
Hereditary retinal degeneration (HRD) includes a broad 
group of hereditary retinal disorders with different patterns 
of inheritance, varied clinical phenotypes, and a highly 
polymorphic basis of molecular defects. These disorders are 
further classified into several subgroups based on the primary 
involvement of cones or rods, location of the retina, severity 
of the disease, and accompanying ocular or systemic signs. 
The disorders can be transmitted as autosomal dominant, 
autosomal recessive, X-linked, or mitochondrial traits. Thus 
far, mutations in at least 271 genes have been reported to be 
responsible for these disorders (RetNet, https://sph.uth.edu/
retnet/). A systematic analysis of the coding regions of these 
genes identified genetic defects in approximately 50–60% of 
families with HRDs. A lack of mutations in these genes may 

suggest a genetic defect either in undefined novel genes or in 
uncovered regions of known genes. However, a proportion 
of reported mutations may not truly be causative of disease. 
Clarification of genotype–phenotype correlations, especially 
gene-specific retinal lesions, will not only help to further 
identify genetic defects but also clarify the pathogenesis of 
mutations.

Mutations in the spermatogenesis-associated protein 7 
(SPATA7) gene (Gene ID: 55812, OMIM: 609868) have been 
reported to be responsible for autosomal recessive Leber 
congenital amaurosis (LCA), retinitis pigmentosa (RP), juve-
nile RP, and cone or cone-rod dystrophy (CORD) [1-33]. To 
date, biallelic mutations in SPATA7 have been reported in 54 
families. However, the spectrum and frequency of mutations 
in SPATA7 and their associated characteristic phenotypes 
have not been systemically analyzed.

In the present study, we systematically analyzed varia-
tions in SPATA7, mainly based on a combination of whole 
exome and targeted exome in-house sequencing data from 
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5,090 unrelated patients. Seven biallelic mutations in SPATA7, 
including two novel mutations, c.367C>T (p.Q123*) and 
c.1083–2A>G, were observed in ten families, including four 
families briefly reported previously. Systemic analysis of 
these genotype–phenotype data, as well as related data in 
the literature, shed light on the spectrum and frequency of 
mutations in SPATA7 and identified gene-specific changes 
in the early developmental stage, in addition to novel fundus 
changes.

METHODS

Venous blood was collected in an EDTA coating tube from 
superficial vein of the arm of each participant using dispos-
able needle after sterilization of skin. The blood samples were 
stored at 4 °C temporarily for a few hours to a few days before 
the preparation of genomic DNA. Clinical data were collected 
from outpatient clinics following the Guidance of Sample 
Collection of Human Genetic Diseases (863-Plan) by the 
Ministry of Public Health of China. Written informed consent 
adherent to the tenets of the Declaration of Helsinki as well 
as the ARVO statement on human subjects was obtained 
from all the patients or their guardians before sample and 
data collection. This study was approved by the institutional 
review board of the Zhongshan Ophthalmic Center.

Genomic DNA was prepared from leukocytes obtained 
from the venous blood of the study group. Genetic defects in 
the probands of each family were screened with either whole 
exome sequencing (WES) or targeted exome sequencing 
(TES), and a mutation in one individual was identified 
with Sanger sequencing (Table 1). The WES or TES data 
were analyzed through multistep bioinformatics analysis 
as described previously [34,35]. Variants in SPATA7 were 
obtained for 5,090 probands with a variety of forms of 
genetic eye diseases, including 2,252 probands with HRDs 
(one proband was examined with Sanger sequencing, 2,132 
probands were examined with WES described previously, and 
119 additional probands were recently examined with TES).

Homozygous or compound heterozygous rare variants in 
SPATA7 were selected for this study, and their segregation in 
family members was confirmed with Sanger sequencing. The 
clinical data and mutation characteristics in the patients were 
systematically analyzed in conjunction with data reported in 
the literature [1-33]. The ophthalmic examinations, including 
visual acuity, axial length, refraction, fundus changes, and 
electroretinogram, were performed as we described in 
previous studies [36]. Gene-specific fundus changes were 
determined by comparing available fundus images with 
detailed documented descriptions and available clinical data 
from these patients, as well as from case studies reported 

in the literature. Factors affecting phenotypic changes were 
considered, including the type and location of mutations and 
the patient’s age at the time of the examination.

RESULTS

Mutations in SPATA7 and phenotypes in the cohort: Based 
on an analysis of sequencing data collected at our clinic on 
5,090 probands with genetic eye diseases (including 269 
probands with LCA and 1,983 probands with other forms 
of HRDs), biallelic mutations in SPATA7 were found in ten 
families, with 12 affected individuals (Figure 1, Table 1). The 
clinical diagnosis of the probands was LCA in six families, 
juvenile RP (or early-onset HRD) in three families, and early-
onset high myopia in one family (Table 1). In total, seven 
different mutations were identified in these ten families. Of 
these mutations, five were known mutations, and two were 
novel mutations, of which the c.367C>T (p.Q123*) nonsense 
mutation was predicted to have a 35 score by CADD (https://
cadd.gs.washington.edu/), and the c.1083–2A>G mutation 
was predicted to affect the splicing acceptor site by BDGP 
and HSF (Table 2). All mutations were confirmed with 
Sanger sequencing and segregated with disease in the fami-
lies (Figure 1 and Appendix 1). Therefore, the mutations in 
SPATA7 were responsible for 2.2% (6/269) of families with 
LCA and 0.4% (10/2,252, 269+1983) of families with HRD in 
this Chinese cohort from one institution. All seven mutations 
were predicted to result in truncated proteins when expressed.

Clinical data on the 12 patients in the ten families are 
summarized in Table 1, including nine male patients and 
three female patients. The age of onset varied from 3 months 
after birth to 22 years. Poor vision or no pursuit of objects 
was the most common initial sign and was present in nine of 
ten probands, while night blindness was the initial sign in the 
other patients. Visual acuity ranged from no pursuit of light 
to 0.6. Nonrecordable cone and rod responses were recorded 
in seven probands using electroretinography. Fundus changes 
were age-dependent, with some common features possibly 
specific to mutations in SPATA7.

Fundus images were available for six patients from five 
families, including one patient with fundus images taken at 
three different times. The youngest patient (F01-II:1) was 
a 9-month-old boy with no pursuit of light for 6 months. 
Electroretinography recordings in this case showed no 
recordable responses of rods and cones. A fundus examina-
tion revealed attenuation of retinal arterioles and a relatively 
normal-looking posterior retina, except the absence of foveal 
reflex. Tiny spot-like RPE atrophy formed a frosted appear-
ance in the midperipheral retina (Figure 2A,B). A peculiar, 
novel fundus change was observed in two affected siblings 
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when they were aged 2 years and 4 months (F03-II:1) and 1 
year and 4 months (F03-II:2), with yellowish-white sand-like 
deposits in the midperipheral retina (Figure 2C–F). Interest-
ingly, similar retinal degeneration was absent in part of the 
inferior portion, close to the area of the optic fissure in the 
left and right eyes of the two siblings. The posterior fundus 
and optic disc were relatively normal, except slightly attenu-
ated retinal arterioles (Figure 2C–F). In addition, diffuse and 
mottling hypopigmentation in the midperipheral retina was 

observed in probands from two families (F05-II:1, Figure 
2G,H; F07-II:1, Figure 2I).

Age-related fundus changes were observed in the 
proband from F07. Fundus images for F07-II:1 were obtained 
when the patient was aged 3 years and 5 months (Figure 3 A), 
7 years and 5 months (Figure 3B,C), and 8 years and 7 months 
(Figure 3D–I). The proband attended our clinic at the ages of 
3 years and 5 months due to a complaint of “bumping into 
obstacles.” Ocular examination revealed a relatively normal 

Figure 1. Pedigrees of ten families with biallelic mutations in SPATA7. The arrow indicates the proband in each family. The affected 
individuals are shown as filled squares (male) or circles (female). Mutations are listed under each family, and their segregation in families 
is shown in the pedigrees.
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posterior retina (Figure 3A), with a few minor grayish-white 
spots in the midperiphery. Electroretinography demonstrated 
nonrecordable responses for rods and cones. By the time the 
child was 7 years and 5 months, the grayish-white spots on 
the midperipheral retina were clearly obvious (Figure 3B,C). 
At the age of 8 years and 7 months, diffuse and mottling 
hypopigmentation with a few small intraretinal pigments of 
midperipheral retina was visible, displaying a salt-and-pepper 
appearance in the focal area (Figure 3D–I). In addition, a 
salt-and-pepper-like fundus change was recorded in F08-II:1 
when the child was 7 years old. Bone spicule-like pigmenta-
tion in the midperiphery was recorded in one patient (F09-
II:6) at the age of 25 years, indicating that fundus changes 
may worsen with age. Based on a comparison of the fundus 
images with documented descriptions of fundus changes in 
the case records, in some patients, a fundus with a relatively 

normal-looking posterior retina (macular region) would likely 
be described as normal by some ophthalmologists in general 
outpatient clinics, despite the presence of significant degen-
eration in the midperiphery. In summary, the age-related 
change in the fundus observed in patient F07-II:1 with time 
may be common in patients with mutations in SPATA7, as 
discussed in the phenotypic characterization section.

DISCUSSION

In this study, the clinical phenotypes of 12 patients from ten 
families with biallelic mutations in SPATA7 were described, 
including six families with newly identified c.367C>T 
(p.Q123*) and c.1083–2A>G mutations. Common age-
dependent SPATA7-associated fundus changes were identified 
based on an analysis of these patients. The data suggested that 

Figure 2. Fundus images from patients with biallelic mutations in SPATA7. Representative fundus images show yellowish-white frosted 
degeneration in the midperiphery in patient F01-II:1 (A and B) and yellowish-white sand-like deposits in the midperiphery sparing the inferior 
area close to the optic fissure (C–F), in addition to yellowish-white mottled degeneration in the midperiphery (G–I). The homozygous novel 
mutation c.367C>T was identified in the F05-II:1, which is highlighted in red in G and H.
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mutations in SPATA7 may contribute to approximately 2.2% 
of LCA and 0.4% of HRD cases in Southern Chinese.

Biallelic mutations in SPATA7 have been detected in 
a total of 78 patients in 60 families including those in this 
study and described in previous reports [1-33] involving 
41 mutations (Table 2 and Appendix 2) based on transcript 
NM_018418.5. Fifty of the 60 families were described by 
other groups, and the other ten were from this study cohort. 
There are no reports of an association of heterozygous muta-
tions in SPATA7 with eye-related diseases. The 41 mutations 
could be classified as follows: nonsense (eight mutations in 

59 alleles), frameshift (15 mutations in 30 alleles), loss of 
splicing site (ten mutations in 20 alleles), missense (four muta-
tions in six alleles), in-frame deletion (two mutations in two 
alleles), gross deletion encompassing exon 1 to exon 5 (one 
mutation in two alleles), and loss of initiation (one mutation 
in one allele; Table 2). Most of these mutant alleles (93.3%, 
112/120) would result in a truncated protein if expressed 
(Appendix 3), and most of the transcripts would be degraded 
by nonsense-mediated decay. These mutations were spread 
into all 12 coding exons, with enrichment in exons 5 and 11 
(Figure 4). Four mutations, c.253C>T (p.R85*), c.1183C>T 

Figure 3. Fundus images showing age-dependent changes in a patient (F07-II:1). The fundus appeared nearly normal in the posterior area, 
with a few minor grayish-white spots in the midperiphery at the age of 3 years and 5 months (A), and progressed to significant yellowish-white 
spots in the midperiphery at the age of 7 years and 5 months (B, C). By the age of 8 years and 7 months, diffuse mottling hypopigmentation, 
with a few small intraretinal pigments, was visible (D–I). Mild salt-and-pepper-like changes were observed (E, H).
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(p.R395*), c.288T>A (p.C96*), and c.322C>T (p.R108*), were 
relatively common and affected 13, 13, 12, and 11 of the 120 
mutant alleles, respectively (Table 2 and Figure 4). All of 
these mutations are rare in the general population based on 
existing databases (Table 2).

Of the 78 patients from 60 families with biallelic muta-
tions in SPATA7, the clinical diagnosis was LCA in 41 fami-
lies (52 patients), RP in ten families (11 patients), juvenile RP 
in six families (eight patients), CORD in three families (five 
patients), and myopia in one family (two patients; Appendix 
2) [1-33]. Among siblings in one family with a homozygous 
c.1112T>C (p.I371T) mutation, a 52-year-old brother had RP, 
and his 48-year-old sister had CORD [24]. A male patient who 
had been diagnosed with CORD at 9 years old was subse-
quently diagnosed with RP at 21 years of age [18]. Clinical 
information on the other three patients diagnosed with CORD 
was not available. Eight patients diagnosed with juvenile RP 
had symptoms in the first few years after birth, but six of 
them were examined they were 7 years old (Appendix 2). 
Among the 11 patients diagnosed with RP, there were no 
clinical data available for six patients from six families. For 
the other five patients with RP, all underwent examination 
at the age of 25 years old or older: Two had symptoms at 
the age of 22 or 25 years, one had no symptoms at the age 
of 26 years, and the symptoms of the other two patients 
were not documented. Overall, in 28 of the 60 families, the 
initial symptom recorded was poor vision or nystagmus or 
both in 24 probands and night blindness in four probands. 
Age at onset varied from 3 months to no symptoms at age 
26 years [5]. Visual acuity was recorded in 33 of 78 patients, 
and it ranged from no light perception to nearly normal. Four 
affected children had no light perception, and five patients 
had best visual acuity better than 0.5 (20/20; Appendix 2).

Fundus color images were available for 15 patients, 
including six patients in this cohort and ten patients in 
published literature [1,3,7,12,24,30]. A documentary record of 
the fundus changes was available for four cases in this cohort 
and 19 cases in published literature [1-3,5,7,12,14,18,26]. 
Based on these records, the fundus may appear normal or 
nearly normal at an early stage (i.e., a few months after birth), 
with mild narrow arterioles and a relatively well-preserved 
macular region, with possible mild hypopigmentation in the 
midperipheral region. However, within a few years, retinal 
degeneration gradually progresses to widespread atrophy of 
the RPE, leading to diffuse hypopigmented grayish-white 
spots or mottled degeneration in the midperipheral region. 
Minimal intraretinal pigmentation may appear by school age, 
with a gradual change to salt-and-pepper appearance. Bone 
spicule-like pigmentation was not observed in patients until 
at least the age of 25 years but was common in patients aged 
approximately 40–50 years old. Narrow arterioles, a relatively 
well-preserved macular region, and widespread RPE atrophy 
resulting in diffuse mottling hypopigmentation in the midpe-
ripheral retinal region may be considered early and common 
fundus changes specific to SPATA7-associated retinopathy 
(Figure 2).

Except age-dependent variations in the disease pheno-
types, retinal degeneration and accompanied visual function 
varied markedly among the individuals with mutations in 
SPATA7, from no symptoms at the age of 26 years old [5] or 
nearly normal visual acuity [1,3] to early blindness. Signifi-
cant phenotypic variation was also present in siblings with 
the same mutations [5,24]. Previous research suggested that 
a truncation mutation in the C-terminal portion might be 
associated with milder phenotypes, such as RP [1]. However, 
several patients with RP did have truncation mutations in 
the N-terminal region [5,12,15,17]. In addition, two siblings 

Figure 4. A schematic diagram of 
the mutation spectrum frequency 
in SPATA7. The two horizontal 
bars represent the coding regions 
based on two alternative splicing 
isoforms. Most loss-of-function 
mutations are listed on the top 
of the upper bar. A gross dele-
tion involving the first five exons, 
four missense mutations, and two 
in-frame deletions are listed under 
the upper bar. The line height indi-
cates the number of mutated alleles 
in 60 families.
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(F10-II:1 and F10-II:2) with a truncation mutation in the 
N-terminal region showed myopia without obvious fundus 
changes. It might be that a truncated protein with partial 
function is produced by a new start codon downstream of 
the mutational position, or myopia is an earlier feature than 
significant fundus changes, which would be similar to a case 
with mutations in RBP3 as described in a previous study [37]. 
As 93.3% of mutations in SPATA7 are truncation mutations, 
the location of the truncation mutation does not appear to 
correlate with the severity of the manifestations in individuals 
with mutations in SPATA7, and there is no firm evidence for 
other genotype–phenotype correlations. Thus, by exclusion, 
this suggests that other unknown factors may act as modi-
fiers to affect the severity of the disease phenotype [3,5]. The 
latter has been well demonstrated in recent studies on other 
diseases [38]. Sparing of the inferior portion of the retina close 
to the optic fissure (Figure 2C–F) also suggests that potential 
intrinsic factors might modify the expression of the diseases. 
Understanding the role of such factors in ocular diseases and 
the underlying mechanisms may have therapeutic potential.

In addition, four missense mutations and two in-frame 
deletions were detected in nine patients from seven families 
in previous reports [3,13,19,24-26,30]. Except c.1112T>C 
(p.I371T), all others were compound heterozygous muta-
tions with another truncation mutation. Two members of one 
family with a homozygous c.1112T>C mutation had different 
types of HRD: RP in the brother and CORD in the sister [24]. 
Among the other seven patients, six patients had LCA, and 
one had RP. The phenotypes of patients with a missense or 
in-frame deletion appear to be comparable to those of patients 
with biallelic truncation mutations. The pathogenicity of 
missense or in-frame deletions requires additional studies 
because of two unusual facts: 1) If loss-of-function mutations 
are the main cause of the disease, the phenotypes associated 
with missense mutations would be expected to be mild; 2) if 
both missense and loss-of-function mutations are causative, 
there should be more missense mutations detected, especially 
in this era of next-generation sequencing.

In summary, mutations in SPATA7 were identified in 
ten families with phenotypes varying from LCA (most 
common) to arRP (less common) to rare early-onset myopia. 
Two novel truncation mutations were identified, including 
c.367C>T (p.Q123*) and c.1083–2A>G. The clinical and 
genetic data in our series, together with a systematic analysis 
of previously published data, showed that 93.3% (112/120) 
of mutant alleles in these families were truncation muta-
tions. Narrow arterioles, a relatively well-preserved macular 
region, and widespread RPE atrophy resulting in diffuse 
mottling hypopigmentation in the midperipheral retina may 

be considered early and common fundus changes suggestive 
of SPATA7-associated retinopathy. A genotype–phenotype 
analysis revealed the characteristics of pathogenic mutations 
and the potential problem of missense variants, as well as 
findings suggestive of potential modifiers. The findings of 
the present study can provide a valuable reference for clinical 
gene tests as well as for future studies.

APPENDIX 1.

To access the data, click or select the words “Appendix 1.” 
Chromatography of nucleotide sequence variations deter-
mined by Sanger sequencing. Pedigrees and individual 
numbers are shown on the left side, and the corresponding 
sequence variations are presented on the right side.

APPENDIX 2.

To access the data, click or select the words “Appendix 
2.” Mutations and associated clinical data of all patients 
described in this study as well as previously reported studies 
in literatures

APPENDIX 3.

To access the data, click or select the words “Appendix 3.” 
The proportion of mutant alleles (left), as well as genotypes 
of SPATA7 in 60 families (right).
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