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Abstract
Upregulation of neprilysin (NEP) to reduce Aβ accumulation in the brain is a promising strat-

egy for the prevention of Alzheimer’s disease (AD). This report describes the design and

synthesis of a quenched fluorogenic peptide substrate qf-Aβ(12–16)AAC (with the

sequence VHHQKAAC), which has a fluorophore, Alexa-350, linked to the side-chain of its C-

terminal cysteine and a quencher, Dabcyl, linked to its N-terminus. This peptide emitted

strong fluorescence upon cleavage. Our results showed that qf-Aβ(12–16)AAC is more sen-

sitive to NEP than the previously reported peptide substrates, so that concentrations of

NEP as low as 0.03 nM could be detected at peptide concentration of 2 μM. Moreover, qf-

Aβ(12–16)AAC had superior enzymatic specificity for both NEP and angiotensin-converting

enzyme (ACE), but was inert with other Aβ-degrading enzymes. This peptide, used in con-

junction with a previously reported peptide substrate qf-Aβ(1–7)C [which is sensitive to NEP

and insulin-degrading enzyme (IDE)], could be used for high-throughput screening of com-

pounds that only upregulate NEP. The experimental results of cell-based activity assays

using both qf-Aβ(1–7)C and qf-Aβ(12–16)AAC as the substrates confirm that somatostatin

treatment most likely upregulates IDE, but not NEP, in neuroblastoma cells.

Introduction
Alzheimer’s disease (AD) is one of the leading neurodegenerative diseases and the foremost
cause of dementia. Other major death-causing diseases, such as cancer and cardiovascular dis-
eases, are gradually declining due to the progress of medical research, but as our population ages,
the number of people affected by AD is increasing with the increase in human life expectancy.
The neuropathological hallmarks of AD include extracellular amyloid plaques, intracellular
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neurofibrillary tangles formed from phosphorylated tau, cerebrovascular amyloid deposits, and
neuronal loss. The battle against AD has therefore involved considerable effort aimed at develop-
ing therapeutic strategies that focus on amyloid formation and tau phosphorylation as two
major targets [1–4]. However, at present, only memantine and four cholinesterase inhibitors
have been approved for symptomatic amelioration in patients with AD [2, 5].

The amyloid cascade hypothesis of AD holds that the excessive accumulation and abnormal
aggregation of a notorious peptide, “amyloid β-protein” (Aβ; containing 39–43 amino acids), is
linked to the onset of the neurodegenerative process. Aβis a catabolic product derived from a
membrane protein, amyloid precursor protein (APP), formed during the cooperative cleavage
by two proteolytic enzymes, β-secretase and γ-secretase. Mutations of APP and presenilin (a
catalytic component of γ-secretase) lead to early onset of AD, thereby supporting accumulation
of Aβas a key event in the early stage of AD progression. Application of anti-Aβ antibodies fails
to ameliorate the cognitive and functional decline of AD patients but appears to be effective in
Aβ clearance. This finding has recently changed the direction of clinical trials from AD therapy
to AD prevention [6].

In vivo, Aβ is degraded by several endogenous Aβ-degrading enzymes, including neprilysin
(NEP), plasmin, several matrix metalloproteases, insulin-degrading enzyme (IDE), endothelin-
converting enzyme (ECE), and angiotensin-converting enzyme (ACE) [7]. Among these, NEP
has the best correlation with Aβ accumulation. A deficiency of endogenous NEP increases the
level of Aβ in the brains of NEP-knockout mice in a gene dose-dependent manner [8]. In a
mouse study, the hippocampus, which is considered the most vulnerable brain region in AD
pathology, had lower NEP and IDE expression levels when compared to the unaffected cerebel-
lum. The expression of IDE and NEP in the hippocampus also decreases with increasing age
[9]. A western blot analysis of human brains revealed a lower NEP expression level in AD sam-
ples than in normal samples [10] and the reverse-transcription polymerase chain reaction also
revealed a reduction in NEP mRNA levels in AD brains [11]. Upregulation of NEP therefore
may represent a possible preventive approach for treatment of AD. Increasing the NEP level in
AD-transgenic mouse models, either by direct injection of NEP into the brain [12] or by trans-
genic or viral-mediated overexpression of NEP in the brain or peripheral tissues, reduced the
Aβ load and improved memory impairment [13–17].

The screening of compounds capable of upregulating NEP requires an NEP-sensitive assay
system. We previously designed a peptide, qf-Aβ(1–7)C, for detection of NEP activity [18].
This peptide has a fluorophore Alexa-350 linked to its C-terminal Cys side-chain and a
quencher (Dabcyl) at its N-terminus. The fluorescence emission of Alexa-350 is quenched by
the presence of Dabcyl nearby and strong fluorescence emission at 436 nm is only detected
upon excitation at 346 nm when the peptide is cleaved by endopeptidases. This peptide is able
to detect NEP at levels as low as 0.1 nM (about 1.6 ng) and only 2 μM of this peptide is required
in the assay. The peptide substrate qf-Aβ(1–7)C is sensitive to both NEP and IDE and inert to
other Aβ-degrading enzymes, such as ECE-1, ACE, plasmin, MMP-9, and MMP-3. In the pres-
ent study, our initial aim was to employ the same design strategy to synthesize a peptide sensi-
tive to other Aβ-degrading enzymes, but not to NEP, which would then serve as the control in
compound screening. The peptide qf-Aβ(12–18)C (sequence VHHQKLVC) was cleaved by mul-
tiple Aβ-degrading enzymes, including NEP, ACE, and ECE-1, whereas the redesigned peptide
qf-Aβ(12–16)AAC (sequence VHHQKAAC) was sensitive to NEP and ACE only. Moreover, qf-
Aβ(12–16)AAC could be utilized to detect both NEP and ACE at levels as low as 0.03 nM.
Notably, these synthesized peptide substrates had a superior sensitivity for NEP detection
when compared to the previously reported peptide qf-Aβ(1–7)C (0.1 nM).
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Materials and Methods

Synthesis of the quenched fluorogenic peptide substrates
Two peptides, Aβ(12–18)C (sequence VHHQKLVC, which corresponds to residues 12 to 18 of
the Aβ peptide followed by a cysteine residue) and Aβ(12–16)AAC (sequence VHHQKAAC,
which corresponds to residues 12 to 16 of the Aβ peptide followed by two alanine residues and
one cysteine residue), were prepared by the Fmoc-polyamide method on a PS3 peptide synthe-
sizer (Rainin, USA) [19]. The thiol-reactive Alexa-350 (Alexa Fluor1 350 C5-maleimide) and
amine-reactive Dabcyl [4-(4’-N, N-dimethylaminophenyl)azobenzoic acid, succinimidyl ester]
(Invitrogen) were used as the fluorescence donor and quencher, respectively. About 1 mg of
peptide was dissolved in 10 mM Tris-HCl/DMSO [1/2.3 (v/v), pH 7.2]. Tris (2-carboxyethyl)
phosphine (TCEP) was dissolved in DMSO to make a 50 mM stock solution. Alexa-350 was
dissolved in DMSO to make a 20 mM stock solution. The peptide solution was mixed with one
half of an equivalent volume of TCEP and kept on ice. Alexa-350 was added dropwise to a final
molar ratio of peptide:Alexa-350 = 1:4. The mixture was reacted overnight in the dark at room
temperature with gentle inversion (91 rpm). The dye-labeled peptide was purified by HPLC
and identified on a MALDI mass spectrometer (MALDI micro MX, Waters, USA). The
quenching group was added by dissolving Alexa-350-labeled peptide and Dabcyl (molar ratio
peptide: Dabcyl = 1:10) in DMSO. A 1/20 volume of 100 mM sodium bicarbonate was slowly
added and the mixture was reacted with gentle inversion for 2 hr at room temperature in dark.
The double-labeled peptides, designated qf-Aβ(12–18)C and qf-Aβ(12–16)AAC, were purified
by HPLC and identified on a MALDI mass spectrometer (MALDI micro MX, Waters, USA).
The resulting purified peptides were lyophilized and stored at -20°C.

Fluorescence spectroscopy
Peptides were dissolved in DMSO to make a 1 mM stock solution and then 2 μM qf-Aβ(12–18)
C or qf-Aβ(12–16)AAC was reacted at 37°C for 1 hr with 2 nM of the indicated enzymes in the
buffers suggested by the manufacturer (see below). The fluorescence emission spectrum
between 370 and 600 nm was recorded in a 3-mm path-length rectangular cuvette on a FP-750
spectrofluorometer (Jasco, Japan) with excitation at 346 nm.

Aβ-degrading enzymes
Recombinant human NEP (0.5 mg/mL), insulin-degrading enzyme (IDE) (0.386 mg/mL),
endothelin-converting enzyme 1 (ECE-1) (0.298 mg/mL), matrix metalloproteinases
[(MMP)-2 (0.373 mg/mL), MMP-3 (0.124 mg/mL), and MMP-9 (0.5 mg/mL)], and angioten-
sin-converting enzyme (ACE) (0.434 mg/mL) were purchased from R&D Systems (USA).
Human plasmin (1 mM) was purchased from Sigma (USA). All the enzymes purchased were
marked with purity >90% (The characterization of the purity of some of the enzymes used
can be seen in S1 Fig). The enzymes were diluted in the buffers as suggested by the manufac-
turer: 50 mM Tris-HCl (pH 7.5), 25 mM NaCl, 5 μM ZnCl2 for NEP, IDE, and ACE; 0.1 M
MES, 0.1 M NaCl (pH 6) for ECE-1; 50 mM Tris-HCl (pH 7), 150 mM NaCl, 10 mM CaCl2,
0.05% Brij-35 for MMP-2, MMP-3 and MMP-9; and 50 mM Tris-HCl (pH 7.5) for plasmin.
A pre-activation step was required for MMP-2, MMP-3, and MMP-9. A 2 mM stock of solu-
tion of p-aminophenylmercuric acetate was prepared in DMSO and then mixed with a 1:1
volume of MMP-2, MMP-3, or MMP-9. The reaction mixture was incubated with shaking at
37°C for 24 hr.
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Sensitivity of qf-Aβ(12–18)C and qf-Aβ(12–16)AAC detection of various
Aβ-degrading enzymes
Different concentrations of enzymes were reacted with 2 μM qf-Aβ(12–18)C or qf-Aβ(12–16)
AAC on a 96-well plate in the dark, without or with incubation for 1, 2, and 3 hr at 37°C. The
fluorescence intensities were then measured with excitation at 360 nm and emission at 465 nm
on a Paradigm™ Detection Platform (Beckman Coulter, USA). The data shown are the averages
of three independent samples.

Somatostatin treatment of human neuroblastoma SH-SY5Y cells
Human SH-SY5Y cells (ATCC, USA) were cultured in Dulbecco’s modified Eagle’s medium
(Gibco, USA) supplemented with 10% fetal bovine serum (FBS; Biological Industries, USA) in
5% CO2 at 37°C. The cells were harvested, suspended at a density of 5 × 105 cells/mL in the
same medium without FBS, and 1 mL was plated in each well of a 12-well plate. Somatostatin
(Sigma, USA) was added to the cultures at a final concentration of 1 μM and incubated for 24
hr. After incubation, the culture medium was replaced with fresh medium, and then 2 μM qf-
Aβ(1–7)C and qf-Aβ (12–16)AAC were added individually to each well. After a 1 hr incuba-
tion, 100 μL of medium was removed for fluorescence measurement on a Paradigm™Detection
Platform (Beckman Coulter, USA) with excitation at 360 nm and emission at 465 nm. The data
shown are the averages of at least three independent samples.

Statistical analysis
All data are expressed as average ± standard deviation (S.D.) for three independent determina-
tions. The significance of the results was determined with Student’s t-test. Unless otherwise
noted, a criterion of p< 0.01 was employed to determine whether the sample set and the
untreated control set were statistically different. Asterisks above indicate the significance of the
result relative to the untreated control: a single asterisk indicates a value of p< 0.01, double
asterisks indicate a value of p< 0.001, and triple asterisks indicate a value of p< 0.0001 (�: p<
0.01; ��: p< 0.001; ���: p< 0.0001).

Results and Discussion
As pointed out in many research papers, short peptides synthesized with double fluorescent
dye labels are useful tools for detecting the activity of endopeptidases; however, other studies
have also suggested that these double-labeled substrates are difficult to synthesize and are nor-
mally recovered in low yields. The present study adopted chemical synthesis using Fmoc chem-
istry for first synthesizing the backbones of the peptide substrates (e.g., Aβ(12–18)C and
Aβ(12–16)AAC). The subsequent addition of two different fluorescent dyes—a fluorescence
reporter/donor Alexa-350 and a fluorescence quencher Dabcyl—to these backbones yielded
the double-labeled peptide substrates, qf-Aβ(12–18)C and qf-Aβ(12–16)AAC, which were
then used to evaluate endopeptidase enzyme activity. Alexa-350 and Dabcyl were attached to
the residues at the C-terminus and the N-terminus, respectively. Alexa-350, contains the func-
tional group, maleimide, which can react with thiol groups on proteins. Maleimide can form a
stable covalent bond quickly with cysteine side chains on proteins in a neutral environment.
Dabcyl can also attach sulfhydryl groups, so its attachment to both termini was prevented by
adding Alexa-350 first, to react with the side chain of the C-terminal cysteine. The Alexa-
350-carrying peptides were then purified and further reacted to incorporate Dabcyl at the N-
terminus.
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Specificity and sensitivity of qf-Aβ(12–18)C for detecting various Aβ-
degrading enzymes
We chose the Aβ sequence 12–18 for our designed peptide because it contains several reported
cutting sites for IDE, ECE-1, and MMPs [7, 20–22]. We evaluated the sensitivity of our synthe-
sized qf-Aβ(12–18)C for various Aβ-degrading enzymes by reacting 2 μM peptide with 2 nM
of different enzymes at 37°C for 1 hr and recording the fluorescence spectra (Fig 1). The fluo-
rescence emission at ~450 nm showed a very strong and unexpected fluorescence intensity fol-
lowing peptide treatment with NEP and ACE. Other enzymes, at higher concentrations, were
also tested for cleavage of qf-Aβ(12–18)C by monitoring the fluorescence emission of a mixture
of 2 μM qf-Aβ(12–18)C and a range of concentrations (39, 75, 162, 312, or 625 ng/mL) of NEP,
ACE, ECE-1, IDE, MMP-2, MMP-3, MMP-9, and plasmin, without or with incubation at 37°C
for 1, 2, and 3 hr (Fig 2). NEP and ACE showed very strong cleavage activity, whereas and
ECE-1 showed mild activity. Plasmin, IDE, and the three MMPs showed no significant fluores-
cence increase even at the highest enzyme concentration of 625 ng/mL (equal to ~ 6 nM IDE).

Fig 1. Fluorescence emission spectra of qf-Aβ(12–18)C treated with NEP, ACE, ECE-1, IDE, MMP-3, and plasmin. qf-Aβ(12–18)C (2 μM) was
reacted with the indicated enzymes (2 nM) at 37°C for 1 hr. The samples digested by NEP, ACE, and ECE-1 were diluted 10 times before the fluorescence
measurement due to the strong fluorescence intensity. The excitation wavelength was 346 nm.

doi:10.1371/journal.pone.0153360.g001
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The purpose of this study was to design a peptide substrate that could be used for a rapid
and sensitive detection of Aβ-degrading enzymes. The detection of NEP, ACE, and ECE-1 at
sub-nanomolar concentrations by qf-Aβ(12–18)C was examined using a 1-hr reaction time. As
shown in Fig 3, qf-Aβ(12–18)C could detect NEP and ACE at concentrations as low as 0.03
nM. The sensitivity of qf-Aβ(12–18)C for ECE-1 was much lower, with no detection observed
at ECE-1 concentrations lower than 1 nM.

Specificity and sensitivity of qf-Aβ(12–16)AAC for detecting various Aβ-
degrading enzymes
The observation that qf-Aβ(12–18)C peptide showed a high sensitivity for NEP and ACE, but a
relatively low sensitivity for ECE-1 suggested that its enzyme specificity could be improved by
decreasing its susceptibility to ECE-1 activity. The location of the ECE-1 cutting site in the Aβ
peptide was reported as the N-terminal Leu17 and Val18 [21]; therefore, we redesigned the

Fig 2. The specificity of qf-Aβ(12–18)C for various enzymes. qf-Aβ(12–18)C (2 μM) was reacted with different concentrations of the indicated enzymes
without or with incubation at 37°C for 1, 2, and 3 hr. Inset in (D): the extension of the y-axis. The fluorescence intensity was measured at 360Ex/465Em.

doi:10.1371/journal.pone.0153360.g002
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Fig 3. The sensitivity of qf-Aβ(12–18)C for various enzymes. qf-Aβ(12–18)C (2 μM) was reacted with
different concentrations of the indicated enzymes at 37°Cfor 1 hr. The fluorescence measurements were
performed at the excitation and emission wavelengths of 360 and 465 nm, respectively (*: p<0.01; **:
p<0.001; ***: p<0.0001).

doi:10.1371/journal.pone.0153360.g003
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sequence of the peptide qf-Aβ(12–18)C by replacing Leu17 and Val18 with two Ala residues to
yield the peptide substrate designated qf-Aβ(12–16)AAC.

We evaluated the sensitivity of qf-Aβ(12–16)AAC in the same way as qf-Aβ(12–18)C. Com-
parison of the data depicted in Fig 4 with those in Fig 1 confirms that NEP and ACE could
digest both peptides, whereas ECE-1 could digest qf-Aβ(12–18)C but not qf-Aβ(12–16)AAC.
The fluorescence intensities of qf-Aβ(12–16)AAC treated with different concentrations of vari-
ous Aβ-degrading enzymes are shown in Fig 5. ECE-1 could not digest qf-Aβ(12–16)AAC, even
at high enzyme concentrations (e.g., 625 ng/mL, which is equivalent to ~7.9 nM ECE-1). The
sensitivity of qf-Aβ(12–16)AAC to NEP and ACE was similar to that of qf-Aβ(12–18)C (Fig 6).
The values of kinetic parameters (Km and kcat) for digestion of the substrate (qf-Aβ(12–16)

Fig 4. Fluorescence emission spectra of qf-Aβ(12–16)AAC treated with NEP, ACE, ECE-1, IDE, MMP-3, and plasmin. qf-Aβ(12–16)AAC (2 μM) was
reacted with the indicated enzymes (2 nM) at 37°C for 1 hr. The samples digested by NEP and ACE were diluted 10 times before the measurement due to
strong fluorescence intensity. The excitation wavelength used in the fluorescence measurements was 346 nm.

doi:10.1371/journal.pone.0153360.g004
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AAC) by the enzymes (e.g., NEP and ACE) have also been determined by conducting the
enzyme-substrate reaction experiments, followed by fitting the Michaelis-Menten model equa-
tion to the results of initial rate/velocity v.s. substrate (qf-Aβ(12–16)AAC) concentration, which
were obtained from the kinetic data of the aforesaid experiments, using the non-linear regres-
sion. Evidently, the values of Km and kcat were not found to be statistically different between
the NEP-substrate system and the ACE-substrate system (see S2 Fig and S1 Table).

To further confirm (a) if the discrete single sites were cleaved and (b) if the hydrolysis
occurred at the same bond as that of the physiological Aβ peptide. We have performed mass
spectrometric analyses on the purified peptide fragments of the substrate qf-Aβ(12–16)AAC
upon hydrolysis/cleavage by NEP or ACE using MALDI-TOFmass spectrometer. As demon-
strated in Fig (A)-(B) in S1 File and S2 Table, the observed mass [M+H+] of the peptide fragment
obtained fromNEP digestion was determined to be 741.187 Da (see (B)), which matches the the-
oretical mass of the peptide fragment AAC-Alexa-350 (740 Da). This result indicated that the

Fig 5. The specificity of qf-Aβ(12–16)AAC for various enzymes. qf-Aβ(12–16)AAC (2 μM) was reacted with different concentrations of the indicated
enzymes without or with incubation at 37°C for 1, 2, and 3 hr. Inset in (D): the extension of on the y-axis. The fluorescence measurements were performed at
the excitation and emission wavelengths of 360 and 465 nm, respectively.

doi:10.1371/journal.pone.0153360.g005
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Fig 6. The sensitivity of qf-Aβ(12–16)AAC for various enzymes. qf-Aβ(12–16)AAC (2 μM) was reacted with different concentrations of the indicated
enzymes at 37°Cfor 1 hr. The fluorescence measurements were performed at the excitation and emission wavelengths of 360 and 465 nm, respectively
(*: p<0.01; **: p<0.001; ***: p<0.0001).

doi:10.1371/journal.pone.0153360.g006
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cutting site of NEP is between residues K and A in the sequence “VHHQKAAC”. As for the case of
ACE digestion (see Fig (C)-(D) in S1 File and S2 Table), the observed mass [M+H+] in (D) was
determined to be 670.130 Da, which is ~71 Da lower than the value obtained in the case of NEP
digestion. Since this amount of mass reduction is equal to the mass of Ala residue, we believe the
peak belongs to the peptide fragment AC-Alexa-350. This finding indicated that the cutting site
of ACE is located between two Ala residues in the sequence “VHHQKAAC”.

Cell-based activity assay to screen compounds that could upregulate NEP. NEP is one
of the major Aβ-degrading enzymes and upregulation of NEP is a promising strategy for
increasing Aβ clearance to prevent the development of AD. Searching for chemicals with the
ability to upregulate NEP activity is a more feasible approach for AD prevention, when com-
pared with viral infection or stem cell transplantation. Our results showed that qf-Aβ(12–16)
AAC could be used to screen compounds that upregulate NEP or ACE in human neuroblas-
toma SH-SY5Y cells (Fig 7). In addition, the previously reported peptide substrate qf-Aβ(1–7)

Fig 7. Illustration of the cell-based NEP activity assay using qf-Aβ(12–16)AAC as the peptide substrate.Human neuroblastoma SH-SY5Y cells were
used in the cell-based NEP activity assay.

doi:10.1371/journal.pone.0153360.g007
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C is sensitive to NEP and IDE but inert to other Aβ-degrading enzymes [18]. Therefore, a com-
bination of these two peptide substrates could be used to cross-examine screened compounds
that can activate NEP only. For example, Saito et al. used glutaryl-Ala-Ala-Phe-methoxy-
2-naphthylamide as the peptide substrate in an enzyme activity assay and proposed that
somatostatin is capable of regulating NEP activity in the primary cortical neurons [23]. On the
contrary, Tundo et al. reported that somatostatin regulated IDE activity by affecting its expres-
sion and secretion in microglia cells, as revealed by western blotting and ELISA [24]. The addi-
tion of qf-Aβ(1–7)C and qf-Aβ(12–16)AAC individually to somatostatin-treated cell cultures
resulted in enhanced fluorescence intensity only in the culture containing added qf-Aβ(1–7)C,
but not qf-Aβ(12–16)AAC (Fig 8). This finding from cell-based screening analysis leads to the
apparent conclusion that somatostatin is able to upregulate IDE, but not NEP.

Fig 8. The effect of somatostatin treated SH-SY5Y cells on the digestion ability of the peptide substrate qf-Aβ(1–7)C or qf-Aβ(12–16)AAC present in
the culture medium.

doi:10.1371/journal.pone.0153360.g008
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To further verify this conclusion obtained from the cell-based assay system, we have also
performed the western blotting analysis to examine the influence of somatostatin on the level
of membrane-associated IDE in both the undifferentiated and retinoic acid-differentiated
SH-SY5Y cells. Our results evidently showed that a slight increase in the amount of mem-
brane-associated IDE was observed in both the undifferentiated and retinoic acid-differenti-
ated SH-SY5Y cells upon somatostatin treatment (shown in S3 Fig). The result that IDE
expression is elevated in the presence of somatostatin is consistent with the finding in our pre-
vious study that a slight increase in IDE activity was detected in the assay [18].

Comparison with other peptide substrates
The expression of NEP is low in neuronal cells; therefore, the development of a very sensitive
detection system is critical when attempting to compare the levels of NEP activities among the
samples containing neuronal cells. Several peptide substrates have been reported for assaying
NEP activity. For instance, Saito et al. [22] used a concentration of glutaryl-Ala-Ala-Phe-meth-
oxy-2-naphthylamide (Sigma) of 500 μM and this peptide substrate could be digested by many
other proteases [23]. SAAP-AMC (Suc-L-Ala-L-Ala-L-Phe-7-amido-3-methylcoumarin,
Sigma) [25, 26] was used to screen natural compounds that could increase NEP activity in the
neuroblastoma SK-N-SH cells. The substrate concentration was 44 μM and a subsequent diges-
tion step by aminopeptidase N was required. A similar response (i.e., detection of NEP and
ACE) to that reported in the present study for qf-Aβ(12–16)AAC was observed for 3-dansyl-
D-Ala-Gly-p-(nitro)-Phe-Gly (DAGNPG, also named dansyl-DAGF(pNO2)G, Sigma) [16].
However, a 40 μMDAGNPG concentration was required to detect 2 nM NEP [18]; therefore,
the sensitivity of DAGNPG is clearly not as good as that of qf-Aβ(12–16)AAC.

Conclusions
This work examined the possibility of using specifically designed peptide substrates for the
detection of Aβ-degrading enzymes, which have been suggested as a potential targets in thera-
peutic strategies for AD. The synthesized peptide qf-Aβ(12–16)AAC exhibited excellent sensi-
tivity and specificity as a substrate for NEP and ACE, highlighting its potential for seeking
compounds/drugs that alter the levels of these Aβ-degrading enzymes. The combined use of
the substrates qf-Aβ(1–7)C and qf-Aβ(12–16)AAC can also aid in high-throughput screening
of compounds that specifically upregulate NEP alone. We also demonstrated that somatostatin
is likely to increase the level of IDE but not NEP in neuroblastoma cells.

Supporting Information
S1 Table. Kinetic parameters for the hydrolysis of qf-Aβ(12–16)AAC by NEP and ACE.
Digested peptide concentration was calculated according to the fluorescence intensity of qf-
Aβ(12–16)AAC obtained from the reaction of NEP or ACE at 37°C overnight.
(DOC)

S2 Table. Summary of the sequences, theoretical masses [M], and observed masses [M+H+]
of the peptide fragments obtained from the MALDI spectrometric analysis shown in S1
File. Dabcyl-VHHQKAAC-Alexa350 is the parent peptide.
(DOC)

S1 Fig. 8% Bis-Tris SDS-PAGE of NEP (102 kDa), ACE (160–180 kDa), and IDE (105
kDa). The numbers in the parentheses are the molecular masses of the enzymes obtained from
the data sheets provided by the vendors.
(DOC)
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S2 Fig. Kinetics of qf-Aβ(12–16)AAC digestion by NEP and ACE. 2 nM NEP or ACE was
reacted with 1 to 15 μM of qf-Aβ(12–16)AAC in 50 mM Tris-HCl (pH 7.5), 25 mM NaCl, 5
βMZnCl2 at 37. The fluorescence emission at 465 nm was recorded every minute on a Para-
digm™ Detection Platform (Beckman Coulter, USA) with excitation at 360 nm. The initial
digestion rates for different concentrations of substrate were obtained by non-linear fitting and
plotted against the substrate concentrations. The curve fitting on the data of initial rate/velocity
versus substrate concentration plot was conducted according to the standard Michaelis-Men-
ten equation.
(DOC)

S3 Fig. Effect of somatostatin on IDE level by western blotting. SH-SY5Y cells were seeded
in 100-mm dishes (10 mL; cell density of 7×105 cells/mL), then, after 1 day, the medium was
replaced with the fresh DMEM/F12 medium supplemented with 10% FBS and 10 μM of sama-
tostatin (Sigma, USA) or vehicle. After incubation for 24 hr, cells were first detached from the
plate with PBS and then centrifuged at 200 g at 4°C for 5 min. For the detection of IDE level in
the differentiated cells, 5×105 cells/mL in DMEM/F12 medium supplemented with 1% FBS was
used. On the second day of incubation, the medium was replaced by the above-mentioned
medium containing 10 μM retinoic acid (RA) and the cell culture was further incubated for 5
days (the medium should be changed every two days). The membrane fractions were extracted
from the cell pellets using the Mem-PER Plus Membrane Protein Extraction Kit (Thermo Sci-
entific, USA). After quantifying the protein content of the membrane fractions using a BCA kit
(Thermo Scientific, USA), 50 μg of protein were first taken and resolved on an 8% Bis-Tris gels
by SDS-PAGE and then transferred to a nitrocellulose membrane (PerkinElmer, USA). Next,
the membrane was blocked with 5% non-fat dry milk (Fonterra, New Zealand) in the blocking
buffer (Tris-buffered saline (TBS) containing 0.1% Tween 20) for 1 hr at 4°C, and incubated
overnight at 4°C with mouse monoclonal anti-IDE antibody (Covance, USA) and mouse
monoclonal anti-glyceraldehyde 3-phosphate dehydrogenase (GAPDH) antibody (Proteintech,
USA) (1:1000 in the blocking buffer). After 3 washes with TBS, the membranes were incubated
for 1 hr at 4°C with horseradish peroxidase-conjugated anti-mouse IgG antibodies (1:1000 in
the blocking buffer, R&D Systems, USA). A slight increase in IDE amount was detected after
somatostatin treatment.
(DOC)

S1 File. Analysis of the cutting site of NEP or ACE on qf-Aβ(12–16)AAC. 1 mL 10 μM qf-
Aβ(12–16)AAC in 50 mM Tris-HCl (pH 7.5), 25 mM NaCl, 5 μMZnCl2 was reacted with 250
ng NEP or ACE at 37°C for 1 hr. The reaction product was purified by HPLC with C18 column.
(A) HPLC chromatogram for NEP digestion. (C) HPLC chromatogram for ACE digestion.
The elution gradient used was 0–50% Buffer B in 20 min. Buffer A: 5% acetonitrile/0.1% TFA
in water; Buffer B: 0.1% TFA in acetonitrile. The products were detected by monitoring the
absorbance at the wavelengths of 346 and 453 nm. After cleavage, the peptide fragment con-
taining the Alexa-350 moiety exhibited a positive absorption peak at 346 nm but a negative
absorption peak at 453 nm, which is due to the emitted fluorescence from Alexa-350. However,
the peptide fragment containing the Dabcyl moiety showed absorption at 453 nm. The peak
eluted at 12 min (with absorption at 346 nm) was collected and further identified/characterized
by MALDI-TOF mass spectroscopy. (B) MALDI-TOF mass spectrum of the sample pointed
with an arrow in the chromatogram of NEP digestion product. (D) MALDI-TOF mass spec-
trum of the sample pointed with an arrow in the chromatogram of ACE digestion product. The
observed mass [M+H+] in (B) was determined to be 741.187 Da, which corresponds to the
mass of the peptide fragment AAC-Alexa-350 with a theoretical mass of 740 Da. This result
indicated that the cutting site of NEP is located between the residues K and A in the sequence
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“VHHQKAAC”. The observed mass [M+H+] in (D) was determined to be 670.130 Da, which is
~71 Da lower than the value obtained in the case of NEP digestion. Since this amount of mass
reduction is equal to the mass of Ala residue, we believe the peak belongs to the peptide frag-
ment AC-Alexa-350. This finding indicated that the cutting site of ACE is located between two
Ala residues in the sequence “VHHQKAAC”.
(DOC)
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