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Abstract: Weather is affected by a complex interplay of factors, including topography, location, and
time. For the prediction of temperature in Korea, it is necessary to use data from multiple regions.
To this end, we investigate the use of deep neural-network-based temperature prediction model
time-series weather data obtained from an automatic weather station and image data from a regional
data assimilation and prediction system (RDAPS). To accommodate such different types of data into
a single model, a bidirectional long short-term memory (BLSTM) model and a convolutional neural
network (CNN) model are chosen to represent the features from the time-series observed data and
the RDAPS image data. The two types of features are combined to produce temperature predictions
for up to 14 days in the future. The performance of the proposed temperature prediction model is
evaluated by objective measures, including the root mean squared error and mean bias error. The
experiments demonstrated that the proposed model combining both the observed and RDAPS image
data is better in all performance measures for all prediction periods compared with the BLSTM-based
model using observed data and the CNN-BLSTM-based model using RDAPS image data alone.

Keywords: temperature prediction; bidirectional long short-term memory (BLSTM); convolutional
neural network (CNN); regional data assimilation and prediction system; automatic weather station;
weather data

1. Introduction

Since the beginning of human history, human beings have experienced various
weather and climate changes, some of which have driven them to change their place
of residence. Weather change may cause the rise of sea levels by melting glaciers, and
extreme weather events, such as heat waves and torrential downpours, are becoming more
intense and frequent. These changes not only devastate the environment, but also restrict
human activities, even placing human lives in danger [1]. Over the past decade, weather
change has been accelerating, and many studies have been conducted to analyze and
develop responses to the causes of the change [2].

Recently, deep learning and machine learning have been widely used as model-
ing methods for predicting future data, such as air quality, wind speed, and power
demand [3–5]. Deep learning is capable of handling complex nonlinear relationships.
In particular, when processing time series data, recurrent neural networks (RNNs), includ-
ing long short-term memory (LSTM), are often used and have been shown to have better
performance compared with other conventional methods [6]. While various studies in
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Korea are conducted using meteorological information collected by the Meteorological
Agency, these data inevitably contain flaws, due to sensor and communication issues.

For example, the authors of a recent study [7] pointed out a problem with poor
prediction accuracy due to missing observed data from sensors installed at the observatory.
To solve this problem, a deep learning-based refinement model was proposed in [7], and
the prediction model using the refined data provided better prediction accuracy than the
model using data approximated using linear interpolation. The accuracy of future weather
prediction can also be increased by augmenting the data using satellite information or
combining a variety of types of information [8,9].

To predict weather information for a specific area, it is typical to construct a prediction
model only using observed data from the automatic weather station (AWS) closest to
the area. However, weather changes in a specific area are not affected solely by the
geographical, spatial, and temporal factors of the area. Therefore, it should be possible to
improve the accuracy of weather prediction for a specific area by combining the observed
data from the areas near the specific area, rather than using only data from the area. There
are several issues influencing how much of the neighboring area should be chosen for the
modeling, as well as which weather factors from the nearby areas should be combined
with those of the target area.

The relationship between weather factors in an area and the nearby areas can change
over time, depending on the wind direction or seasonal factors. Instead of selecting weather
factors or nearby areas, the weather data of the region covering the specific area can be
combined with the weather factors from the target area. The first method of using regional
data is to take the observed data from all the AWSs located in the region. In this case, it
should be assumed for the prediction model that all AWS data should include no errors or
missed data, which is a situation that is not guaranteed in practice. Recently, there have
been several studies indicating that combining numerical forecast data with observed data
improved the accuracy of temperature prediction [9] and aerosol prediction [10].

On the basis of this research, we incorporate numerically forecast data into a tempera-
ture prediction model. In particular, a regional data assimilation and prediction system
(RDAPS) provides forecast data in the form of images [11]. The proposed temperature
prediction model applies two different deep neural networks, RNNs and convolutional
neural networks (CNNs), to the observed time-series data of an AWS and the numerally
forecast image data, respectively. In the case of image data, the outputs of the CNN are
further processed by another RNN.

After that, the output layers of the neural networks are concatenated and further
processed by a dense layer to predict the temperature. Temperature prediction is carried out
up to 336 h (14 days) in advance, with weather data for up to 24 h as input. The proposed
model also provides 6-, 12-, 24-, 72-, and 168-h (7-day) temperature predictions. The
performances of the proposed temperature prediction model are evaluated by measuring
the index of agreement (IOA), Pearson correlation coefficient (R), root mean squared error
(RMSE), mean absolute error (MAE), mean bias error (MBE), mean normalized gross error
(MNGE), and mean normalized bias (MNB) between the real observed temperatures and
those predicted by the proposed model.

The remainder of this paper is organized as follows. In Section 2, we discuss the
methodology of deep learning-based temperature prediction models using weather data
from the Korean Meteorological Agency. Then, in Section 3, we propose a hybrid temper-
ature prediction model using the observed and RDAPS data. In Section 4, we report on
the performance of the proposed model and compare the results with other deep learning
models. Finally, in Section 5, we summarize and conclude the paper.

2. Related Work

The Korean Meteorological Agency (KMA) has been producing weather forecasts
using the British Meteorological Agency Model (UM) since 2010 [12]. The weather forecast
system mainly consists of three numerical weather prediction (NWP) models: a global
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data assimilation and prediction system (GDAPS), an RDAPS, and a local data assimilation
and prediction system (LDAPS). The RDAPS forecasts provided by the KMA cover the
East Asian region, and they are good at predicting the weather on average. However, the
prediction accuracy depends on the geographical properties of the area covered. Thus, the
prediction accuracy of the RDAPS is limited when the area has complex topography, like
the Taebaek Mountains and the East Sea, which remains a challenge to NWP models [13].

To accommodate the dynamic behavior of weather changes described above, different
types of weather data can be integrated using a machine learning or deep learning frame-
work [14–16]. For example, an experiment for the prediction of aerosols was conducted
using two different types of data, one type from a chemical forecast model for predicting
pollutants that could affect the concentration of aerosols, and the other the aerosol data
themselves [16]. A machine learning approach based on extreme gradient boosting, and a
light gradient boosting machine, as well as a deep learning approach based on LSTM were
used to predict particulate matter 10 or 2.5 (PM10 or PM2.5) by combining the observed
data and data produced by the Community Multi-scale Air Quality (CMAQ) model [10].

This approach produced better prediction accuracy for the PM10 and PM2.5 levels
than those only using the observed data. However, the observed data are time series, but
the CMAQ model data are two-dimensional (2D). This discrepancy in the format was
overcome by converting the 2D CMAQ model data into a one-dimensional (1D) time-series
prior to using the machine learning and deep learning models. As another example of
combining different forms of data, the soil moisture sensing data and digital elevation
model data were combined into a 2D format to predict the soil moisture with the combined
data input to a neural network [17].

To deal with the different dimensionality of data according to the sources, such as
observed or numerical data, we preserve each dimension of the different forms of data,
instead of converting the dimension from 1D to 2D or vice versa. In particular, we apply
CNNs and LSTMs to the observed 1D data from an AWS and the 2D image data from
the RDAPS. This is because an LSTM can reflect the weather change over time for the 1D
observed data, while a CNN can provide a feature map representing regional change over
a given time, which is further processed by an LSTM to extract features over time for the
RDASP image data.

An LSTM processes time-series data only in the forward direction. However, if
the time-series data are somewhat periodic in time, processing in both the forward and
backward direction may help improve feature representation, which results in a bidirec-
tional long short-term memory (BLSTM) by combining a forward LSTM and a backward
LSTM [18]. Due to the periodicity of temperature every 24 h, a BLSTM neural network is
used in this paper instead of an LSTM, and we expect a BLSTM to provide better prediction
performance than LSTM, as in other applications using time-series data [19,20]. Then, the
two different feature layers are combined using a concatenation layer, which is fed into a
temperature prediction layer.

3. Proposed Temperature Prediction Model Combining Observed and Numerical
Forecast Data

This section describes the deep neural-network-based temperature prediction model.
As shown in Figure 1, the proposed model consists of three parts: feature representation,
information fusion, and prediction. To train the model, two data sets are prepared. One
is a set of AWS-observed data provided by KMA [21], in which the observed data are
grouped into a five-dimensional vector at one-hour intervals, including the relative humid-
ity (RH), wind speed (WS), wind direction (WD), rainfall (RF), and temperature in degrees
Celsius (◦C).
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sentation, information fusion, and prediction.

The other data set is numerical forecast data provided by the RDAPS from the KMA,
where the temperature data for each three-hour interval are represented by a (491 × 419)-
dimensional image. To predict the temperature in a specific area in the Korean Peninsula,
the original image is cropped into a (40 × 40)-sized image, as shown in the upper right
of Figure 1. A cropped image from a given time is interpolated by a factor of three to
synchronize with the one-hour time interval used in the observed data.

In the feature representation part of the figure, two different neural networks are
applied to combine the different types of input data. One is a BLSTM neural network to
deal with the time-series observed data, and the other is a CNN for (40 × 40)-dimensional
image data, followed by a BLSTM to deal with the multiple-hour image data. This network
architecture is referred to as CNN-BLSTM feature representation. The former approach
provided a temporal feature map, and the latter, a spatial feature map. The information
fusion part of the proposed model combines two feature maps using a concatenation layer.

To emphasize the correlation of temperature between the observed and the numerical
forecast image data, an attention mechanism [22] is applied prior to concatenating the
feature maps. Finally, the prediction part is composed of a dense layer to predict the
future temperatures by using the output of the information fusion part, where the mean
squared error (MSE) between the target temperature and the predicted temperature by the
dense layer is used as a loss function. The following subsections provide more detailed
explanations on the data sets and each of three processing parts of the proposed temperature
prediction model.
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3.1. Data Sets

As mentioned earlier, two data sets are used in this work: AWS observations and the
RDAPS data provided by KMA.

3.1.1. Observed Data

The KMA provides a set of observed data once every hour for each of the 510 locations
in Korea. The data include temperature, relative humidity, wind speed, wind direction,
and precipitation. The observed data were collected over five years, from 1 May 2011 to 31
December 2015, and were divided into two datasets: the data from the four years from 1
May 2011 to 31 December 2014 were used as a training set, and the data for one year from 1
January 2015 to 31 December 2015 were used as an evaluation set.

The training set was further divided into two subsets that were 85% and 15% of the
training data for the neural network model training and the validation of a trained model,
respectively. Specifically, the observed data from 1 May 2011 to 15 May 2015 were used for
training the models, and the remaining data from the training set were used for validating
them for each epoch of the training. No cross validation is used in this paper. The period
of observed data for the training set did not overlap with that for the evaluation data.
Therefore, all the prediction models in this paper were trained and evaluated using the
training data and evaluation data, respectively.

The problem of missing data is challenging when training deep learning models. In
this work, the missing data from the observed data are refined by following the procedure
described in [7]. Whenever any one element of the five-dimensional observed data at a
given time is missing, all elements of the observed data are first refined by linear interpo-
lation using two good data points from the previous time and the next time. The refined
data are used for training the BLSTM model, and then the missing data are refined again
using the trained BLSTM model.

3.1.2. Numerical Forecast Data

As mentioned in Section 2, the weather forecasting system of KMA consists of three
NWP systems: GDAPS, RDAPS, and LDAPS. The predictions of GDAPS and RDAPS
are used as the boundary conditions for the operations of RDAPS and LDAPS, and their
domains are represented in Table 1. As shown in the table, RDPAS and LDAPS cover
East Asia and South Korea with horizontal resolutions of 12 × 12 km and 1.5 × 1.5 km,
respectively. Both systems have 70 sigma vertical layers, but the top heights are set to 80
and 40 km for the RDAPS and LDAPS, respectively.

Table 1. Comparison of three numerical weather prediction (NWP) models of Korean Meteorological Agency (KMA).

Model Horizontal
Resolution (km)

Number of Vertical Layers
(Top Height)

Forecast Period
(H)

Forecast Cycle
(H)

Horizontal Grid
(East to West, North to

South Direction)

GDAPS 25 70 (80 km) 87
288

3
6

1024 × 769
(25 km from 0◦ E, 0◦ S)

RDAPS 12 70 (80 km) 87 3
491 × 419

(12 km from 101.577◦ E,
12.217◦ S)

LDAPS 1.5 70 (40 km) 36 1
602 × 781

(1.5 km from 121.834◦ E,
32.257◦ N)

In addition to the observed data described in Section 3.1.1, the model proposed in this
paper also uses numerical forecast data provided by the RDAPS. The RDAPS image data
also provide information on the 70th floor in the vertical direction, which is the closest
floor to the ground [23]. Since the RDAPS image data cover not only the Korean Peninsula
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but also other countries, such as China, Russia, and Japan, a part of the RDAPS data, which
represents only the Korean Peninsula, are taken; thus, the (491 × 419)-sized image data are
cropped into (40 × 40)-sized image data.

Prior to combining the RDAPS image data with the observed data, as discussed in
Section 3.1.1, two preprocessing steps are performed. The KMA provides the RDAPS
image data eight times per day, at 00:00, 03:00, 06:00, 09:00, 12:00, 15:00, 18:00, and 21:00
h; however, there exist missing RDAPS image data at certain operating times. Missing
image data are refined by following the same technique used for the observed data, as
explained in Section 3.1.1. Another preprocessing step for the RDAPS image data is to
over-sample each image from a three-hour interval to a one-hour interval, because the time
resolution of AWS observation is one hour. This preprocessing is simply performed using
linear interpolation by a factor of three.

3.2. Feature Representation

The feature representation part of the proposed temperature prediction model is
composed of two different types of neural networks to accommodate the different types of
input data. These are a BLSTM neural network and a CNN to deal with the time-series
observed data and the cropped RDAPS image data, respectively.

3.2.1. BLSTM for Observed Data Representation

For the BLSTM-based feature representation from the observed data, the observed data
are first normalized, because the dynamic range of the observed data differs from element
to element, which might result in slow learning in a neural network. For example, the range
of RH is from 0 to 100, and that of WD is from 0◦ to 360◦. Among many data normalization
approaches [24,25], a minimum–maximum (min–max) normalization technique is used in
this work, which adjusts each element of the observed data from 0 to 1, using the following
equation of

xt,normal =
xt − xmin

xmax − xmin
(1)

where xt is one of RH, WS, WD, RF, and ◦C at the t-th time, as shown in Figure 1. In
addition, xmin and xmax are the minimum and maximum value of each element over the
entire training set, and xt, normal is the normalized value at the t-th time.

The normalized data are then used as input features for the BLSTM-based feature
representation module, as shown in Figure 2. For a given time, t, the observed data for up
to 24 h from the past, from t-23 to t, are concatenated into a (24 × 5)-dimensional vector
as the input feature. As shown in the figure, the feature representation module is based
on a stacked BLSTM model [26] composed of two BLSTMs, a repeat vector layer, and a
dense layer.
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For a given (24 × 5)-dimensional input vector, the first BLSTM with 256 hidden nodes
provides a 512-dimensional output, due to its forward and backward structure. Then, the
512-dimensional output from the BLSTM is input into a repeat vector layer that repeats the
input vector tp times, resulting in a (tp × 512)-dimensional output vector. In this work, tp
was the prediction time period for predicting the future temperature, and is set to one of 6,
12, 24, 72, 168, and 336 h.

The hidden vector of the last time step of the BLSTM is repeated instead of using the
hidden vectors of all the time steps of the BLSTM, to diminish the risk of overfitting in the
repeat vector layer [27]. Next, this (tp × 512)-dimensional vector is brought into the second
BLSTM, in which the number of hidden nodes is also 256. Thus, the output of the second
BLSTM is a (tp × 512)-dimensional vector, which is fed to the information fusion part to
combine the features estimated from the RDAPS image data, as shown in Figure 1.

In parallel, the BLSTM-based temperature prediction is constructed by adding a dense
layer that maps the (tp × 512)-dimensional vector into a (tp × 1)-dimension output vector.
By doing this, the (tp × 1)-dimensional output vector from the dense layer can be compared
with the target vector of the neural network that is also a (tp × 1)-dimensional vector for
the future temperatures at the time period to be predicted, t + tp. According to the MSE loss
between the dense layer output and target vectors, the weights and biases of the stacked
BLSTM are updated. The performance of this BLSTM-based temperature prediction only
using observed data is discussed in Section 4.

3.2.2. CNN-BLSTM for Numerical Forecast Data Representation

For the feature representation of the RDAPS image data, as described in Section 3.1.2,
a CNN-based model is used to preserve the geographic and spatial information from
the RDAPS image data [28]. Figure 3a shows a block diagram of the CNN-based feature
representation module for the RDAPS image data, which consists of two convolutional
blocks and a flattening layer. Each convolutional block is composed of a convolutional
layer, a pooling layer, and an activation function. Each (40 × 40)-dimensional image, as
described in Section 3.1.2, is used as an input to the first convolutional block, which consists
of a convolutional layer, a rectified linear unit (ReLU) activation function, and a (2 × 2)
max pooling layer, in which the convolutional layer has eight (5 × 5) kernels with a stride
of (1 × 1).

The first convolutional block provides a (18 × 18 × 8)-dimensional feature map. This
feature map is used as input to the second convolutional block. The convolutional layer
of the second convolutional block has 32 (7 × 7) kernels. By processing an (18 × 18 × 8)-
dimensional feature map using the second convolutional block, a (6 × 6 × 32)-dimensional
feature map is obtained, and it is converted into a 1D feature by using a flattening layer,
resulting in an 1152-dimensional feature for each input image.
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After representing the image data as 1D data using the CNN-based feature representa-
tion module, temperature prediction is performed using a sequence of 24-h image data. The
RDAPS image data are prepared once every hour, as mentioned in Section 3.1.2. Figure 3b
shows a block diagram of BLSTM-based feature representation using the time-series data
converted from the RDAPS image data, in which the network architecture of the BLSTM in
Figure 3b is identical to that in Figure 2.

Each 1152-dimensional feature map is grouped into tp time-series feature vectors using
the CNN-based feature representation, which is shown in Figure 3a. These feature vectors
are then used as input features for the BLSTM feature representation module. Similar to
the procedure described in Section 3.2.1, the MSE loss between the dense layer output and
target vectors is calculated, and then the weights and biases of the stacked BLSTM and
CNN are updated.

3.3. Feature Representation

The information fusion part of the proposed temperature prediction model combines
the feature vectors obtained from the BLSTMs applied to the observed data and those
from the CNN-BLSTM applied to the RDAPS image data, as shown in Figure 1. As shown
in the right part of Figure 4, denoted as without attention, the first information fusion
is performed by combining all the hidden state outputs of the second BLSTM applied
to observed data, ho =

[
h1

o , h2
o , · · · , h

tp
o

]
, and those of the second BLSTM applied to the

RDAPS image data, hr =
[

h1
r , h2

r , · · · , h
tp
r

]
. Since ht

o and ht
r
(
t = 1, 2, · · · , tp

)
are all 1

× 512)-dimensional vectors, the dimension of the concatenated vector, [ho; hr], becomes
(tp × 1024).

The second information fusion involves applying an attention mechanism [22] when
combining the hidden states of both BLSTMs. As shown in the left part of Figure 4, in this
information fusion, since the RDAPS image data are related only to temperature, while
the observed data are composed of five different weather factors, only the temperature
factor from the observed data is excerpted, and a BLSTM-based feature representation
model is additionally constructed before applying the attention. In this case, the network
architecture of the BLSTM used for temperature prediction is identical to the BLSTM shown
in Figure 2.
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By doing this, the (tp × 512)-dimensional hidden state output vector from the observed

temperature data, ho,K = [h1
o,K, h2

o,K, · · · , h
tp
o,K], is used as a query and that from the RDAPS

image data, ht
r, as a key for the attention, where t ranges from 1 to tp, as shown in the left

part of Figure 4. Compared to the first information fusion, the attention mechanism aims to
derive a context vector, co,K = [c1

o,K, c2
o,K, · · · , c

tp
o,K], so that the relevant information of the

RDAPS image data to the observed temperature data is exaggerated. Thus, instead of using
[ho; hr] when an attention mechanism is not applied, co,K is added to [ho; hr], producing
a combined vector after applying the attention, [ho; hr; co,K], with a dimensionality of
(tp × 1536).

In this paper, the dot product attention is used to find co,K. To this end, the attention
score function at the time step t is computed between all the hidden state outputs from the
observed temperature data, [h1

o,K, h2
o,K, · · · , h

tp
o,K] and the hidden state output at each time t

from the RDAPS data, ht
r, such as:

score
(

hi
o,K, ht

r

)
=
(

hi
o,K

)T
ht

r, i = 1, 2, · · · , tp (2)

where T is the transpose operator. Then, a softmax function is applied to the scores for
each time t to convert them into an attention distribution by using

αt
i =

exp
(

score
(

hi
o,K, ht

r

))
∑

tp
j=1 exp

(
score

(
hj

o,K, ht
r

)) , i, t = 1, 2, · · · , tp. (3)

Next, αt
i is multiplied to ho,K and summed up to tp, such as:

ct
o,K = ∑tp

i=1 αt
jh

i
o,K, t = 1, 2, · · · , tp. (4)
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Finally, co,K is concatenated with hr, resulting in [ho; hr; co,K].
Lastly, the concatenated features are used for predicting the future temperature in

the prediction part of the proposed temperature prediction model. This is performed
using a dense layer, as described at the bottom of Figure 1. Since the target vector is given
as a (tp × 1)-dimensional future temperature vector depending on the prediction period,
tp, the number of the output units of the dense layer is tp, where tp is one of 6, 12, 24,
72, 168, or 336 in this work. Eventually, the MSE between the target temperature and
predicted temperature vector is calculated and this error is back-propagated to train all
of the weights and biases of the neural networks employed in the proposed temperature
model in Figure 1.

4. Experiments and Discussion

The proposed temperature prediction model was implemented in two different ways
according to the way in which the attention mechanism was applied when combining the
observed and RDAPS data. The prediction performance of the proposed model with or
without attention was evaluated, and compared with those of five different temperature
prediction models, as shown in Figure 5. The first was a BLSTM-based temperature
prediction model using only observed data, which was identical to the model described in
Section 3.2.1, and the second one was a CNN-BLSTM-based temperature model using only
RDAPS data, which was identical to the model described in Section 3.2.2.
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Figure 5. Block diagram of four different temperature prediction models for performance comparison with the proposed
model: (a) a BLSTM-based model using observed data, (b) a CNN-BLSTM-based model using RDAPS image data, (c) a
BLSTM-based model combining observed and RDAPS image data in the 1D domain, (d) a CNN-based model combining
observed and RDAPS image data in the 2D domain, and (e) a CNN-BLSTM-based model combining observed and RDAPS
image data in the 2D domain.
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In addition, a BLSTM-based temperature prediction model was constructed by com-
bining the observed data and RDAPS data in the 1D domain, which was similar to the
approach introduced in [10]. In other words, each (40 × 40)-dimensional RDAPS image
was flattened into (1 × 1600)-dimensional 1D data, and then this 1D data was augmented
with the (1 × 5)-dimensional observed data, resulting in (1 × 1605)-dimensional data.
These data were used as input features for the BLSTM-based model, where the network
architecture was identical to the BLSTM-based model in Section 3.2.1.

Next, a CNN-based temperature prediction model was constructed by combining the
observed data and RDAPS data in the 2D domain. To this end, the (1 × 5)-dimensional
observed data were concatenated with the (40 × 40)-dimensional RDAPS data, producing
(41 × 40) image data. After that, these data were input into a CNN that was identical
to Figure 3a except for the dimension of the input features, where a dense layer was
concatenated to the flattened layer for the future temperature predictions.

Lastly, a CNN-BLSTM-based temperature prediction model was constructed using
2D data, as proposed in [17]. Similar to the CNN-based temperature prediction model
described above, the (1 × 5)-dimensional observed data were concatenated with (40 × 40)-
dimensional RDAPS data, producing (41 × 40) image data. A CNN-BLSTM-based model
was trained following the approach described in Section 3.2.2.

All of the models, including the proposed model and five other models, were trained
and evaluated for each of seven different time periods, tp. Specifically, tp was set to one
of 6, 12, 24 (one-day), 72, 168 (seven-day), or 336 (14-day) h. As mentioned in Section 3.1,
the observed data and RDAPS image data were collected over five years from 1 May
2011 to 31 December 2015, and they were split for training, validating, and evaluating the
prediction models.

In this experiment, all neural network models were implemented using a deep learning
package in Python 3.6.9 with Keras (version 2.3.1) using TensorFlow (version 2.2.0) [29]. The
neural network weights of all the models were initialized using Xavier initialization [30],
and the biases were all initialized to zero. Next, the mini-batchwise adaptive moment
estimation (ADAM) optimization algorithm [31] was applied, with the minibatch size set to
64. The learning rate was set according to the ramp-up strategy [32,33], with the maximum
learning rate reaching 0.001 after 50 epochs.

The training procedure was controlled by early stopping [34] for minimizing the
validation error with 200 epochs. All the hyperparameters of the neural network models
used in this paper, including the number of layers, number of kernels, and kernel size
for CNN as well as the number of hidden layers and number of nodes for BLSTM, were
selected from an exhaustive search over several possible combinations. The training and
evaluation of the models were conducted on an Intel(R) Xeon(R) CPU E5-2623 v3 @ 3.00GHz
workstation with an NVidia GTX 1080ti GPU.

4.1. Evaluation Metric

The performance of each of the temperature prediction models was evaluated using
the IOA, R, RMSE, MAE, MBE, MNGE, and MNB, which are defined as follows:

IOA = 1 −
∑N

t=1

(
Ct,pred − Ct,obs

)2

∑N
t=1 (

∣∣∣Ct,pred − Cobs

∣∣∣+ ∣∣Ct,obs − Cobs
∣∣)2 , (5)

R =
∑N

t=1

(
Ct,pred − Cpred

)(
Ct,obs − Cobs

)√
∑N

t=1 (Ct,pred − Cpred)
2
√

∑N
t=1 (Ct,obs − Cobs)

2
, (6)

RMSE =

√
1
N ∑N

t=1

(
Ct,pred − Ct,obs

)2
, (7)
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MAE =
1
N

N

∑
t=1

∣∣∣Ct,pred − Ct,obs

∣∣∣, (8)

MBE =
1
N

N

∑
t=1

(
Ct,pred − Ct,obs

)
, (9)

MNGE =
1
N

N

∑
t=1

∣∣∣Ct,pred − Ct,obs

∣∣∣
Ct,obs

× 100, (10)

MNB =
1
N

N

∑
t=1

Ct,pred − Ct,obs

Ct,obs
× 100 (11)

where Ct,obs and Ct,pred are the observed and predicted temperature at time t, respectively,
and N is the total number of evaluation data samples (N = 8760 in this paper). In addition,
Cpred = (1/N)∑N

t=1 Ct,pred and Cobs = (1/N)∑N
t=1 Ct,obs.

4.2. Performance Comparison

Table 2 shows the performance of the temperature prediction model applied to the
observed data or RDAPS image data compared for the prediction of 6-, 12-, 24-, 72-, 168-,
and 336-h future temperatures. As shown in Figure 5a,b, a BLSTM-based temperature
prediction model was constructed using only observed data, while a CNN-BLSTM-based
temperature model was made using only RDAPS data. The former was designed to deal
with time-series data, and the latter was designed for image data.

Table 2. Performance comparison of the seven different evaluation measures between the LSTM-based, BLSTM-based, and
CNN-BLSTM-based temperature prediction models applied to the observed and RDAPS image data for the 6-, 12-, 24-, 72-,
168-, and 336-h temperature predictions.

Model
Time
(H)

Evaluation Metric

IOA R RMSE MAE (◦C) MBE (◦C) MNGE (%) MNB (%)

LSTM-based model using
observed data

6 0.98 0.97 2.40 1.76 0.60 0.61 0.21
12 0.98 0.96 2.81 2.08 −0.15 0.73 −0.04
24 0.97 0.94 3.24 2.43 0.14 0.85 0.06
72 0.96 0.92 3.88 2.94 −0.42 1.02 −0.14
168 0.95 0.91 4.24 3.25 −0.37 1.14 −0.15
336 0.94 0.89 4.48 3.49 −0.53 1.22 −0.17

BLSTM-based model using
observed data

6 0.99 0.98 2.38 1.75 0.61 0.61 0.22
12 0.98 0.97 2.70 1.96 0.32 0.70 0.11
24 0.98 0.96 3.05 2.28 0.45 0.81 0.17
72 0.96 0.93 3.83 2.94 −0.60 1.02 −0.20
168 0.96 0.92 4.08 3.14 −0.68 1.11 −0.23
336 0.95 0.91 4.42 3.40 −0.92 1.19 −0.31

CNN-BLSTM-based model
using RDAPS image data

6 0.99 0.98 2.17 1.68 −0.02 0.57 0.00
12 0.99 0.98 2.23 1.71 −0.09 0.60 −0.03
24 0.99 0.97 2.47 1.83 0.04 0.65 0.02
72 0.97 0.95 3.44 2.49 0.56 0.91 0.20
168 0.97 0.93 3.72 2.86 −0.43 1.02 −0.14
336 0.96 0.92 3.98 3.09 −0.40 1.09 −0.13

To examine the advantage in the prediction performance of BLSTM over LSTM, an
LSTM-based model was also constructed by replacing BLSTM with LSTM in the BLSTM-
based model. As shown in the table, the prediction performance of both models decreased
as the time period to be predicted increased. The RMSE, MAE, and MNGE were the
highest and the IOA and R were the lowest for the 336-h prediction. Comparing the
performances of the LSTM-based and BLSTM-based model showed that the BLSTM-based
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model achieved better performance than the LSTM-based one for all the prediction time
periods, which motivated the use of BLSTM in this paper over LSTM.

It was also shown from the performance comparison between the BLSTM-based and
CNN-BLSTM-based models that the evaluation metrics of the CNN-BLSTM-based model
were always better than those of the BLSTM-based model for all of the prediction periods.
This superiority arose because the CNN-BLSTM-based model provided spatial or regional
information from the regional image, while the BLSTM-based model dealt with information
localized to a specific area. This result indicated that it was better to use all information
from various areas than to use only the observed data from a specific area.

Next, the performance of the temperature prediction models that were constructed by
combining the observed and RDAPS image data were compared, where the combination
was performed by converting the input data from 1D to 2D or vice versa, as shown in
Figure 5c–e. In other words, a BLSTM-based temperature prediction model was constructed
by combining the observed data and RDAPS data in the 1D domain, where each (40 × 40)-
dimensional RDAPS image was flattened into (1 × 1600)-dimensional 1D data before
combining. In addition, a CNN-based as well as a CNN-BLSTM-based temperature
prediction model were constructed by concatenating the observed and RDAPS data in
the 2D domain. The difference between the two models was that the BLSTM layer was
followed by the CNN in the CNN-BLSTM-based model while the CNN-based model used
the CNN outputs for the temperature prediction.

Table 3 compares the seven different evaluation measures between the BLSTM-based
and CNN-BLSTM-based temperature prediction models for the 6-, 12-, 24-, 72-, 168-, and
336-h temperature predictions. As shown in the table, the CNN-based model achieved
worse performance for all the prediction periods compared with the BLSTM-based and
CNN-BLSTM-based models. When the prediction periods were shorter than 168 h (7 days),
the performances of the BLSTM-based model were slightly better than those of the CNN-
BLSTM-based model; however, the performance improvement was marginal. However, for
longer predictions, such as 7- and 14-days, the 2D representation used in the CNN-BLSTM-
based model was better than the 1D representation in the BLSTM-based model. This result
implied that a suitable representation of the input data could improve the performance of
the temperature prediction model.

Table 3. Performance comparison of the seven different evaluation measures between the BLSTM-based, CNN-based, and
CNN-BLSTM-based temperature prediction models applied to the combination of the observed and RDAPS image data for
6-, 12-, 24-, 72-, 168-, and 336-h temperature predictions in the 1D domain and 2D domain.

Model
Time
(H)

Evaluation Metric

IOA R RMSE MAE (◦C) MBE (◦C) MNGE (%) MNB (%)

BLSTM-based model combining
observed and RDAPS image data

in the 1D domain

6 0.99 0.98 2.11 1.59 0.03 0.56 0.02
12 0.99 0.98 2.21 1.68 0.84 0.59 0.30
24 0.99 0.98 2.35 1.77 0.52 0.62 0.19
72 0.97 0.95 3.31 2.53 −0.67 0.89 −0.23
168 0.96 0.93 3.78 2.95 0.34 1.04 0.13
336 0.94 0.89 4.68 3.75 0.49 1.32 0.19

CNN-based model combining
observed and RDAPS image data

in the 2D domain

6 0.97 0.95 3.13 2.45 −0.24 0.85 −0.07
12 0.97 0.96 3.05 2.41 1.54 0.84 0.54
24 0.97 0.95 3.15 2.45 0.62 0.86 0.22
72 0.95 0.92 4.23 3.34 1.56 1.17 0.55
168 0.95 0.91 4.19 3.27 0.53 1.15 0.20
336 0.93 0.89 4.77 3.78 −1.41 1.32 −0.47

CNN-BLSTM-based model
combining observed and RDAPS

image data in the 2D domain

6 0.99 0.98 2.23 1.72 0.50 0.60 0.18
12 0.99 0.98 2.16 1.68 −0.14 0.59 −0.04
24 0.99 0.97 2.42 1.89 0.52 0.66 −0.17
72 0.97 0.95 3.31 2.49 0.21 0.88 0.08
168 0.96 0.94 3.67 2.90 −0.69 1.02 −0.23
336 0.96 0.92 3.91 2.99 0.19 1.06 0.08
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The performance of the CNN-BLSTM-based model using only RDAPS image data, as
shown in the second row of Table 2, was compared with that of the CNN-BLSTM-based
model combining the observed and RDAPS image data in the 2D domain as shown in
the third row of Table 3. The combination model in Table 3 was not always better than
the single data model in Table 2, which implies that the architecture of a neural network
should be carefully designed when combining different types of data.

Finally, Table 4 compares the performance of the proposed temperature prediction
model without or with the dot product attention for the 6-, 12-, 24-, 72-, 168-, and 336-h
temperature predictions. As shown in the table, the attention mechanism contributed to
reducing the RMSE, MAE, and MNGE of the temperature predictions for short periods,
such as 6, 12, and 24 h. However, the performance gain due to the attention mechanism
was marginal for time periods longer than 24 h. This was because the attention mechanism
could emphasize temperature features up to 24 h, and the input layers of neural networks
used the observed and RDAPS image data of 24 h as input features.

Table 4. Performance comparison of the seven different evaluation measures of the proposed temperature prediction model
without and with an attention mechanism for 6-, 12-, 24-, 72-, 168-, and 336-h temperature predictions.

Model
Time
(H)

Evaluation Metric

IOA R RMSE MAE (◦C) MBE (◦C) MNGE (%) MNB (%)

Proposed model without
attention mechanism

6 0.99 0.98 1.93 1.37 −0.06 0.47 −0.02
12 0.99 0.98 2.12 1.55 0.20 0.54 0.07
24 0.99 0.98 2.34 1.71 0.42 0.60 0.15
72 0.97 0.95 3.17 2.41 −0.50 0.85 −0.17
168 0.97 0.93 3.71 2.87 0.21 0.99 0.08
336 0.96 0.92 3.90 3.00 0.01 1.06 0.02

Proposed model with
attention mechanism

6 0.99 0.98 1.90 1.34 0.02 0.47 0.01
12 0.99 0.98 1.98 1.46 0.30 0.51 0.10
24 0.99 0.98 2.27 1.66 0.31 0.58 0.12
72 0.97 0.95 3.26 2.43 0.17 0.86 0.07
168 0.97 0.93 3.71 2.81 −0.46 0.99 −0.15
336 0.96 0.93 3.83 2.96 0.14 1.05 0.06

The prediction performance produced by the combination method can be compared
by examining the differences between the results in Tables 3 and 4. The results of Table 3
corresponded to the combination of the observed time-series and RDAPS image data
in the input level, while the combination was carried out in the feature representation
level for the proposed model in Table 4. The proposed model with attention provided
better performance according to all of the evaluation metrics compared with the CNN-
BLSTM-based model combining the observed and RDAPS image data in the 2D domain,
for prediction periods of up to 72 h.

However, their performances were comparable for longer prediction periods, such as
7 and 14 days. As mentioned in the previous paragraph, this was because the observed and
RDAPS data of 24 h were used as input data for the neural networks, thus, the duration of
input data should be increased to more than 24 h for longer time period predictions. By
comparing the performance of the proposed model with those of the models in Table 2, it
was demonstrated that the proposed model that combined both the observed and RDAPS
image data was better in all performance measures for all prediction periods compared
with the BLSTM-based and CNN-BLSTM-based models that used the observed data and
RDAPS image data alone.

To evaluate the potential usefulness of the proposed model with an attention mecha-
nism, an accuracy comparison between the proposed model and RDAPS was performed
for 6, 12, 24, and 72 h temperature predictions from January 2014 to December 2014. Table 5
shows the prediction performance of the traditional UM model. As the UM forecasts
up to 87 h, the prediction models up to 72 h were compared. The UM predicts weather
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information using various data, such as AWS, satellite, and radar collected by advanced
observation technology and equipment. The prediction performance of UM is similar
to the performance of the BLSTM-based model using the observed data. Based on this
experiment using 1-year weather data, the proposed model with an attention mechanism
achieved a lower RMSE in the 6, 12, 24, and 72 h predictions compared to the UM model.

Table 5. Performance of the seven different evaluation measures of the traditional method UM (RDAPS) for 6-, 12-, 24-, and
72-h temperature predictions.

Model
Time
(H)

Evaluation Metric

IOA R RMSE MAE (◦C) MBE (◦C) MNGE (%) MNB (%)

UM(RDAPS)

6 0.98 0.97 2.38 1.75 0.60 0.61 0.21
12 0.98 0.96 2.76 2.04 −0.15 0.71 −0.05
24 0.97 0.95 3.01 2.28 0.11 0.80 0.04
72 0.96 0.93 3.74 2.81 −0.24 0.99 −0.07

Table 6 compares the model size of each of the seven different temperature prediction
models developed in this paper. The BLSTM-based in Figure 5a had the smallest model
size because it dealt with only observed data. On the other hand, the BLSTM-based model
in Figure 5c increased the model size up to 21 MB because the observed and RDAPS
image data were represented by 2D images. However, by representing RDAPS image
data using CNN, the image data were compressed into lower dimensional data, thus, the
CNN-BLSTM-based models in Figure 5b,e (while the former only used observed data and
the latter used both observed and RDAPS image data) had smaller model sizes than the
BLSTM-based model. Lastly, the proposed model increased in model size, because the
proposed model concatenated the outputs of BLSTM from the observed data and those
of CNN-BLSTM from the RDAPS image data. By incorporating the attention mechanism
into the proposed model, the model size was increased up to 34 MB. We confirmed that the
proposed model with an attention mechanism could infer the temperature prediction in
real time.

Table 6. Model size comparison of different temperature prediction models performed for the prediction time of 6 h.

Model BLSTM
(Figure 5a)

CNN-BLSTM
(Figure 5b)

BLSTM
(Figure 5c)

CNN
(Figure 5d)

CNN-BLSTM
(Figure 5e)

Proposed w/o
Attention

Proposed with
Attention

Model size 3 MB 17 MB 21 MB 7 MB 17 MB 26 MB 34 MB

Finally, Figure 6 illustrates a time-series plot of the observed data and predicted
temperature data during two months from July to August 2015 for the 6-, 12-, 24-, 72-,
168-, and 336-h future predictions. In this figure, three different models, the BLSTM-based
model using observed data, the CNN-BLSTM-based model using RDAPS image data, and
the proposed model with an attention mechanism using both the observed and RDAPS
image data. The temperature data predicted by UM (RDAPS) were added for the 6-, 12-,
24-, and 72-h predictions. In parallel, the differences between the observed data and the
predicted temperature data are illustrated in Figure 7. As shown in the figures, among all
the prediction models, the temperatures predicted by the proposed model with an attention
mechanism were, on average, the closest to the observed temperature data. The proposed
model had the lowest average MAE measured from July to August 2015.



Sensors 2021, 21, 941 16 of 20Sensors 2021, 21, x FOR PEER REVIEW 16 of 20 
 

 

 
Figure 6. Daily plots of the observed and predicted temperature data during two months from 
July to August 2015 for the (a) 6-, (b) 12-, (c) 24-, (d) 72-, (e) 168-, and (f) 336-h predictions. 

Figure 6. Daily plots of the observed and predicted temperature data during two months from July
to August 2015 for the (a) 6-, (b) 12-, (c) 24-, (d) 72-, (e) 168-, and (f) 336-h predictions.



Sensors 2021, 21, 941 17 of 20Sensors 2021, 21, x FOR PEER REVIEW 17 of 20 
 

 

 
Figure 7. Daily plots of the differences between the observed and predicted temperature data dur-
ing two months from July to August 2015 for the (a) 6-, (b) 12-, (c) 24-, (d) 72-, (e) 168-, and (f) 336-
h predictions. 

5. Conclusions 
This paper proposed a deep neural network-based temperature prediction model us-

ing both time-series observed weather data and RDAPS image data. Instead of combining 
these different types of data at the input feature level, the feature representation part of 
the proposed model applied two different neural networks to combine the different types 
of input data. A BLSTM neural network and a CNN-BLSTM neural network were used to 
handle the time-series observed data and the RDAPS image data, respectively. Then, two 
feature maps, one from the BLSTM and one from the CNN-BLSTM, were concatenated by 

Figure 7. Daily plots of the differences between the observed and predicted temperature data
during two months from July to August 2015 for the (a) 6-, (b) 12-, (c) 24-, (d) 72-, (e) 168-, and (f)
336-h predictions.



Sensors 2021, 21, 941 18 of 20

5. Conclusions

This paper proposed a deep neural network-based temperature prediction model
using both time-series observed weather data and RDAPS image data. Instead of combining
these different types of data at the input feature level, the feature representation part of the
proposed model applied two different neural networks to combine the different types of
input data. A BLSTM neural network and a CNN-BLSTM neural network were used to
handle the time-series observed data and the RDAPS image data, respectively. Then, two
feature maps, one from the BLSTM and one from the CNN-BLSTM, were concatenated
by adding them or by applying an attention mechanism to emphasize the correlation of
temperature between the observed and the numerical forecast image data.

The performance of the proposed temperature prediction model was evaluated by
seven different objective measures—IOA, R, RMSE, MAE, MBE, MNGE, and MNB—and
compared with those of a temperature prediction model using either the observed data
or RDAPS image data. The proposed model combining both observed and RDAPS image
data was better in all performance measures for all prediction periods compared with the
BLSTM-based and CNN-BLSTM-based models using the observed data and RDAPS image
data alone, respectively.

Two different temperature prediction models were constructed, combining the ob-
served data and RDAPS image data in the time-series and image domain, respectively. The
proposed model with attention produced better performance in all of the evaluation metrics
compared with the CNN-BLSTM-based model combining the observed and RDAPS image
data in the 2D domain, when the prediction periods were up to 72 h. Their performances
were comparable for longer prediction periods, such as 7 and 14 days. This result might be
because the observed and RDAPS data of only 24 h were used as input data for the neural
networks, thus, the duration of the input data should be increased to more than 24 h for
longer time period predictions.

In future work, to further improve the performance of the proposed temperature
prediction model for relatively long time periods, such as 7 and 14 days, the proposed
model could be extended using time-series and RDAPS image data for more than 24 h. In
addition, the time-variant fuzzy information technique in [35] and the super-resolution
generative adversarial network (SRGAN) in [36] could be incorporated into the proposed
model for better representation of time-series data representation and RDAPS image data,
respectively. The CNN layer used in this paper could be replaced with recently developed
convolutional networks, such as a residual convolutional neural network (ResNet) [37] or
dense convolutional neural network (DenseNet) [38]. Finally, since the proposed model is
applicable not to only temperature but also to other weather factors, this research can be
extended to predict other weather factors.
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