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Background: Head and neck squamous cell carcinoma (HNSCC) is a common

malignancy of the mucosal epithelium of the oral cavity, pharynx, and larynx.

Laryngeal squamous cell carcinoma (LSCC) and oral squamous cell carcinoma are

common HNSCC subtypes. Patients with metastatic HNSCC have a poor

prognosis. Therefore, identifying molecular markers for the development and

progression of HNSCC is essential for improving early diagnosis and predicting

patient outcomes.

Methods: Gene expression RNA-Seq data and patient clinical traits were obtained

from The Cancer Genome Atlas-Head and Neck Squamous Cell Carcinoma

(TCGA-HNSC) and Gene Expression Omnibus databases. Differentially

expressed gene (DEG) screening was performed using the TCGA-HNSC dataset.

Intersection analysis between the DEGs and a list of core matrisome genes

obtained from the Matrisome Project was used to identify differentially

expressed matrisome genes. A prognostic model was established using

univariate and multivariate Cox regression analyses, least absolute shrinkage,

and selection operator (LASSO) regression analysis. Immune landscape analysis

was performed based on the single-sample gene set enrichment analysis

algorithm, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes,

prognostic value, receiver operating characteristic curve analysis, and gene
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mutation analyses. Immunohistochemical results regarding prognostic protein

levels were obtained from the Human Protein Atlas. Single-gene RNA-

sequencing data were obtained from GSE150321 and GSE172577 datasets.

CCK-8 and Transwell assays were used to confirm cell proliferation andmigration.

Results: A total of 1,779 DEGs, including 939 upregulated and

840 downregulated genes, between tumor and normal samples were

identified using the TCGA-HNSC microarray data. Intersection analysis

revealed 52 differentially expressed matrisome-related genes. After

performing univariate and multivariate Cox regression and LASSO analyses, a

novel prognostic model based on six matrisome genes (FN1, LAMB4, LAMB3,

DMP1, CHAD, and MMRN1) for HNSCC was established. This risk model can

successfully predict HNSCC survival. The high-risk group had worse prognoses

and higher enrichment of pathways related to cancer development than the

low-risk group. Silencing LAMB4 in HNSCC cell lines promoted cell proliferation

and migration.

Conclusion: This study provides a novel prognostic model for HNSCC. Thus,

FN1, LAMB4, LAMB3, DMP1, CHAD, and MMRN1 may be the promising

biomarkers for clinical practice.

KEYWORDS

head and neck squamous cell carcinoma, differentially expressed genes, core
matrisome gene, extracellular matrix, single-cell analysis, LAMB4

1 Introduction

Head and neck squamous cell carcinoma (HNSCC) is a common

malignancy derived from the mucosal epithelium of the oral cavity,

pharynx, and larynx. HNSCC has a yearly global incidence of over

830,000 cases and over 430,000 deaths (Bray et al., 2018; Cramer et al.,

2019). Approximately 75% of HNSCC incidence is associated with

tobacco-derived carcinogens or excessive alcohol consumption

(Johnson et al., 2020). The most common HNSCC subtypes are

laryngeal squamous cell carcinoma (LSCC), oral squamous cell

carcinoma (OSCC), and nasopharyngeal carcinoma (Shield et al.,

2017; Solomon et al., 2018).

LSCC accounts for approximately 20% of all head and

neck malignancies and is the second most common

malignancy after lung cancer among upper aerodigestive

tract tumors (Karatzanis et al., 2014). The symptoms and

prognosis of LSCC vary depending on its site of origin.

Overall, the outcomes of supraglottic and subglottic LSCC

are generally poor and significantly worse than those of

glottic laryngeal cancer (Coskun et al., 2019). Despite

advances in the diagnosis and treatment of LSCC, the 5-

years overall survival rate is approximately 50%, which is a

modest improvement compared to the survival rate of

patients diagnosed with other tumors (Koontongkaew,

2013). Therefore, identifying molecular markers involved

in the development and progression of LSCC is essential

to enhance the understanding of the mechanisms underlying

these processes and improve early diagnosis and prognosis

(Yang et al., 2020).

OSCC incidence continues to rise, affecting more than

300,000 people annually. It is the sixth largest and one of the

most prevalent types of cancer in the world (Zhao et al., 2021;

Sherin et al., 2008). As OSCC is highly aggressive, patients

are usually presented with disease progression during

diagnosis and treatment. The patients have a recurrence

rate of over 50% (Kapoor et al., 2012). It has been

confirmed that the poor prognosis of OSCC is associated

with the neck lymph node metastasis (Dhumal et al., 2022;

Montero and Patel, 2015), of which 68% develops in the

lungs (Irani, 2016). Therefore, identifying common

molecular markers in LSCC and OSCC can not only

discover the relationship between the two diseases, but

also play a vital role in their diagnosis and treatment.

The extracellular matrix (ECM) is a complex network

composed of biological macromolecules synthesized

intracellularly by cells and secreted extracellularly to

reside on the cell surface or between cells (Theocharis

et al., 2019). The core matrisome comprises over

250 unique matrix genes that are classified into collagens,

glycoproteins, and proteoglycans (Naba et al., 2016). The

expression profiles of ECM proteins in tumors are

significantly different from those in the normal tissues

(Marozzi et al., 2021). ECM remodeling in cancer is a

critical component of the tumor microenvironment (TME)

and is also an important driving force for the development of

malignant tumors. ECM deposition, remodeling, and cross-

linking are closely related to the development and prognosis

of tumors (Dongre and Weinberg, 2019; Winkler et al.,
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2020). However, research on the role of the matrisome in

HNSCC is requires further investigation.

This study aimed to develop a prognostic model based on

matrisome genes to predict patient survival using The Cancer

Genome Atlas-Head and Neck Squamous Cell Carcinoma

(TCGA-HNSC) dataset. The results were validated using four

independent datasets of LSCC or OSCC, including integrated

single-cell RNA-sequencing data (scRNA-Seq) from the

Gene Expression Omnibus (GEO) database. The present

study aimed to reveal the relationship between ECM

remodeling and HNSCC pathogenesis as well as to provide

insights into novel therapeutic targets for the treatment of

HNSCC.

2 Methods

2.1 Data collection and single-cell RNA-
sequencing data analysis

The workflow of this study is illustrated in Figure 1. Gene

expression RNA-Seq data, including count and TPM data,

were obtained from the University of California, Santa Cruz

(UCSC) browser Xena (http://xena.ucsc.edu/) and were

associated with TCGA-HNSC clinical information. Gene

expression microarray datasets (log2-transformed Robust

Multi-Array normalized data) and their associated

prognostic datasets, GSE27020 (Fountzilas et al., 2013) and

GSE42743 (Lohavanichbutr et al., 2013), were selected and

downloaded from the GEO database (https://www.ncbi.nlm.

nih.gov/geo/). These GEO datasets were annotated with gene

symbols using information from the GPL96 Affymetrix

Human Genome U133 A Array and GPL570 Affymetrix

Human Genome U133 Plus 2.0 Array platform files,

respectively. All the data were processed using R (version 4.

0.4) and RStudio (version 1.2.5033). TCGA-HNSC contained

502 HNSCC tumor 44 normal tissues, GSE27020 contained

109 LSCC samples with survival data, and

GSE42743 contained 74 OSCC and 29 normal samples with

survival data (Supplementary Table S1).

ScRNA-Seq data from the GSE150321 (Song et al., 2020)

and GSE172577 (Peng et al., 2021) datasets were obtained

from the GEO database. The R packages “Seurat” (version

4.0.2) and “scCancer” (Guo et al., 2021) were used to process

FIGURE 1
Schematic diagram of the workflow of the present study.
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the data. The uniform manifold approximation and projection

(UMAP) algorithm was used to explore and visualize cluster

classifications across the cell samples.

A list of 274 core matrisome genes was obtained from the

Matrisome Project (http://matrisomeproject.mit.edu) (Shao

et al., 2020). Genes with expression in TCGA-HNSC,

GSE27020, and GSE42743 datasets were included for

further analysis. A total of 190 common core matrisome

genes (Supplementary Table S2), including 33 collagens,

127 ECM glycoproteins, and 30 proteoglycan-coding genes,

were selected.

2.2 Identification of differentially
expressed genes

Differential expression analysis was performed using

edgeR (Robinson et al., 2010) in the OmicShare tool, a

free online platform for data analysis (www.omicshare.

com/tools). Protein-coding genes with mean counts

of >5 were selected. The default parameters of edgeR were

used, and DEGs were selected according to log2 |fold–change

(FC)| ≥ 2.0 and Q value >0.05. As there were no replicates in

this study, the biological coefficient of variation (BCV),

which is the square root of dispersion, was set to 0.

01 following the suggestion from the edgeR official manual.

2.3 Pathway and process enrichment
analysis

The Metascape tool (Zhou et al., 2019b) (https://

metascape.org) was used to perform Gene Ontology (GO)

analysis for biological processes (BP), along with Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway

enrichment analysis. Statistical significance was set at

p < 0.01.

2.4 Least absolute shrinkage and selection
operator and univariate and multivariate
cox regression analyses

Univariate Cox regression analysis was performed to screen the

differential matrisome genes that were significantly associated with

overall survival (OS) in the TCGA-HNSC dataset. Genes with p <
0.1 were included for subsequent research.

LASSO and multivariate Cox regression model was widely

used for high-dimensional predictor identification. LASSO

regression analysis was performed using the “glmnet” R

package (version 4.1-2). For multivariate Cox regression

model analysis, OS-associated matrisome genes were used to

select the significant genes associated with the OS of patients with

HNSCC according to the coefficient value. These factors were

incorporated in the multivariate Cox regression model to

construct the HNSCC prognostic signature. The risk score

was calculated using the following formula:

Risk Score � ∑
n

i�1
βi × Expi

In this formula, β denotes the regression coefficient, and Exp

denotes the expression levels of each core matrisome gene, i (Hou

et al., 2020; Huang et al., 2021b). Samples in the TCGA-HNSC

cohort were divided into high- or low-risk groups depending on

their median risk scores. Receiver operating characteristic (ROC)

andKaplan–Meier analyses were conducted between the high- and

low-risk groups. The R packages “pROC” (version 1.18.0),

“timeROC” (version 0.4), “survival” (version 3.2-13) and

“survminer” (version 0.4.9) were used for visualization.

2.5 Evaluation of tumor-infiltrating
immune cells

Single-sample gene set enrichment analysis (ssGSEA) was used

to evaluate the relative proportion of 23 infiltrating immune cell types

in TCGA-HNSC, including adaptive immune cells (activated B,

activated CD4+ T, activated CD8+ T, gamma delta T, immature

B, regulatory T, T follicular helper, type 1 T helper [Th1], Th17, and

Th2 cells), and innate immune cells (activated dendritic cells [DCs],

CD56bright natural killer cells, CD56dim natural killer cells,

eosinophils, immature DCs, macrophages, mast cells, myeloid-

derived suppressor cells (MDSCs), monocytes, natural killer cells,

natural killer T cells, neutrophils, and plasmacytoid DCs). A bar plot

was drawn to evaluate the differences in the composition of these

23 types of tumor-infiltrating immune cells between the high and

low-risk groups. The correlation analysis of the relationship between

risk score and immune cells was visualized by the “corrplot” R

package (version 0.92).

2.6 Mutation analysis

The R package “maftools” (version 2.6.05) was used to calculate

the tumormutation burden score for each sample from the high- and

the low-risk groups of the TCGA-HNSC dataset and generate the

oncoplot waterfall plot.

2.7 Functional enrichment analysis of the
prognostic genes using gene set variation
analysis

KEGG analysis was conducted on the high- and low-risk

groups using GSVA. Reference information was downloaded
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from the Molecular Signature Database v7.4 (MSigDB v7.4,

http://software.broadinstitute.org/gsea/msigdb/index.jsp).

Statistical significance was set at adjusted-p < 0.05.

2.8 Immunohistochemistry analysis and
protein expression level verification using
the human protein atlas database

The HPA is a database that maps all human proteins in

cells, tissues, and organs using an integration of various omics

technologies (https://www.proteinatlas.org/). We verified the

protein expression levels of survival-related matrisome genes

by IHC using the HPA database.

2.9 Cell culture and transfection

The laryngeal cancer cell line AMC-HN-8 and OSCC cell

line JHU011 were acquired from the Department of

Otolaryngology-Head and Neck Surgery, Xiangya Hospital,

Central South University. The cell lines were maintained in

Dulbecco’s Modified Eagle’s Medium (DMEM) with high

glucose (Procell Life Science&Technology Co., Ltd.,

Wuhan, China) and 10% fetal bovine serum (FBS) (Procell

Life Science&Technology Co., Ltd.). Cells were maintained at

37°C in a humidified incubator with 5% CO2.

The LAMB4 siRNA was produced by GenePharma Inc.

(Suzhou, China). The LAMB4 siRNA sequence was 5′-GCC
UUCGAUGUUUGCACAATT-3′, and the control siRNA

sequence was 5′-UUCUCCGAACGUGUCACGUTT-3′.
The siRNA was transfected into AMC-HN-8 or JHU011

using Lipofectamine 3,000 Reagent (Invitrogen, United

States) with the Opti-MEM medium (Gibco, Waltham,

MA, United States).

2.10 RNA isolation and RT-PCR

The cell sample total RNA was extracted using the TRIzol

reagent (Solarbio, Beijing, China) and subjected to reverse

transcription with random primers using the RevertAid First

FIGURE 2
Screening of DEGs. (A) Volcano map of DEGs between HNSCC and normal samples in the TCGA-HNSC dataset. The red plots in the volcano
represent upregulated genes and the blue points represent downregulated genes. (B) GO BP analysis of the DEGs. (C) Venn plot of the DEGs in
TCGA-HNSC dataset and common core matrisome genes. (D) Heatmap of 52 differentially expressed matrisome-related genes in TCGA-HNSC.
DEG, differentially expressed gene; BP, biological process; GO, Gene Ontology; HNSCC, head and neck squamous cell carcinoma.
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Strand cDNA Synthesis Kit (Thermo Fisher Scientific, United

States). The expression level of the targeted genes was

measured with the Maxima SYBR Green/ROX qPCR Mix

(Thermo Fisher Scientific) using a real-time PCR system

(Roche, Basel, Switzerland). The relative RNA expression

levels were calculated using the 2(−△△CT) method. The 18 s

rRNA was used as an internal control. The primer sequences

of LAMB4 were 5′-AAAGAGAACGTGGAAGGAGC-3′
(forward) and 5′-TCACAGGTCAAGAATGGCAG-3′
(reverse), and the primer sequences of 18 s rRNA were 5′-
CCTGGATACCGCAGCTAGGA-3′ (forward) and 5′-GCG
GCGCAATACGAATGCC-3′ (reverse).

2.11 CCK-8 assay

A total of 2,000 cells per well were seeded into 96-well

plates. For each well, 10 μL CCK-8 reagent (Solarbio, Beijing,

China) was added into the medium. After incubation at 37°C

for 2 h, the optical density (OD) was measured at different

time points at 450 nm.

2.12 Transwell assay

A total of 2.5 × 105 cells per well were suspended in DMEM

and seeded into a 24-well 8.0-mm transwell top chamber (Jet

Biofil, Guangzhou, China). DMEM supplemented with 12%

FBS was added to the bottom chambers. After incubation at

37°C for 16 h, the cells at the top chambers were fixed with 4%

paraformaldehyde for 30 min, followed by permeabilization

with methyl alcohol for 20 min. The cells were then stained

with 0.1% crystal violet (Solarbio, Beijing, China) for 15 min.

Cells that did not migrate through the pores were removed

using a cotton swab. Cells on the bottom of the chamber were

counted using an inverted phase-contrast microscope at low

magnifications ( × 10) (at least three randomly selected fields

were quantified).

2.13 Statistical analysis

The statistical analyses were performed using R software

(version 4.0.4) or GraphPad Prism (version 8.0). Gene expression

FIGURE 3
Prognostic analysis of the key genes. (A)Overall survival between high- and low-risk score groups in the training cohort (TCGA-HNSC,N= 502).
(B) ROC curve analysis between high- and low-risk score groups in the training cohort. (C) Risk score distribution of patients in the training cohort.
Green dots represent individuals in the low-risk group, and red dots represent those in the high-risk group. (D) Scatter plots of survival status of
patients in the training cohort. Green dots represent survival individuals and red represent death individuals. (E) Expression patterns of risk genes
in the training cohort. (F)Overall survival between high- and low-risk score groups in the testing cohort (GSE27020,N = 109). (G) ROC curve analysis
between high- and low-risk score groups in the testing cohort (GSE27020). (H) Risk score distribution of patients in the testing cohort (GSE27020).
Green dots represent individuals in the low-risk group and red represent in the high-risk group. (I) Scatter plots of survival status of patients in the
testing cohort (GSE27020). Green dots represent survival individuals and red represent death individuals. (J) Expression patterns of risk genes in the
testing cohort (GSE27020). (K) Overall survival between high- and low-risk score groups in the testing cohort (GSE42743, N = 103). (L) ROC curve
analysis between high- and low-risk score groups in the testing cohort (GSE42743). (M) Risk score distribution of patients in the testing cohort
(GSE42743). Green dots represent individuals in the low-risk group and red represent in the high-risk group. (N) Scatter plots of survival status of
patients in the testing cohort (GSE42743). Green dots represent survival individuals and red represents death individuals. (O) Expression patterns of
risk genes in the testing cohort (GSE42743). DEG, differentially expressed gene; ROC, receiver operating characteristic; AUC, area under the curve.
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levels were compared using Student’s t-test. P < 0.05 was considered

statistically significant. *p < 0.05; **p < 0.01; ***p < 0.001.

3 Results

3.1 Differentially expressed genes
screening

DEG analysis was conducted by genetic screening of

TCGA-HNSC microarray data with a threshold of |

log2(FC)| > 2.0 and an adjusted-p < 0.05. A total of

1,779 DEGs between tumor and normal samples were

identified, including 939 upregulated genes and

840 downregulated genes (Figure 2A).

The DEGs were mostly enriched in “muscle structure

development,” “supramolecular fiber organization,” “skeletal

system development,” “cilium movement,” “pattern specification

process,” and “extracellular matrix organization” in GO BP

analysis (Figure 2B and Supplementary Figure S1). In the

KEGG analysis, DEGs were enriched in “protein digestion and

absorption,” “salivary secretion,” “ECM-receptor interaction,”

“calcium signaling pathway,” “focal adhesion,” and

“hypertrophic cardiomyopathy” (Supplementary Figures S2A,B).

Intersection analysis of the DEGs in TCGA-HNSC and

190 common core matrisome genes identified 52 differentially

FIGURE 4
Tumor-infiltrating immune cell landscape estimation. (A) Heatmap of 23 infiltrating immune cell types in the TCGA-HNSC dataset. (B)
Correlation between 23 infiltrating immune cell subtypes. Blue represents negative correlation and red represents positive correlation. *, p < 0.05. (C)
Differences in the distribution of 23 tumor-infiltrating immune cells between the high- and low-risk groups. NS, not statistically significant; *p < 0.05,
**p < 0.01, ***p < 0.001. (D) Correlation analysis of the risk score and 23 infiltrating immune cell subtypes.
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expressed matrisome-related genes (Figures 2C,D). These genes

were used for subsequent analysis.

3.2 Establishment of a prognostic model
based on differentially expressed
matrisome genes

To establish a prognostic assessment model for patients

with HNSCC, we selected the TCGA-HNSC dataset (only

tumor samples with survival data, N = 502) as the training

cohort and GSE27020 (LSCC samples, N = 109) and

GSE42743 (OSCC samples, N = 74) datasets as testing

cohorts. Univariate Cox regression analysis of the

52 differentially expressed matrisome genes was performed

to evaluate the OS of the samples from the training cohort

(Supplementary Table S3). Twelve genes (MATN3, LAMC2,

FN1, SPP1, LAMB4, LAMB3, DMP1, IBSP, DMBT1, TGFBI,

CHAD, and MMRN1) with p < 0.1 were then included for

LASSO analysis. All 12 matrisome genes achieved minimum

partial expression (Supplementary Figure S2A,B) and were

further incorporated into multivariate Cox regression analysis

with their expression levels and prognostic data to identify

genes involved in signature construction. Multivariate Cox

regression analysis established a prognostic model consisting

of a risk signature comprising six genes (FN1, LAMB4,

LAMB3, DMP1, CHAD, and MMRN1). The formula for the

risk score calculation was as follows: risk score = 0.075123 ×

FN1 + (−0.348,219) × LAMB4 + 0.090359 × LAMB3 +

0.363,187 × DMP1 + (−0.314,325) × CHAD +

(−0.125,206) × MMRN1 (Supplementary Figure S3).

According to the risk score, samples from the training

and testing cohorts were divided into two groups, a high-risk

and low-risk group, based on a cutoff value of 50% (Figures

3A−O). Kaplan–Meier analysis showed that patients with

high-risk scores had significantly shorter survival times than

those in the low-risk group, both in the training (TCGA-

HNSC) and testing cohorts (GSE27020 and GSE42743)

(Figures 3A,F,K). In addition, the area under the curve

(AUC) values of the ROC curves for the 1-, 2-, and 5-

years survival rates were 0.636, 0.635, and 0.571,

respectively, indicating that the risk score can be used to

predict prognosis in the training cohort (TCGA-HNSC)

(Figure 3B). In the testing cohorts, the AUC values for the

1-, 2-, and 5-years survival rates were 0.724, 0.691, and

0.650 in GSE27020 (Figure 3G) and 0.707, 0.602 and

0.859 in GSE42743 (Figure 3L), respectively. Additionally,

all six genes (FN1, LAMB4, LAMB3, DMP1, CHAD, and

MMRN1) were significantly associated with poor prognosis

and unhealthy living habits in both the training (TCGA-

HNSC) and the testing cohorts (GSE27020 and GSE42743)

(Figures 3E,J,O). Therefore, a matrisome-associated

prognostic model for HNSCC was established and verified.

3.3 Comparison of tumor-infiltrating
immune cell landscapes between high-
and low- risk groups

To evaluate the landscape of the 23 infiltrating immune cell

types in TCGA-HNSC, ssGSEA was used. Based on the clinical

data of TCGA-HNSC and the risk score of each sample, a

heatmap of the 23 infiltrating immune cell types were drawn

(Figure 4A). Next, correlation analysis between tumor-

infiltrating immune cells was performed. As shown in

Figure 4B, the highest significantly positive correlation was

between activated CD8 T cells and neutrophils, whereas the

highest significantly negative correlation was between

CD56bright natural killer cells and monocytes. The

comparison analysis of tumor-infiltrating immune cell

abundance between the different risk groups showed that the

presence of activated and immature B cells, eosinophils,

macrophages, monocytes, neutrophils, and Th2 cells were

significantly reduced in the high-risk group (Figure 4C).

Finally, we analyzed the correlation between 23 infiltrating

immune cell types and the risk scores. The results showed

that Th17 cells (p = 0.015) were the only significantly

positively correlated cell type with the risk score, whereas the

risk score had a significantly negative correlation with immature

B cells, monocytes, macrophages, eosinophils, activated B cells,

Th2 cells, gamma delta T cells, MDSCs, and neutrophils

(Figure 4D). Collectively, our results show that the 7 cell types

(activated B cells, eosinophils, immature B cells, macrophages,

monocytes, neutrophils, and Th2 cells) may play an important

role in the matrisome-related HNSCC microenvironment.

3.4 Somatic mutation profiles in the
different risk groups

Furthermore, the somatic mutation profiles of TCGA-

HNSC patients were used to explore common somatic

mutations in the high- and low-risk groups. Among these

patients, 239 (97.15%) belonged to the high-risk group, and

215 (87.40%) belonged to the low-risk group. The frequency

of gene mutations was generally higher in the high-risk

group compared to the low-risk group. Alterations in the

mutation landscape in high- or low-risk group were as

follows: eight genes were mutated in >15% of tissues with

high-risk score: TP53 (72%), TTN (35%), FAT1 (26%),

CDKN2A (19%), MUC16 (17%), CSMD3 (16%), NOTCH1

(16%), and LRP1B (17%), while eight genes were mutated

in >15% of tissues with low-risk score: TP53 (52%), TTN

(35%), FAT1 (16%), CDKN2A (17%),MUC16 (16%), PIK3CA

(18%), CSMD3 (16%), and SYNE1 (16%). Notably, TP53 was

one of the most commonly mutated genes in cancer,

occurring more frequently in the high- (72%) than in the

low-risk group (52%) (Figures 5A,B).

Frontiers in Cell and Developmental Biology frontiersin.org08

Huang et al. 10.3389/fcell.2022.884590

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.884590


3.5 Functional enrichment analysis of
prognostic genes

GSVA was performed to identify prognosis-related

KEGG pathways. As shown in the heatmap, the high-risk

group was significantly enriched in the P53 signaling

pathway, thyroid cancer, colorectal cancer, endometrial

cancer, prostate cancer, basal cell carcinoma, and

melanoma KEGG pathways, while glycosaminoglycan

biosynthesis keratan sulfate, glycosylphosphatidylinositol

GPI anchor biosynthesis, and folate biosynthesis KEGG

pathways were significantly enriched in the low-risk group

(Figure 5C). Therefore, gene expression in the high-risk

group was significantly enriched in tumor-related pathways.

3.6 Validation of protein expressions of
prognostic genes

Using HPA online datasets, we then verified the protein

expression of these prognostic genes through IHC. The FN1,

LAMB3, and DMP1 proteins were found to be upregulated,

FIGURE 5
Landscape of mutation profiles and pathway enrichment between high and low-risk HNSCC patients. Waterfall plots represent mutation
information in each sample of the (A) high- and (B) low-risk group. (C) Heatmap of KEGG analysis based on risk scores in the TCGA-HNSC dataset.
KEGG, Kyoto Encyclopedia of Genes and Genomes; GSVA, Gene Set Variation Analysis.
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while the LAMB4, CHAD, and MMRN1 proteins were found

to be downregulated in HNSCC samples compared with the

normal controls (Figure 6). These findings were consistent

with our results obtained using the TCGA dataset.

3.7 Single-cell transcriptomic analysis of
the prognostic genes

Next, we used single-cell RNA-Seq data from the

GSE150321 and GSE172577 datasets to further verify the

relationship between the prognostic model and genes in

HNSCC. For the GSE150321 dataset, which comprised

data from two LSCC samples, a total of 5 cell clusters

(tumor, immune, epithelial, mesenchymal, and endothelial

cells) were identified based on previous literature (Song et al.,

2020) (Figure 7A). We then calculated the risk score for each

cell and plotted it in a UMAP plot and violin plots (Figure 7B

and Supplementary Figure S4). LSCC tumor cells had higher

risk scores compared to the non-tumor cells.

For the GSE172577 dataset, four OSCC samples,

GSM5258385, GSM5258386, GSM5258387, and GSM5258388,

were combined. The cell clusters were annotated manually based

on the “scCancer” R package (Figures 7C,D). Notably, the

expression profile of most prognostic genes was similar to that

in LSCC, except that in GSE172577 CHAD was expressed at

lower levels (Figure 7E and Supplementary Figure S5).

Collectively, these results further supported that this signature

of matrisome-related prognostic genes influences HNSCC

progression.

3.8 LAMB4 affects tumor cell proliferation
and migration

Based on the previous analysis results, we selected

LAMB4 for further analysis since it was one of the six

prognostic genes that is less researched in the context of

HNSCC. LAMB4 siRNA was used to silence LAMB4

expression in the AMC-HN-8 and JHU011 cell lines

(Figure 8A). The CCK-8 assay demonstrated that silenced

LAMB4 levels promoted both AMC-HN-8 and JHU011 cell

proliferation (Figure 8B). We also detected the migration

change after LAMB4 silencing. Transwell assays showed that

FIGURE 6
Immunohistochemistry staining of prognostic proteins based on the HPA. Protein expression levels of FN1, LAMB4, LAMB3, DMP1, CHAD and
MMRN1 in tumor and normal tissues. HPA, Human Protein Atlas.
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LAMB4 knockdown promoted migration in both LSCC and

OSCC cell lines (Figures 8C,D). Therefore, as a potential

tumor suppressor gene, silencing LAMB4 promoted the

proliferation and migration of HNSCC cell lines.

4 Discussion

In the current study, using the gene expression profile of

TCGA-HNSC, we identified DEGs. Additionally, a list of core

matrisome genes was obtained from the Matrisome Project.

After intersecting the DEGs in TCGA-HNSC and common

core matrisome genes, 52 DEGs were identified as

differentially expressed matrisome-related genes.

Subsequent univariate and multivariate Cox regression and

LASSO analyses were performed to establish a prognostic

model consisting of a risk signature comprising six genes

(FN1, LAMB4, LAMB3, DMP1, CHAD, and MMRN1). This

model was validated using two independent datasets for LSCC

and OSCC. Among these six prognostic genes, five (FN1,

LAMB4, LAMB3, DMP1, and MMRN1) were classified as

ECM glycoprotein-coding genes, and one (CHAD) was

classified as a proteoglycan-coding gene. Tumor-infiltrating

immune cell landscape, somatic mutation, GSVA, and

immunohistochemistry analyses based on the prognostic

model and genes were performed. Single-cell transcriptomic

analysis was used to verify the expression patterns of these

prognostic genes and models.

Tumor ECM remodeling increases cancer cell

proliferation and survival. We have previously shown that

FIGURE 7
Prognostic expression profile based on single-cell sequencing analysis. (A) Composition and distribution of single cells in the
GSE150321 dataset. (B) Distribution of the gene expression of FN1, LAMB4, LAMB3, DMP1, CHAD,MMRN1 and the risk score in scRNA-Seq cluster of
LSCC cells. (C) Composition and distribution of single cells in the GSE172577 dataset. (D) UMAP plots labeled nine different cell clusters. (E) The
distribution of the expression of FN1, LAMB4, LAMB3, DMP1, andMMRN1 in a scRNA-Seq cluster of OSCC cells. LSCC, laryngeal squamous cell
carcinoma; OSCC, oral squamous cell carcinoma; scRNA-Seq, single-cell RNA-sequencing; UMAP, uniformmanifold approximation and projection.
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most of the core ECM genes were highly expressed in LSCC

tissues and were enriched in the DEGs of the

GSE142083 dataset (Huang et al., 2021). Here, we

employed the TCGA-HNSC dataset and confirmed that

both subgroups of HNSCC showed ECM expression

enrichment. Therefore, therapies targeting ECM remodeling

may be clinically promising. However, ECM remodeling

involves two important modifications: stiffness and

degradation. Abnormal ECM stiffness is important for

epithelial-mesenchymal transition (Alonso-Nocelo et al.,

2018), immune cell differentiation (Lu et al., 2012), and the

promotion of tumor cell proliferation (Chen et al., 2018). In

contrast, to help tumor cells break collagen migration barriers,

ECM degradation is involved in tumor migration and invasion

and angiogenesis induction (Winkler et al., 2020). Therefore,

these two processes are interrelated, and therapies targeting

either or both processes without inducing the other one would

be challenging.

FN1 encodes fibronectin, an ECM glycoprotein involved

in cell adhesion and migration. FN1 plays a critical role in the

development of ovarian (Liang et al., 2020), thyroid (Geng

et al., 2021), renal (Waalkes et al., 2010), cervical (Zhou et al.,

2019a), breast (Huang et al., 2022), and gastric cancers (Han

et al., 2020). Liu et al. (2020) reported that the expression

level of FN1 is also correlated with a poor HNSCC prognosis

and that p62/SQSTM1 may participate as an autophagy

adapter in the autophagy-lysosome pathway for

FN1 degradation. Mechanistically, fibronectin, which is

mainly secreted by cancer-associated fibroblasts (CAFs), is

reorganized by CAFs through increased contractility and

traction forces. This reorganization ultimately promotes

CAF–cancer cell interactions and leads to directional

FIGURE 8
Silencing LAMB4 in HNSCC cell lines promoted cell proliferation and migration. (A) AMC-HN-8 and JHU011 cells were transfected with siRNAs
targeting LAMB4 or control siRNAs (siCtrl) for 48 h. The expression of LAMB4 was examined by RT-PCR. (B) AMC-HN-8 and JHU011 cells were
transfected with siRNAs targeting LAMB4 or control siRNAs (siCtrl), then cell proliferation was determined by CCK-8 assay. (C) Themigration abilities
of AMC-HN-8 and JHU011 cells after transfectedwith siRNAs targeting LAMB4 or control siRNAs (siCtrl) were detected by Transwell assays. Bar,
100 μm. (D) Quantification of Transwell assay. *p < 0.05, **p < 0.01.
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cancer cell migration (Erdogan et al., 2017). Hence, a

comprehensive understanding of the functions of

fibronectin in the TME is crucial.

Laminin is a multidomain glycoprotein composed of α, β,
and γ subunits. In mammals, four genes (LAMB1—4) encode

four different β-chains of laminin (Yurchenco et al., 2018).

Among these, LAMB3 has been shown to play a role in cancer

development, and the involvement of laminin-332

(assembled by three subunits, α3, β3, and γ2) in cancer

pathogenesis has been extensively reported. Hagedorn

et al. observed that laminin-332 was highly expressed in

different LSCC stages and was distributed within tumor cells

at the tumor invasion front (Hagedorn et al., 2001).

Furthermore, high levels of laminin-332 are associated

with tumor invasion (Nordemar et al., 2001). In contrast

to LAMB3, the role of LAMB4 in cancer has not been

intensively investigated. Choi et al. demonstrated that loss

of expression of LAMB4, a candidate tumor suppressor gene,

was identified in 17%–32% of gastric and colorectal cancers

(Choi et al., 2015). Here, we verified for the first time that

knocking down LAMB4 promotes proliferation and

migration in HNSCC cell lines (Figures 8B–D). Consistent

with these previous studies, our analysis of LAMB3 and

LAMB4 from the TCGA-HNSC dataset indicated that both

LAMB3 and LAMB4 could serve as prognostic markers for

squamous cell carcinoma. However, the underlying

mechanism of these two genes, especially LAMB4, requires

further investigation.

DMP1, also called dentin matrix protein 1, is an ECM

protein that belongs to the small integrin-binding ligand

N-linked glycoprotein (SIBLING) family (Fisher et al.,

2001). DMP1 is mainly expressed in bones and dentin and

in non-mineralized tissues, such as the brain, kidney, and

salivary glands. Under normal conditions, DMP1 controls

the maturation of odontoblasts and osteoblasts by

functioning as a transcriptional co-factor (Narayanan

et al., 2003). However, DMP1 was found to be significantly

elevated in different cancer types (Fisher et al., 2004).

Karadag et al. (2005) suggested that DMP1 could enhance

the invasion potential of cancer cells by bridging MMP-9 to

the colon cell surface through αvβ3-integrin, αvβ5-integrin,
and/or CD44. Our results suggest that DMP1 may also serve

as a prognosis-associated gene in OSCC and LSCC. Further

studies are required to determine the role of DMP1 in

HNSCC progression.

CHAD encodes the cartilage matrix protein

chondroadherin, which promotes cell attachment by

binding to α2β1-integrin and syndecans. Additionally,

CHAD plays an important role in the ECM of mineralized

tissues. In patients with osteoporosis and ovariectomized

mice, CHAD was downregulated, thus inhibiting

preosteoclast motility and bone resorption (Capulli et al.,

2014). However, few studies have reported the relationship

between CHAD expression and cancer development. Deng

et al. (2017) showed that low CHAD expression was

significantly associated with poor survival in

hepatocellular carcinoma. In our analysis, CHAD was

significantly downregulated in HNSCC samples, and its

low expression was associated with a high-risk score and

poor prognosis in both patients with LSCC and OSCC

(Figure 4). Nevertheless, future studies are warranted to

clarify the mechanisms underlying chondroadhesion in

HNSCC.

MMRN1 encodes multimerin 1, a member of the elastin

microfibrillar interface protein family. Under in vivo conditions,

multimerin one is expressed in platelets and the endothelium and

may be involved in cellular adhesion via integrin receptors

(Colombatti et al., 2011). As a platelet protein, multimerin

1 has shown good predictive value as a biomarker for acute

myeloid leukemia (Laszlo et al., 2015). Moreover, Mmrn1-

defected mice showed significantly impaired platelet adhesion

and thrombus formation in a ferric chloride injury model

compared to the wild-type (Leatherdale et al., 2021). MMRN1

is implicated in several types of cancers, including non-small cell

lung cancer (Valk et al., 2010), thyroid carcinoma (Wang et al.,

2018; Yang et al., 2021; Zhang et al., 2019), ovarian cancer

(Huang et al., 2012), and cervical cancer

(Chokchaichamnankit et al., 2019). In this study, we identified

MMRN1 as a hub gene for HNSCC, and its low expression was

associated with a poor prognosis. However, its role in HNSCC

remains unclear.

This study had some limitations. First, there were only

44 adjacent normal samples versus 502 tumor samples in

TCGA-HNSC, which may have led to a potential statistical

error in DEGs screening. Second, the validation cohorts from

the GEO database lacked sufficient clinical data; thus, related

validation analysis of TNM stage in our prognostic model

could not be performed. Third, further experiments are

required to explore the mechanism of these prognostic

genes in HNSCC and the effectiveness of this prognostic

model in clinical practice. Fourth, human papillomavirus

(HPV) infection has been proved playing an important role

in HNSCC induction (Marur et al., 2010). Our model showed

good prediction in HPV negative HNSCC patients

(Supplementary Figures S6A–D). However, due to the

deficiency of HPV positive samples in TCGA-HNSC

dataset, we could not perform an effective prognostic

analysis in this cohort (Supplementary Figures S6E–H).

More HPV positive samples are required to validate our

prognostic model.

In summary, we revealed that matrisome gene expression

are associated with HNSCC survival, and established a novel

risk score prognostic model based on a signature of six

differentially expressed matrisome-related genes (FN1,

LAMB4, LAMB3, DMP1, CHAD, and MMRN1), which

may also act as potential therapeutic targets for HNSCC.
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