosin motors from the super-

relaxed state to the on-state. Force increases after calcium-

mediated thin filament activation can be approximated by a sin-

gle exponential curve with a time delay of 18 ms and a time con-

stant of 34 ms. Myosin filaments in the on-state will transit back

to the super-relaxed state if filament stress is decreasing. When

the fiber is rapidly shortened by 10% fiber length, force recovery

follows a single exponential curve with a time constant of 28 ms

and a time delay of 10 ms. This result indicates that some, but

not all, myosin motors have moved back to the super-relaxed

state during the low-load period.

Recently, it was discovered that the transition from the

super-relaxed state to the on-state in skinned rabbit fibers is

triggered by passive forces as well.28 Fusi et al.28 were able to
ig. 1. Sketch of a (non-activated) sarcomere consisting of 2 non-uniform half-sarcomeres. Although actin�myosin overlap of the left half-sarcomere is greater, its

action of myosin motors in the on-state (green) is smaller due to the smaller extension of titin and therefore smaller passive force compared to the half-sarcomere on

e right.
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show that the extension of the giant protein titin triggers the

transition of myosin motors from the super-relaxed state to the

on-state in passive fibers with a force-dependent rate between

100/s and 500/s. Moreover, based on different activation levels

of calcium combined with blebbistatin, which inhibits active

force production, the results of this study indicated that the

titin-mediated transition is, in fact, calcium independent.

Thus, the number of cross bridges in the on-state depends only

on filament force regardless of whether that force is generated

actively by myosin motors or by the extension of titin.

The role of super-relaxed myosin motors is debated

because it has various prominent physiological properties,

like the Frank�Starling mechanism of the heart29�32 (i.e.,

the increased ejection volume correlates with increased end

diastolic volumes in ventricles). Recently, a theoretical study

showed that including a super-relaxed state in a classical

cross-bridge model33 provides a solution to a well-known con-

flict between high power output at intermediate shortening

velocities and, therefore, high attachment and detachment

rates of myosin motors and the slow rise in force upon cal-

cium-mediated activation of the thin filament.34

Here, we hypothesize that titin-mediated thick filament acti-

vation regulation could also stabilize the system of non-uniform

half-sarcomeres arranged in series. While short half-sarcomeres

on the descending limb of the force�length curve have a more

favorable actin�myosin overlap than long half-sarcomeres,

long half-sarcomeres have higher passive forces and therefore

more myosin motors in the on-state than short sarcomeres.

Upon calcium-mediated actin activation, the subsequent posi-

tive-feedback loop could provide a powerful mechanism to

ensure stability of the non-uniform myofibril system (Fig. 1).

The aim of this study was to build a sarcomere model using

a force-dependent activation of myosin motors to test the

hypothesis that titin-mediated mechanosensing stabilizes the

system of non-uniform half-sarcomeres on the descending

limb of the force�length relationship.
2. Methods

In order to include mechanosensing in a model, we aug-

mented a classical three-state cross-bridge model35 with a

super-relaxed state (Fig. 2).



Fig. 2. The classical three-state cross-bridge working cycle augmented by a

super-relaxed state.

Fig. 3. Sketch of the sarcomere model. The motion of the M-line is governed

by active forces (F
1;2
active), passive forces (F

1;2
passive), external viscous force

(Fdrag), and external forces (Fext).
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Each myosin head follows the cycle scheme depicted in Fig. 2.

Rate functions of the working cycle (i.e., on-state, pre-power

stroke state, and post-power stroke state) are based on the liter-

ature.36 We chose a force-dependent rate function for the tran-

sition from the super-relaxed state to the on-state to match

experimental data. Specifically, we chose the rate function

such that at 3.6 mm with an average force of 65 pN per titin fil-

ament, 15% of the myosin motors are in the on-state.28 To sim-

plify the model, we chose a constant backward rate such that in

a relaxed muscle below titin’s slack length, 5% of myosin

motors are in the on-state. To compare the stabilizing proper-

ties of the mechanosensing model with the classical cross-

bridge model, we ran all simulations based on the classical

cross-bridge model comprised of the on-state, the pre-power

stroke state, and post-power stroke state. The rates of the

working cycle are the same for both models.

Passive forces are predicted by a structural titin model

allowing individual immunoglobulin domains to unfold in the

presence of high forces.37 We introduce length non-uniformi-

ties by randomly assigning different passive force capacities

to the half-sarcomeres. Because calcium-mediated activation

of the thin filament is much faster than force development,38

we do not model a calcium gradient explicitly but assume a

quasi-instantaneous thin filament activation.

Finally, we follow the M-line by calculating the active

and passive forces in each step of the simulation. Moreover,

we calculated the external viscous force, which is assumed

to be proportional to the velocity of the M-line (Fig. 3). To

simplify the model we assume that internal viscoelasticity is

roughly the same for both half-sarcomeres and can therefore

be omitted. A detailed model description is presented in

Appendix 1.
3. Results

We test the stabilizing properties of the mechanosensing

model by passively stretching a non-uniform sarcomere to a

sarcomere length of 3.2 mm. We impose an instantaneous cal-

cium-mediated activation of the thin filament, wait for 1 s to

reach quasi-steady-state isometric forces, and subsequently

stretch the sarcomere for 2 s. To avoid artifacts to jumps in

stretching velocity, we simulated a stretch ramp. The velocity

was assumed to rise linearly within the first 200 ms from

0 mm/s to 0.1 mm/s and stay constant for the remaining

1800 ms. The difference in passive force between the 2 half-

sarcomeres leads to a difference in half-sarcomere lengths of

0.2 mm at 3.2 mm sarcomere length. Upon calcium-mediated

thin filament activation, the long half-sarcomere begins to

stretch slowly in the classical cross-bridge model. In the

mechanosensing model, the long half-sarcomere remains at a

stable length for the first 100 ms. During active stretching,

both models predict that the long half-sarcomere takes up

more of the sarcomere stretching. However, although the

mechanosensing model predicts that the shorter half-sarco-

mere will elongate throughout the stretch, the classical model

predicts a shortening of the shorter half-sarcomere toward the

end of the stretch, leading to greater non-uniformities (Fig. 4).

In order to compare the active force capacity between half-

sarcomeres during stretch, we normalized the difference in

active forces between the half-sarcomeres to the force of the

short half-sarcomere. The difference in active force in the

mechanosensing model stays within 20%; however, the differ-

ence in the classical cross-bridge model exceeds 80% at the

end of the active stretch (Fig. 5).

We analyzed results of both models for 6 exemplar starting

points. Under quasi-isometric conditions (i.e., the sarcomere

length is fixed at 3.2 mm), the classical cross-bridge model pre-

dicts shortening of the short half-sarcomere. In the presence of

length non-uniformities greater than 250 nm at the time of
Fig. 4. Differences in half-sarcomere lengths for an isometric contraction (first

second) and subsequent stretching (Seconds 1�3). In the mechanosensing

model (MS, red line), the long half-sarcomere is stable for the first 100 ms,

whereas in the classical model (classical, black line), the long half-sarcomere

is immediately being stretched. Although differences in half-sarcomere lengths

increase over time, the differences are significantly smaller in the MS than in

the classical model.



Fig. 5. Differences in the active half-sarcomere forces during sarcomere

stretching. Forces are normalized to the forces of the short half-sarcomere. Dif-

ferences in active half-sarcomere force are significantly smaller in the mecha-

nosensing model (MS, red line) than in the classical cross-bridge model

(classical, black line).
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calcium-mediated thin filament activation, the classical cross-

bridge model predicts shortening of the short half-

sarcomere for the active stretch following the isometric con-

traction. The mechanosensing model predicts almost constant

half-sarcomere lengths for the quasi-isometric conditions and

lengthening of the short half-sarcomere in the subsequent

active stretch (Fig. 6).
4. Discussion

Recent experimental results revealed a force-dependent

activation of the thick filament in vertebrate skeletal

muscles.19,21 The relevance of this regulation for physiological
Fig. 6. Half-sarcomere lengths of the short half-sarcomere before calcium-mediate

after 2 s of active stretching (3) of 25 non-uniform sarcomeres. Although the classic

contraction, half-sarcomere lengths remain stable in the mechanosensing model. F

sarcomeres or all levels of length non-uniformities. This is in contrast to the classic

meres with half-sarcomere length differences greater than 250 nm before activation.
muscle contraction has not been fully assessed experimentally.

In this study, we used a mechanosensing mechanism as a stabi-

lizer for a sarcomere consisting of 2 non-uniform half-sarco-

meres on the descending limb of the force�length

relationship. Although the long half-sarcomere has less

actin�myosin overlap, the fraction of myosin motors in the

on-state is higher than in the short half-sarcomere. Upon cal-

cium-mediated thin filament activation, this increased fraction

of on-state cross bridges triggers a positive-feedback loop

recruiting and increasing the number of activated cross-

bridges. The proportion of cross bridges able to participate in

the working cycle is therefore higher in the long half-sarco-

mere compared to the short half-sarcomere. If the initial non-

uniformity between half-sarcomeres is within limits (i.e., the

long half-sarcomere can still produce enough active force to

trigger the positive-feedback loop), the sum of the active and

passive forces in each half-sarcomere are comparable and pre-

vent the development of dramatic half-sarcomere length non-

uniformities. The simulation results are in close agreement

with experimental findings, indicating that non-uniform half-

sarcomeres are able to exert similar total forces even when

perturbed by active stretching of the sarcomere.

Due to the positive-feedback loop between the instanta-

neous force in the thick filament and the number of cross-

bridges in the on-state, simulations are numerically expen-

sive. Therefore, the simulation of a myofibril consisting of

hundreds of half-sarcomeres arranged in series is an extreme

task that we have not performed yet. However, because the

principle of the model is independent of the number of sarco-

meres, we anticipate similar stabilizing effects in an entire

myofibril simulation.

It is worth noting that the stabilizing effect is associated

with non-negligible passive forces. At lengths with negligible
d thin filament activation (1), after 1 s of-quasi-isometric contraction (2), and

al cross-bridge model (A) always predicts shortening during the quasi-isometric

urthermore, the mechanosensing model (B) predicts lengthening of the half-

al cross-bridge model, which predicts shortening of half-sarcomeres for sarco-
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passive forces, the number of myosin motors in the super-

relaxed state is the same for all half-sarcomeres. In cardiac

muscle, titin is short and has high stiffness, resulting in high

passive forces at physiologically relevant sarcomere

lengths.39�42 Therefore, the regulating mechanism of the

mechanosensing model would come into effect at much

shorter sarcomere lengths in cardiac muscles than in skeletal

muscles.

There are limitations in this study. Filament compliance is

not included in the model. Because filament compliance

affects force rise and the force�velocity curves,43�45 it would

be interesting to see the effects of filament compliance

on the mechanosensing regulation. Moreover, we did not

include the recently hypothesized actin�titin binding.46�48

Because the free length of titin is significantly reduced when

bound to the actin filament, we would anticipate higher regula-

tory effects of the mechanosensing mechanism for conditions

when titin is bound to actin.
5. Conclusion

Instability on the descending limb of the force�length rela-

tionship is a rather counterintuitive hypothesis. A number of

human and animal skeletal muscles have been shown to work

on the descending limb of the force�length relationship.49 An

inherently unstable system with frequent dramatic sarcomere

elongations due to common perturbations, such as active

stretches (e.g., in the quadriceps muscles during downstairs

walking), does not seem a likely choice for an exquisitely

designed and highly efficient motor such as skeletal muscle.

The proposed mechanosensing mechanism acts like a safety

system. At long lengths, the mechanism senses the need to

overcome the disadvantage of an activation at an unfavorable

length and recruits a greater fraction of myosin motors from

the super-relaxed state. If half-sarcomere lengths differ sub-

stantially, the proposed regulating mechanism is not able to

prevent sarcomere popping, as the lack of actin�myosin over-

lap at very long lengths cannot be compensated for by an

increased number of cross bridges in the on-state. This obser-

vation agrees with experimental results. In studies involving

long average sarcomere lengths and great sarcomere length

non-uniformities (SD = 0.9 mm), sarcomere popping has been

observed even for isometric conditions.12 In the presence of

small, physiologically relevant half-sarcomere length differen-

ces, the proposed mechanism provides an intriguingly simple

solution for preventing half-sarcomere and sarcomere length

instabilities and associated muscle injury. Perturbations of the

transition between super-relaxed cross bridges and on-state

cross bridges result in high instabilities.

To conclude, our study indicates for the first time that the

mechanosensing model could close a gap between theory

and experimental results regarding instabilities during

eccentric muscle contractions. It remains to be proven

experimentally if the mechanosensing model proposed here

is indeed a major component in the stability of half-sarco-

meres in a myofibril.
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Appendix 1

Mean field approximation of the cross-bridge cycle:
S
 Fraction of cross bridges in the super-relaxed state
D
 Fraction of cross bridges in the on-state
p1
 Fraction of cross bridges in the pre-power stroke state
p2
 Fraction of cross bridges in the post-power stroke state
Then, the following system determines the fraction of cross

bridges in each state:

dS

dt
¼ �kon T tð Þð ÞS þ koffD ðA1Þ

dD

dt
¼ kon T tð Þð ÞS� koff þ

Z1

�1
k12 xð Þdx

0
@

1
AD

þ
Z1

�1
ðk21 xð Þp1 x; tð Þ þ k31 xð Þp2 x; tð Þdx ðA2Þ

@p1

@t
þ v tð Þ @p1

@t

¼
Z1

�1
k12 xð Þdx

0
@

1
AD� k21 xð Þ þ k23 xð Þð Þp1 x; tð Þ

þ k32 xþ xps
� �

p2 xþ xps; t
� � ðA3Þ

@p2

@t
þ v tð Þ @p2

@t

¼ k23 x�xps
� �

p1 x�xps; t
� �� k32 xð Þ þ k31 xð Þð Þp2 x; tð Þ ðA4Þ

S tð Þ þ D tð Þ þ
Z1

�1
p1 x; tð Þ þ p2 x; tð Þð Þdx · 1 ðA5Þ

where xps is the length change in the cross-bridge link associ-

ated with the power stroke.

For the classical cross-bridge model equation, we used the

same set of equations but set S · 0, kon · 0, koff · 0, thereby

reducing the model to the traditional three-state cross-bridge

model.

Active force as a function of time and half-sarcomere

length hsl is calculated as

Fa tð Þ ¼ Nheads ¢Geometry hslð Þ ¢
Z1

�1
kxb ¢ x ¢

�
p1 x; tð Þ þ p2 x; tð Þ

�
dx

ðA6Þ
The velocity v(t) is dependent on the movement of the M-

line and is different for each half-sarcomere. The geometry

function is based on Minozzo et al.50 classical cross-bridge
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rate functions adapted from Campbell.36 T is the sum of active

and passive force normalized to the number of thick filaments

in a half-sarcomere and measured in pN. We assume that in a

myofibril of rabbit psoas with a diameter of 1 mm the number

of myosin heads (Nheads) is 90 ¢ 103 and that there are roughly

320 thick filaments per half-sarcomere.51

Passive forces

The simulations are based on the 3.400-kD isoform of

rabbit psoas52 consisting of 50 proximal immunoglobulin

domains, 26 distal immunoglobulin domains forming end-fila-

ments, and 800 PEVK residues.53 A detailed mathematical for-

mulation is given in Schappacher-Tilp et al.37

Sarcomere model

We simplify the sarcomere model by assuming that internal

friction force in both half-sarcomeres is approximately the

same. The viscous drag coefficient was set to 6.5 nN ¢ s/mm.54

The model was implemented in MATLAB routines.
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