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Abstract Quantifying the relative impact of environmental conditions and host community 
structure on disease is one of the greatest challenges of the 21st century, as both climate and 
biodiversity are changing at unprecedented rates. Both increasing temperature and shifting host 
communities toward more fast- paced life- history strategies are predicted to increase disease, yet 
their independent and interactive effects on disease in natural communities remain unknown. Here, 
we address this challenge by surveying foliar disease symptoms in 220, 0.5 m- diameter herbaceous 
plant communities along a 1100- m elevational gradient. We find that increasing temperature asso-
ciated with lower elevation can increase disease by (1) relaxing constraints on parasite growth and 
reproduction, (2) determining which host species are present in a given location, and (3) strength-
ening the positive effect of host community pace- of- life on disease. These results provide the first 
field evidence, under natural conditions, that environmental gradients can alter how host community 
structure affects disease.

Introduction
Infectious disease is strongly influenced by host community structure and abiotic conditions (Halliday 
et al., 2020a; Halliday et al., 2019), both of which are undergoing unprecedented change as the 
climate is warming (Pachauri et al., 2014) and biodiversity is being reshuffled (Díaz et al., 2019; Hille-
brand et al., 2018). Understanding how biotic and abiotic conditions interact to drive the emergence 
and spread of infectious disease is quickly emerging as one of the greatest research challenges of 
the 21st century and will be the key to limiting the impacts of infectious diseases on food production 
systems, wildlife, and humans. Disease ecology provides a framework for achieving this goal through 
careful examination of interactions among hosts, parasites, and the environment (Johnson et  al., 
2015a; McNew, 1960; Seabloom et al., 2015; Figure 1a). Yet, we have a poor understanding of how 
this framework operates under natural conditions, in part because several mechanisms can operate 
simultaneously, making it difficult to tease apart their relative contributions to realized disease risk.

Climate change involves increased environmental temperatures, which can profoundly alter 
disease risk (Garrett et al., 2006; Harvell et al., 2002; Rohr et al., 2011). These effects can result 
from direct impacts of environmental factors on parasite growth, survival and reproduction that 
underpin disease risk. For example, in an experiment in the Rocky mountains, host plants that grew 
on heated research plots showed increased disease, largely by increasing the amount of time that 
environmental conditions were favorable for parasite growth and reproduction (Roy et al., 2004). 
Importantly however, these same environmental factors can also indirectly influence disease risk 
by altering the composition of host or vector communities that are required for sustained parasite 
transmission (Elad and Pertot, 2014; Garrett et al., 2006; Harvell et al., 2002; Mordecai et al., 
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2019; Newton et al., 2011; Yáñez- López, 2012; Rohr et al., 2011), or by altering host defenses 
(Descombes et al., 2017; Pellissier et al., 2018; Wolinska and King, 2009). Thus, shifts in parasite 
replication that are driven by changing host or vector distributions can also determine whether and 
how changing environmental conditions will alter disease risk. There is growing empirical evidence 
in support of both direct effects that alter parasite growth and replication, as well as indirect effects 
that are mediated by changing host or vector community structure. However, disentangling the 
relative impacts of these direct and indirect effects of environmental factors on disease risk has been 
historically challenging, because it often requires a priori knowledge of environmental constraints 
acting on host and parasite populations (Garrett et al., 2006; Harvell et al., 2002; Mordecai et al., 
2019; Rohr et al., 2011).

One way to disentangle direct and indirect effects of environmental conditions on disease is to 
consider these effects in the context of host functional traits. Host functional traits underlie ecolog-
ically important resource acquisition and allocation tradeoffs: hosts must balance allocating limited 
resources to maximize growth and reproduction, while also constructing tissue capable of withstanding 
stressful environmental conditions (Díaz et al., 2016; Reich, 2014; Reich et al., 2003; Wright et al., 
2004). Thus, linking environmental conditions with relevant functional traits has become a tractable 
way to predict the richness and composition of communities (i.e. community structure) (Cornelissen 
et al., 2003; Díaz and Cabido, 1997; Funk et al., 2017; Kattge et al., 2020; Lavorel and Garnier, 
2002; McMahon et al., 2011; Reich, 2014; Sundqvist et al., 2013).

eLife digest Climate change is causing shifts in the ecology and biodiversity of different world 
regions at unprecedented rates. Global warming is also linked with changes in the risk for certain 
infectious diseases in humans, but also in animals and plants. There are several possible mechanisms 
for this. For one thing, changing weather patterns may affect how pathogens grow and reproduce. 
For another, the distribution ranges of animal and plant hosts of certain disease- causing pathogens 
are changing because of global warming. This means that the distributions of pathogens are also 
changing, and so is the severity of the diseases that they cause.

Increasing temperatures may also influence the physiological traits that make host species suitable 
for pathogens. This is because the traits that allow species to survive or adapt to changes in their envi-
ronment may also make them better at hosting and transmitting the pathogens that cause disease. 
For example, in plant communities, rising temperatures could favor species with faster growth rates, 
quicker reproduction and high dispersal, and these traits are often associated with more efficient 
spread of disease.

Despite a lot of research into the effects of climate, it remains unclear how temperature, pathogen 
growth and reproduction, and host species’ traits and distributions combine and interact to alter 
infectious disease risk, especially in wild plant communities. To investigate this, Halliday, Jalo and 
Laine studied an area in southeast Switzerland where natural temperature and biodiversity change 
gradually through the region. The aim was to explore how relationships between plant biodiversity, 
pathogens and disease risk change with temperature, and to understand whether environmental or 
biological factors influence infectious disease risk more.

Halliday, Jalo and Laine measured the levels of fungal diseases found in the leaves of plant commu-
nities spanning 1,100 meters of elevation, showing that higher temperatures increase disease risk 
both directly and indirectly. Directly, higher temperatures increased pathogen growth and reproduc-
tion, and indirectly, they influenced which plants were present and therefore able to act as disease 
hosts. The results also indicated that temperature can affect how the traits of plants drive the trans-
mission rates of fungal pathogens. Important predictors of disease risk were traits relating to the 
growth rate of host plants, which tended to increase in areas with low elevation where the surface of 
the soil was warm.

This study represents the first analysis, in wild plants, of how changing temperatures, the traits 
of shifting host species, and resident parasite populations interact to impact infectious disease risk. 
The insights Halliday, Jalo and Laine provided could aid in predicting how global climate change will 
influence infectious disease risk.

https://doi.org/10.7554/eLife.67340
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Figure 1. Relationships among hosts parasites and their environment at the scale of host communities. (A) The disease triangle (McNew, 1960) 
suggests that a combination of host, parasite, and environmental factors will influence whether disease is observed in a given location. Here, we 
conceptualize the disease triangle at the community level as consisting of three overlapping or interacting factors to demonstrate how the influence of 
environmental gradients on disease risk might depend on how these factors overlap. We highlight three potential processes that might occur in these 

Figure 1 continued on next page
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The functional traits expressed by those species that are able to colonize and persist in a given 
location can, in turn, affect disease risk (Halliday et al., 2019; Johnson et al., 2013; Kirk et al., 2019). 
Specifically, an infected host’s ability to transmit disease to uninfected hosts, a trait often referred to 
as host competence, is often related to fast- growing, poorly defended tissues and short lifespans 
(Becker and Han, 2021; Cronin et  al., 2014; Cronin et  al., 2010; Huang et  al., 2013; Johnson 
et al., 2012; Martin et al., 2019; Martin et al., 2016; Parker and Gilbert, 2018; Stewart Merrill and 
Johnson, 2020; Welsh et al., 2020). Importantly, these functional trait values also underlie ecological 
tradeoffs related to host growth and defense, resource acquisition and allocation, and survival and 
reproduction (i.e. life history) (Coley et al., 1985; Herms and Mattson, 1992; Martin et al., 2016; 
Reich, 2014; Reich et al., 2003; Ricklefs and Wikelski, 2002; Stearns, 1992; Stearns, 1989; Wright 
et al., 2004). Thus, host community competence (a community- level metric of host competence) is 
expected to correspond to the same functional traits (i.e. host pace- of- life) that link host community 
structure to shifting environmental conditions.

A trait- based framework of host community competence may explain why biodiversity loss is 
consistently associated with higher disease risk (Halliday et al., 2020b; Johnson et al., 2013; LoGi-
udice et al., 2003; Ostfeld and LoGiudice, 2003), a relationship known as the ‘dilution effect’ of 
biodiversity (Keesing et al., 2010; Keesing et al., 2006; Ostfeld and Keesing, 2000). This is because 
host species that are most resistant to biodiversity loss or best able to colonize newly disturbed habi-
tats often rely on the same life- history strategies that are associated with higher host competence 
(Johnson et al., 2013; LoGiudice et al., 2003; Ostfeld and LoGiudice, 2003). For example, species 
that are associated with habitat fragmentation, a key anthropogenic driver of biodiversity loss, are 
often characterized by life history strategies favoring a ‘fast pace- of- life’ (i.e. fast growth rates, quick 
reproduction, and high dispersal) (Albrecht and Haider, 2013; Fay et  al., 2015; Gibbs and van 
Dyck, 2010; Hanski et al., 2006; Keinath et al., 2017; Merckx et al., 2018; Ziv and Davidowitz, 
2019). But this fast pace- of- life often comes at the cost of reduced defense against parasites (Cappelli 
et al., 2020; Coley et al., 1985; Cronin et al., 2014; Cronin et al., 2010; Heckman et al., 2019; 
Herms and Mattson, 1992; Johnson et al., 2012; Sears et al., 2015). Thus, habitat fragmentation 
can increase disease by increasing the density of fast pace- of- life, highly competent hosts, while slow 
pace- of- life, less- competent hosts are lost (Johnson et al., 2015b; Joseph et al., 2013; Mihaljevic 
et al., 2014). This hypothesis has widespread empirical support in a variety of systems (Johnson et al., 
2019; Johnson et al., 2013; Liu et al., 2018; Ostfeld and LoGiudice, 2003). Shifting community 
structure during biodiversity loss may therefore predictably influence infectious disease risk (Halliday 
et al., 2020b).

Although relationships between host community structure and disease risk are becoming increas-
ingly appreciated, how these relationships change across environmental gradients remain unknown 
(Halliday et  al., 2020b; Halliday and Rohr, 2019). The relationship between host traits and host 
competence can be variable, and this relationship might also depend on the environmental context 
in which host- parasite interactions play out (Figure 1b., path d). For example, Welsh et al., 2016 
showed that when hosts were reared under novel resource conditions, trait- based models of host 
susceptibility became increasingly inaccurate, because novel resource conditions altered how traits 
covaried with one another and how raw trait values predicted infection. Thus, traits associated with 
host community competence in one environment might not predict host community competence 
across environmental gradients.

We hypothesized that three non- mutually exclusive mechanisms would determine how environ-
mental conditions influence disease risk in host communities: (1) directly, by altering parasite growth 
and reproduction (i.e. through abiotic constraints; Figure 1b., path a), (2) indirectly, by altering which 
host species occur in which locations (i.e. mediated by shifting host community structure; Figure 1b., 
paths b and c), and (3) indirectly, by altering how host traits influence parasite transmission (i.e. 

areas of overlap, but acknowledge that other processes likely occur in these areas as well. (B) Conceptual metamodel of an environmental gradient 
directly influencing disease risk (path a), and indirectly influencing disease risk, both by altering host community structure (i.e. mediation; paths b and c), 
and by modifying how host community structure influences disease risk (i.e. moderation of the relationship between host traits and host competence, 
which we refer to as the trait- competence relationship; path d).

Figure 1 continued
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moderated by altering the relationship between host traits and host competence, which we refer to 
as the trait- competence relationship; Figure 1b., path d).

Here, we test the relative contributions of these three mechanisms through which environmental 
conditions can drive infectious disease risk (i.e. direct, mediated, and moderated) by measuring foliar 
fungal disease in host plant communities along a roughly 1100 m elevational gradient in Southeastern 
Switzerland. Foliar fungal parasites are a widely used, tractable model of disease risk that respond 
to small- scale variation in host community structure and environmental conditions (Cappelli et al., 
2020; Halliday et al., 2019, Halliday et al., 2017; Liu et al., 2018; Liu et al., 2017; Liu et al., 2016; 
Mitchell et al., 2003; Mitchell et al., 2002; Rottstock et al., 2014). Host community structure and 
environmental conditions, in turn, vary predictably with elevation (Grinnell, 1914; Halbritter et al., 
2018; Malhi et al., 2010; Sundqvist et al., 2013; Whittaker, 1956). Thus, an elevational gradient 
represents a natural laboratory for studying long- term, large scale changes in climate as well as inter-
acting biotic and abiotic factors that are associated with climate change (Alexander et al., 2015; 
Fukami and Wardle, 2005; Sundqvist et al., 2013).

Our study reveals strong evidence that increasing temperature associated with lower elevation 
can directly influence disease risk, which we attribute to well- established effects of abiotic conditions 
(Avenot et al., 2017; Garrett et al., 2006; Harvell et al., 2002; Tapsoba and Wilson, 1997; Waugh 
et al., 2003) on parasite replication and growth, and can indirectly influence disease risk by shifting 
host community structure and by modifying the trait- competence relationship. Together, these results 
highlight the need to consider biotic and abiotic drivers jointly, in order to predict disease risk in the 
face of climate change.

Results
To evaluate abiotic constraints on parasite replication and growth (i.e. direct effects), shifting 
host community structure (i.e. mediation; Baron and Kenny, 1986), and modification of the trait- 
competence relationship (i.e. moderation; Baron and Kenny, 1986) as mechanisms through which 
environmental gradients can influence disease risk, we surveyed 220, 0.5 m- diameter vegetation 
communities (i.e. small plots), that were established in four meadows along a 1101 m elevational 
gradient as part of the Calanda Biodiversity Observatory (CBO) in 2019 in order to investigate biotic 
and abiotic drivers of species interactions (Figure 2; Supplementary file 1a).

Association between elevation and environmental factors
The elevational gradient captured by the CBO allows us to explore associations among abiotic factors 
and biodiversity while minimizing other confounding factors like day length, geology, and biogeo-
graphic history (Halbritter et al., 2018). We assessed the association between elevation and envi-
ronmental conditions by fitting linear models. Mean soil, soil surface, and air temperature strongly 
and consistently decreased with increasing elevation (p < 0.001, R2 = 0.88; p < 0.001, R2 = 0.86; p < 
0.001, R2 = 0.89; respectively), while mean soil moisture was uncorrelated with elevation (p = 0.72, R2 
= 0.006). The mean soil surface temperature at sites located in the highest elevation meadow (1576 
m–1749 m) was, on average, 4.67 °C lower than sites located in the lowest elevation meadow (648 
m–766 m). The altitudinal temperature lapse rate along the elevational gradient was –0.57 °C/100 m.

Effect of environmental conditions on host community structure
In total, 188 host taxa were observed across the 220 small plots of the CBO. The communities 
consisted mostly of perennial herbs such as Salvia pratensis and Helianthemum nummularium, and 
were dominated by grasses that tolerate grazing such as Dactylis glomerata, Lolium perenne, and 
Phleum pratense. The most abundant species was Brachypodium pinnatum. An herbarium specimen 
of each taxon encountered is deposited at the University of Zürich. We assessed the relationship 
between abiotic conditions and species richness by fitting linear mixed models with large plots, 
sites, and meadows as nested random intercepts. Species richness in the small plots varied from 7 
to 30 species (median 20), was uncorrelated with soil moisture (p = 0.98) and increased as elevation 
increased and soil surface temperature declined (p = 0.005; Marginal R2 = 0.10; Conditional R2 = 0.75), 
with median species richness roughly 16% higher in plots located at the highest elevation meadow, 
characterized by the coolest environmental temperatures, compared to the lowest elevation meadow, 

https://doi.org/10.7554/eLife.67340
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Figure 2. Overview of the Calanda Biodiverstity Observatory. (A) Study meadows and sites on mount Calanda. Photo: Federal Office of Topography 
SwissTopo 2020, editing: Mikko Jalo (B) Example of the arrangement of large and small plots within a site. (C) The study meadows on mount Calanda. 
Photo and editing: Mikko Jalo.

Figure 2 continued on next page

https://doi.org/10.7554/eLife.67340
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which was characterized by the warmest environmental temperatures (Supplementary file 1b). These 
effects were qualitatively similar when we included air temperature and elevation in place of soil- 
surface temperature, though the relationship became nonsignificant when we replaced soil- surface 
temperature with soil temperature in the model (p = 0.15; Supplementary file 1b).

We performed confirmatory factor analysis to assign six foliar functional traits associated with the 
worldwide leaf economics spectrum to a single axis representing host pace- of- life. One trait, photo-
synthetic rate, loaded particularly poorly on this axis (factor loading 0.036), and was therefore excluded 
from the latent factor. This resulted in a single factor, explaining 62% of the variance in specific leaf 
area, 51% of the variance in leaf chlorophyll content, 25% of the variance in leaf nitrogen, 10% of the 
variance in leaf phosphorus, and 2% of the variance in leaf lifespan (χ² (df = 5) = 4.24, p = 0.52; CFI = 
1.019; Figure 3—figure supplement 1). Consistent with resource- acquisition and allocation tradeoffs 
(Díaz et al., 2016; Reich, 2014; Wright et al., 2004), higher values of host pace- of- life were associ-
ated with increases in specific leaf area, leaf chlorophyll content, leaf nitrogen, and leaf phosphorus, 
and with shorter leaf lifespans. We then used each species’ unique score on this pace- of- life factor 
to quantify the community- weighted mean host pace- of- life (hereafter community pace- of- life) for 
each small plot. We assessed the relationship between abiotic conditions and community pace- of- 
life by fitting linear mixed models with large plots, sites, and meadows as nested random intercepts. 
Although host community pace- of- life was unrelated to soil moisture (p = 0.13), host community pace- 
of- life declined with reduced soil- surface temperature associated with higher elevation (p = 0.010; 
Marginal R2 = 0.11; Conditional R2 = 0.83; Supplementary file 1b; Figure 3—figure supplement 2), 
consistent with expectations regarding shifting host community structure (Descombes et al., 2017; 
Hulshof et al., 2013; but see Pellissier et al., 2018). These effects were qualitatively similar when 
we included soil temperature or air temperature in place of soil- surface temperature in the model, 
though the effect became marginally nonsignificant when we replaced temperature with elevation in 
the model (p = 0.066; Supplementary file 1b; Figure 3—figure supplement 2).

Model testing effects of environmental conditions, community 
structure, and their interaction on disease
We tested whether the relationship between host community structure (i.e. host species richness and 
host community pace- of- life) and disease would change as a function of environmental conditions 
by fitting a linear mixed model with square- root transformed community parasite load (e.g. Halliday 
et  al., 2019, Halliday et  al., 2017; Mitchell et  al., 2002) as the response. Soil- surface tempera-
ture, soil moisture, host community species richness, pace- of- life, and pairwise interactions between 
both measures of community structure and each abiotic variable were treated as fixed effects, with 
large plots, sites, and meadows as nested random intercepts. All variables that were treated as fixed 

Table 1. Results of type II analysis of deviance test on the mixed model of disease, testing whether 
each factor influenced square- root transformed community parasite load.

Predictor Estimate Chisq Df P

Soil- surface Temperature 0.044 7.4236 1 0.0064

Soil Moisture –0.254 0.1390 1 0.7092

Host Richness –0.009 5.3325 1 0.0209

Host Pace- of- Life 0.133 1.6970 1 0.1926

Temperature × Richness 0.004 2.6551 1 0.1032

Temperature × Pace- of- Life 0.118 11.2498 1 0.0008

Moisture × Richness –0.288 2.7677 1 0.0962

Moisture × Pace- of- Life –2.037 0.5647 1 0.4524

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Images representing survey methods.

Figure 2 continued

https://doi.org/10.7554/eLife.67340
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effects in the model were centered so that the mean value of each variable was used as the refer-
ence value for interpreting the other variables' independent effects. This mixed model of disease 
revealed several independent and interactive effects of host community structure and environmental 
conditions on disease risk (Marginal R2 = 0.227; Conditional R2 = 0.497; RMSE = 0.292; LOOCV RMSE 
= 0.311; Table 1). Consistent with the hypothesis that host pace- of- life can determine host commu-
nity competence, communities that were dominated by hosts with fast- paced life- history strategies 
exhibited the most disease, but this effect declined as elevation increased and temperature declined 
(temperature × pace- of- life: p < 0.001). This weakening effect of host community pace- of- life as soil- 
surface temperature declined is consistent with the hypothesis that abiotic conditions can alter which 
traits favor parasite transmission through the relationship between host competence and disease risk 
(Figure 3). These results therefore provide field evidence that an environmental gradient can alter the 
effect of host community structure on disease risk.

The model also revealed significant independent effects of host community structure and abiotic 
conditions on disease risk. Specifically, the model revealed evidence supporting the dilution effect 
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Figure 3. Effect of host community pace- of- life on disease as a function of increasing soil- surface temperature. 
Model estimated effects of soil- surface temperature on the slope of the relationship between host community 
pace- of- life and (square- root- transformed) parasite community load (i.e. the interactive effect of host community 
pace- of- life and soil- surface temperature on disease, which represents a changing trait- competence relationship), 
estimated from the raw (i.e. unstandardized) coefficients of the linear mixed model testing effects of environmental 
conditions, community structure, and their interaction on disease. The rug along the x‐axis shows the distribution 
of the empirical data. Communities that experience the highest soil- surface temperatures (i.e. located at the 
lowest elevation) exhibit the strongest positive relationship between host pace- of- life and disease. That positive 
relationship weakens as temperature declines, and below mean- soil surface temperatures of 17.5 C (i.e. above 
1000 m), there is no relationship between host pace- of- life and disease.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Host taxa arranged by their mean absolute vegetative cover in plots where those taxa 
occur (y axis) and host pace- of- life (x- axis).

Figure supplement 2. Relationship between host richness, host community pace- of- life (together measuring host 
community structure), soil- surface temperature, soil temperature, air temperature, and elevation.

https://doi.org/10.7554/eLife.67340
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hypothesis: increasing species richness was associated with a reduction in disease (p = 0.021), and 
this effect was independent of soil- surface temperature (temperature × richness: p = 0.10). Commu-
nity parasite load was also positively associated with increasing soil- surface temperature (p = 0.006), 
consistent with the hypothesis that environmental gradients can alter parasite growth and reproduc-
tion via abiotic constraints. These effects were qualitatively similar when we included soil temperature, 
air temperature, or elevation in place of soil- surface temperature in the model (Supplementary file 
1c).

In contrast with results involving soil- surface temperature, there was no statistically significant 
linear relationship between soil moisture and disease (p = 0.71), nor was there a significant interaction 
between soil moisture and host richness (p = 0.10) or community- weighted mean pace- of- life (p = 
0.45) on disease. Because soil moisture was unrelated to elevation, pace- of- life, species richness, and 
disease in our models, this factor was omitted from further analyses.

Figure 4. Results from the piecewise structural equation model. Dashed lines are not supported by the model (p > .05). All coefficients are scaled 
by the ratio of the standard deviation of x divided by the standard deviation of y (i.e. standardized estimates), and therefore differ from the values in 
Figure 3. Correlations between errors were not supported by the model and are not shown. Colors are drawn to highlight the statistical interaction 
between host community pace- of- life and temperature. The High and Low Temperature coefficients are estimated with the reference temperature set 
to one standard deviation above and below the mean temperature, respectively. All other coefficients are estimated from a model using mean- centered 
values for temperature and community pace- of- life. Higher soil- surface temperature, associated with lower elevation, increased disease through three 
non- mutually exclusive pathways: directly via abiotic constraints, and indirectly both via shifting host community structure as well as by altering the trait- 
competence relationship.

https://doi.org/10.7554/eLife.67340
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Structural equation model comparing direct and indirect effects of 
environmental conditions on disease
Together, models of host community species richness and pace- of- life showed that declining tempera-
ture associated with increasing elevation could determine changes in host community structure, and 
the model of disease showed that host community structure and temperature could independently 
and interactively influence disease. To explore the relative influence of these direct and indirect effects 
on disease risk, we next constructed a structural equation model. Our data were well fit by this model 
(Fisher’s C = 4.111; p- value = 0.662; 6 degrees of freedom, Supplementary file 1d; Figure 4). The 
model leverages the strong, negative effect of elevation on soil- surface temperature (standardized 
path coefficient = –0.91, R2 = 0.85) to compare three separate pathways through which increasing 
temperature can increase disease: First, increasing temperature increased community parasite load 
directly (standardized path coefficient = 0.24). Second, increasing temperature increased community 
parasite load indirectly by reducing host species richness (i.e. via mediation; product of standardized 
path coefficients = 0.045). Third, increasing temperature increased community parasite load indi-
rectly by simultaneously increasing host community pace- of- life (i.e. via mediation; mean- centered 
standardized path coefficient = 0.39) and strengthening the relationship between host pace- of- life 
and disease risk (i.e. via moderation; mean- centered standardized path coefficient = 0.18; Figure 4). 
Together these results highlight the pressing need to consider host community context in predicting 
how shifting environmental gradients will alter disease risk.

Discussion
This study shows, to our knowledge, the first evidence under natural field conditions that, in addi-
tion to directly influencing disease risk, the abiotic environment can also indirectly influence disease 
both by altering host community structure (i.e. mediation) and by modifying how host community 
structure influences disease risk (i.e. moderation). Furthermore, this linkage between the abiotic 
environment and host community structure suggests that any single factor would be inadequate for 
explaining disease risk along our environmental gradient. Together, these results reveal the role that 
host communities play in determining ecosystem health across environmental gradients, suggesting 
that predicting how shifting abiotic conditions will influence disease risk will require explicit consider-
ation of how host and parasite communities jointly respond to the abiotic environment.

Our results indicate that increasing temperatures associated with lower elevation, can independently 
influence disease. Specifically, increasing temperature increased disease, even after accounting for 
effects of host community structure on disease. We hypothesize that reduced temperature associated 
with increasing elevation may have reduced disease directly by constraining parasite growth, survival, 
and reproduction. Many foliar parasites grow and reproduce more successfully in warmer environ-
mental temperatures (Avenot et al., 2017; Garrett et al., 2006; Harvell et al., 2002; Tapsoba and 
Wilson, 1997; Waugh et al., 2003). Warmer temperatures can also increase parasite overwintering 
success (Burdon and Elmqvist, 1996; Pfender and Vollmer, 1999) or allow parasites to produce 
more generations during a longer growing season (Garrett et al., 2006). These results corroborate 
past studies suggesting that environmental gradients can directly alter the strength of biotic interac-
tions (Descombes et al., 2017; Hargreaves et al., 2019; Pellissier et al., 2014; Roslin et al., 2017; 
Schemske et al., 2009), including host- parasite interactions (Abbate and Antonovics, 2014; Allen 
et al., 2020; LaManna et al., 2017; Nunn et al., 2005). However, despite the strong and consistent 
effect of increasing temperature on disease, temperature was highly correlated with elevation, and 
we cannot rule out the possibility that these effects might be driven by some other factor associated 
with elevation that was not measured, such as changing humidity or soil nutrient availability. Thus, 
temperature effects should be interpreted with some caution.

In addition to directly influencing disease, our results indicate that increasing temperature can also 
indirectly influence disease by altering host community structure. Specifically, increasing temperature 
reduced host species richness, which, in turn, reduced disease. The reduction in host species richness 
with increasing temperature might be attributable to the occurrence of both low- elevation and high- 
elevation adapted species occupying the coolest study sites, located at the highest elevation (Colwell 
and Lees, 2000). Communities in the highest elevation meadow, located just below the tree line, 
included plant species characteristic of low elevations (e.g. Lathyrus pratensis, Lolium perenne, and 
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Salvia pratensis) and plant species that tend to occupy high elevation grasslands (Soldanella alpina, 
Ranunculus montanus, and Carex sempervirens), indicating that these high- elevation sites represent 
an intermediate zone between subalpine and alpine vegetation communities.

Host communities with higher species richness, in turn, experienced less disease (i.e. a dilution 
effect; Keesing et  al., 2010; Keesing et  al., 2006), even after accounting for the direct effects 
of temperature on disease and other measures of host community structure. Past studies indicate 
that increasing biodiversity is often associated with a decline in disease risk because host commu-
nity structure shifts during biodiversity loss to favor more competent hosts (Johnson et al., 2019; 
Joseph et al., 2013; Liu et al., 2018; LoGiudice et al., 2003; Ostfeld and LoGiudice, 2003; Rohr 
et al., 2020). However, in contrast with past studies focused on biodiversity loss, our study measured 
biodiversity change across a natural biodiversity gradient, which is not expected to consistently influ-
ence disease risk (Halliday et al., 2020b). We hypothesize that increasing species richness may have 
reduced disease risk in this system by reducing host density (Keesing et al., 2006; i.e. via encounter 
reduction; Mitchell et al., 2002). Encounter reduction might be particularly relevant in this system, 
because, in addition to altering host richness, reduced temperatures associated with increasing eleva-
tion also influence the length and timing of the growing season, which can affect peak prevalence and 
the duration of the epidemic season.

In addition to direct and indirect effects via mediation, our results further indicate that increasing 
temperature can indirectly influence disease by modifying the effect of host community structure 
on disease (i.e. via moderation). Specifically, disease was influenced by host community pace- of- life, 
but only at high temperature, low elevation sites. Because more competent hosts often exhibit fast- 
paced life history strategies (Cronin et al., 2010; Johnson et al., 2012; Martin et al., 2016; Parker 
and Gilbert, 2018; Welsh et al., 2020), we expected that host communities dominated by species 
with a fast pace- of- life would experience greater disease. However, a prior study suggested that the 
relationship between host traits and host competence might be sensitive to environmental conditions 
(Welsh et al., 2016), which we hypothesized would cause the relationship between host community 
pace- of- life and disease risk to shift across environmental gradients. Our analysis was consistent with 
this hypothesis: increasing temperature not only modified host community pace- of- life, but the effect 
of host community pace- of- life on disease was also sensitive to increasing temperature. Host commu-
nity pace- of- life most strongly predicted disease risk at the highest temperatures, associated with 
the lowest elevation, but this effect weakened and ultimately disappeared as elevation increased and 
temperature declined.

These results indicate that warming temperatures can modify the effect of host community pace- 
of- life on disease risk, which we attribute to a change in the relationship between host traits and host 
competence across environmental conditions. However, we cannot rule out the possibility that the 
interaction between host pace- of- life and temperature could have also been driven by other mech-
anisms. For example, the values of functional traits expressed by a single species may have changed 
along the environmental gradient via a phenomenon known as intraspecific trait variation (Albert 
et al., 2011; Funk et al., 2017; Messier et al., 2010; Violle et al., 2012). Studies of functional traits 
(including this study) typically characterize each species with a single value for each trait, such as the 
species- level mean, under the assumption that ecologically important traits vary more among species 
than within species (McGill et al., 2006). However, functional traits of individuals within a species can 
vary due to local adaptation and phenotypic plasticity driven by local context (Albert et al., 2011; 
Funk et al., 2017; Messier et al., 2010; Violle et al., 2012). Thus, intraspecific shifts in the expression 
of key functional traits across our elevational gradient could drive the apparent interaction between 
host community pace- of- life and temperature. Alternatively, a reduction in infection severity with 
cooling temperatures could weaken the importance of investment in disease resistance (Benkman, 
2013; Thompson, 1999). Thus, host species may still form strong trade- offs in fast vs slow strategies 
for growth vs. survival, but this pace- of- life trait would have a weak link with disease severity. Future 
studies should explore these mechanisms by directly measuring host and parasite functional traits 
across environmental gradients like elevation.

Together, the results of this study highlight the need to consider host community context in 
predicting how climate change will alter disease risk. Specifically, in this study, effects of the abiotic 
environment and changing environmental temperature on disease strongly depended on shifting host 
community pace- of- life. These results are consistent with a growing body of literature suggesting 
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that the role of host communities in regulating ecosystem processes is at least partially explained by 
characteristics of species present in those ecosystems (Allan et al., 2015; Heilpern et al., 2020; Le 
Bagousse- Pinguet et al., 2019; Leitão et al., 2016; Mouillot et al., 2011; Start and Gilbert, 2019; 
Van de Peer et al., 2018), but that abiotic factors such as temperature can override the effects of 
biotic factors on ecosystem processes (Cannone et  al., 2007; Laiolo et  al., 2018). These results 
therefore suggest that predicting how climate change will influence disease may depend on complex 
relationships between environmental factors and the structure of host communities.

Materials and methods
Study system
The Calanda Biodiversity Observatory (CBO) consists of four publicly owned meadows located along 
a 1101 m elevational gradient (648 m to 1749 m) below tree- line on the south- eastern slope of 
Mount Calanda (46°53′59.5″N 9°28′02.5″E) in the canton of Graubünden (Figure 2). The mean annual 
temperature at 550 m altitude is 10°C and the mean annual precipitation is 849 mm (MeteoSwiss, 
2020), with temperature declining and precipitation increasing as elevation increases (e.g. in 2013 
and 2014, mean temp and precipitation at 1400 m were 7°C and 1169 mm, respectively; Alexander 
et al., 2015). The soil in the area is generally calcareous and has low water retention (Alexander et al., 
2015; Eggenberg and Möhl, 2013). The four CBO meadows are variable in size (roughly 8–40 Ha), 
and separated by forests and at least 500 m elevation. Meadows are maintained through grazing and 
mowing, a typical form of land use in the Swiss Alps (Bätzing, 2015), and cover collinean (< 800 m) 
mountain (800 m–1500 m) and subalpine (1500–2200 m) vegetation zones (Eggenberg and Möhl, 
2013; Ozenda, 1985). The CBO meadows are grazed by cattle twice per year as the cattle are moved 
between low and high altitudes.

Increasing elevation is associated with changes in a variety of abiotic conditions, including a reduc-
tion in temperature. Temperature decreases approximately 0.4–0.7 °C for each 100 m increase in 
elevation because of lower air pressure in high elevations, a phenomenon known as the altitudinal 
temperature lapse rate (Barry, 2008). The altitudinal temperature lapse rate varies among years and 
even days, usually being lower in winters and during nights. Typical altitudinal temperature lapse rates 
in the Alps vary from –0.54°C/100 m to –0.58°C/100 m (Rolland, 2003).

Study design
The CBO consists of a nested set of observational units (Figure 2). Each meadow contains 4–7, .25 ha 
sites (n = 22 sites). Sites were selected to maximize coverage over each meadow, avoiding roads that 
would cross the sites and large trees, shrubs and rocks that could create a forest- or shrub- type habitat 
that differs from grassland, and were placed sufficiently far from forest edges so that they were not 
shaded by the forest canopy. Each site is 50 m x 50 m and contains a grid of nine evenly spaced, 4 m2 
large- plots, with the exception of one site (I3), which is 100 m x 25 m and contains 10 large plots due 
to its shape. Altogether, there are 199 large plots. In each site, large plots are arranged in a grid with 
the center of each plot separated by at least 20 m distance from its nearest neighbor. The location 
of the grid was randomized within each site and always located at least 2 m from the site edge. Each 
large plot is subdivided into four, 1 m2 subplots (n = 796). At each site, five large plots were selected 
to contain an intensively surveyed module (ISM), which consisted of two 50 cm- diameter, round small 
plots, placed in opposite subplots (n = 110 ISMs consisting of 220 small plots). These intensively 
surveyed small plots are the smallest unit of observation used in this study (Figure 2).

Quantification of host community structure
In July 2019, we recorded the identity and visually quantified the percent cover of all plant taxa in 
each small plot (n = 220). Vegetation surveys entailed the same two researchers searching within the 
subplot area for all vascular plants present in the subplot, before jointly estimating the total percent 
cover of each species (Halbritter et al., 2020). Plant individuals that were growing outside the small 
plot, but whose foliage extended into the small plot, were included in this survey. Plant taxa were 
identified with the help of plant identification literature (Eggenberg et al., 2018; Eggenberg and 
Möhl, 2013; Lauber et al., 2018). The survey started at the lowest elevation and continued higher in 
order to survey the meadows approximately at the same phase of the growing season in relation to 
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one another. The survey was initiated at least 4 days after cows had grazed each meadow (Supple-
mentary file 1a).

We evaluated changes in two components of host community structure to evaluate indirect effects 
of environmental conditions on disease: host species richness and community- weighted mean host 
pace- of- life. These two components of host community structure commonly respond to changing 
environmental conditions (Descombes et al., 2017; Hulshof et al., 2013), and represent important 
characteristics of host communities that influence disease risk (Joseph et al., 2013; Liu et al., 2018; 
Liu et al., 2017). We quantified community- weighted mean host pace- of- life using the TRY database 
(Kattge et al., 2020). We first extracted six traits for every host taxon in the database (plant photo-
synthetic rate, leaf chlorophyll content, leaf lifespan, leaf nitrogen content, leaf phosphorus content, 
and specific leaf area), omitting tree seedlings, which are functionally dissimilar from the more domi-
nant herbaceous taxa, and taxa that could not be identified to host genus, which together, never 
accounted for more than 7% cover in a plot (mean = 0.04%). Unknown taxa that could be identified 
to the genus level were assigned genus- level estimates for each host trait, by taking the mean of the 
trait value for all members of that genus that had been observed on Mount Calanda during extensive 
vegetation surveys (Supplementary file 1e). We then performed full- information maximum- likelihood 
factor analysis to produce a single axis representing covariation in the functional traits associated with 
host pace- of- life using the umxEFA function in r- package umx (Bates et al., 2019). This approach 
allows each host taxon to be assigned a value for host pace- of- life, even if that taxon is missing some 
values for individual functional traits. Finally, we calculated a single value for each small plot (n = 
220) using the community- weighted mean of host pace- of- life (hereafter community pace- of- life). The 
community weighted mean (CWM) was calculated as:

 
CWM =

Nsp∑
i=1

pixi
  

where Nsp is the number of taxa within a plot with a pace- of- life trait value in the dataset, pi is the 
relative abundanceof taxon, i, in the plot (i.e. the absolute vegetative cover of taxon, i, divided by the 
total absolute cover of all taxa in the plot), and xi is the host pace- of- life value for taxon, i.

Quantification of disease
A survey of foliar disease symptoms was carried out in August 2019 by estimating the percent of leaf 
area damaged by foliar fungal parasites on up to five leaves of twenty randomly selected host indi-
viduals per small plot (n = 18,203 leaves on 4400 host individuals across 220 small plots). The disease 
survey was conducted by placing a grid of 20 equally spaced grill sticks into the ground, with each 
stick having a distance of 10 cm to its nearest neighbor (Figure 2—figure supplement 1). The 20 plant 
individuals that were most touching the sticks were then identified, and the five oldest non- senescing 
leaves on each plant were visually surveyed for foliar disease symptoms following the plant pathogen 
and invertebrate herbivory protocol in Halbritter et al., 2020. The survey was carried out on leaves, 
because symptoms are highly visible and easily grouped into parasite types on leaves. On each leaf, 
we estimated the leaf area (%) that was covered by disease symptoms. Some plant individuals had 
fewer than five leaves, so fewer than five leaves were surveyed on those plants. Unlike the vegetation 
survey, the disease survey was not conducted in elevational order due to logistical constrains related 
to site accessibility. Small plots were surveyed between 29 July and 19 August 2019 (Supplementary 
file 1a), which we observed to be time of peak plant biomass in this system.

Disease was assessed for each small plot using community parasite load, calculated as the mean 
leaf area damaged by all parasites on a host, multiplied by the relative abundance of that host species 
from the July vegetation survey, and then summed across all hosts in the plot (Halliday et al., 2019, 
Halliday et al., 2017; e.g., Mitchell et al., 2002).

Quantification of environmental conditions
Soil temperature (6 cm below the soil surface), soil surface temperature, air temperature (12 cm above 
the soil surface), and soil volumetric moisture content were recorded at 15 minute intervals for 22–37 
days (average 31 days) in the central large plot of each site (n = 22) using a TOMST- 4 datalogger (Wild 
et al., 2019). The total duration of measurement varied because some of the dataloggers had to be 
moved earlier or temporarily because of mowing or grazing activities (Supplementary file 1a).
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Statistical analysis
All statistical analyses were performed in R version 3.5.2 (R Development Core Team, 2015). We 
assessed the association between elevation and environmental conditions by fitting linear models 
with the lm function. All other analyses consisted of fitting linear mixed models with an identity link 
and Gaussian likelihoods using the lme function in the nlme package (Pinheiro et al., 2016). In order 
to meet assumptions of normality and homoscedasticity, we square- root transformed community 
parasite load and added an identity variance structure (varIdent function) for each site, which based 
on visual inspection of residuals of each model, exhibited considerable heteroscedasticity (Pinheiro 
et  al., 2016; Zuur et  al., 2009). Each model included large plots, sites, and meadows as nested 
random intercepts to account for non- independence among observations due to the sampling design 
of the CBO. Full equations and parameters for these models are available on Github (https:// github. 
com/ fhalliday/ Calanda19/ tree/ Calanda19_ disease_ submission; Halliday, 2021; copy archived at 
swh:1:rev:86ce01777c396840455fd67a3ff5cd8420e8df21).

We first explored the relationship between elevation and environmental conditions by constructing 
four models, each including one environmental factor (either mean soil temperature, soil surface 
temperature, air temperature, or soil moisture) as a response variable, and mean elevation of the site 
as the predictor.

Next, we explored the relationship between each measure of host community structure (i.e. host 
species richness and host community pace- of- life) and environmental conditions by constructing two 
models, each consisting of one measure of host community structure as a response variable and one 
measure of soil- surface temperature and soil moisture as fixed effects. We only included a single 
measure of temperature in these models, and excluded elevation, to avoid problems associated with 
collinearity. We used soil- surface temperature, as this measurement represented the temperature that 
the majority of leaves (and therefore foliar pathogens) were exposed to (Figure 2—figure supplement 
1). Results using soil temperature, air temperature, and elevation are reported in the Supplement.

We then tested whether the relationship between host community structure and disease would 
change as a function of environmental conditions by constructing a mixed model with square- root 
transformed community parasite load as the response, and soil- surface temperature, soil moisture, 
host community species richness, and pace- of- life as fixed effects. To estimate whether the effect of 
host community structure depends on environmental conditions, we also included in the model the 
pairwise interactions between both measures of host community structure and either soil- surface 
temperature or soil moisture as additional fixed effects. As before, we only included a single measure 
of temperature in this model and excluded elevation to avoid problems associated with collinearity. 
Results using soil temperature, air temperature, and elevation are reported in the Supplement. To 
aid the interpretation of main effects in the model, we centered all variables so that the mean value 
of each variable was used as the reference value for interpreting the other variables' independent 
effects. To evaluate model fit, we calculated the root- mean- squared error (RMSE) of the model, the 
marginal and conditional pseudo- R2 of the model using the r.squaredGLMM function in the MuMIn 
package (Bartoń, 2018), and the RMSE using leave- one- out cross validation (LOOCV RMSE).

To test whether effects driven by host community pace- of- life were influenced by one or a few 
important functional traits, we repeated this analysis, including the community- weighted- mean of 
each leaf trait (leaf chlorophyll content, leaf lifespan, leaf nitrogen content, leaf phosphorus content, 
and specific leaf area) replacing host community pace- of- life. Individual leaf traits were measured 
using different units, and were therefore transformed to a common scale using a z- transformation. 
None of the models including individual leaf traits were improvements over the model including only 
host community pace- of- life (Supplementary file 1f); thus, individual leaf traits were excluded from 
further analyses.

Finally, to compare direct and indirect effects of environmental conditions on disease risk, we 
performed confirmatory path analysis using the PiecewiseSEM package (Lefcheck, 2016). Specifi-
cally, we fit a structural equation model (SEM) that included the effect of elevation on soil- surface 
temperature, the effect of soil- surface temperature on square- root- transformed disease, the effect 
of soil- surface temperature on two endogenous mediators (host community species richness and 
pace- of- life), which together measure changes in host community structure (following Halliday et al., 
2020a; Halliday et al., 2019), and the effects of those two mediators on square- root- transformed 
community parasite load. We also tested the hypothesis that soil- surface temperature altered the 
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relationship between host community structure and disease by fitting a second- stage moderated 
mediation (Hayes, 2015) including the pairwise interaction between soil- surface temperature and 
community pace- of- life, omitting other potential interactions that were non- significant in the model 
testing whether effects of community structure on disease depend on environmental conditions. Soil 
moisture was excluded from the SEM because it was unrelated to all other variables in the model. To 
aid the interpretation of direct effects in the model, we mean- centered soil- surface temperature and 
host community pace- of- life, so that average soil- surface temperature and host community pace- of- 
life were used as the reference values for interpreting the other variable’s independent effects. We 
then explored the interaction between community pace- of- life and temperature by setting the refer-
ence temperature to one standard deviation above and below the mean temperature, and re- running 
the model.
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Deviance test on mixed models of disease, using soil temperature, air temperature, or elevation to 
evaluate factors that influenced square- root transformed community parasite load. (d) Coefficient 
estimates from the structural equation model fit with mean- centered soil- surface temperature and 
host pace- of- life. Estimates are provided both raw (Estimate) and scaled by the ratio of the standard 
deviation of x divided by the standard deviation of y (Std Estimate) to facilitate comparisons. 
Correlations among dependent variables are indicated by ~~. (e) Calanda Biodiversity Observatory 
Vegetation list. This list includes species that were observed during the vegetation survey as well 
as taxa observed outside of the plots during extensive preliminary surveys of Mount Calanda. (f) 
Comparison of different models quantifying the relationship between host community traits and 
disease. Each model contained square- root transformed community parasite load as the response, 
and elevation, host community species richness, richness- independent phylogenetic diversity, and 
some combination of host traits as fixed effects. To estimate whether the effect of host community 
structure depends on elevation, we also included in the model the pairwise interactions between 
each measure of host community structure and elevation as additional fixed effects, The Pace- of- 
Life model includes host community pace- of- life as a latent factor, and is the model reported in the 
manuscript. The All Traits model includes all single traits in place of the pace- of- life latent factor. The 
Chlorophyll, Leaf Longevity, Leaf Nitrogen, Leaf Phosphorus, and Specific Leaf Area models include 
a single trait in place of the latent factor.
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