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Modern endoscopes play an important role in diagnosing various gastrointestinal (GI) tract related diseases. The improved visual
quality of endoscopic images can provide better diagnosis. This paper presents an efficient color image enhancement method for
endoscopic images. It is achieved in two stages: image enhancement at gray level followed by space variant chrominance mapping
color reproduction. Image enhancement is achieved by performing adaptive sigmoid function and uniform distribution of sigmoid
pixels. Secondly, a space variant chrominance mapping color reproduction is used to generate new chrominance components.
The proposed method is used on low contrast color white light images (WLI) to enhance and highlight the vascular and mucosa
structures of theGI tract.Themethod is also used to colorize grayscale narrow band images (NBI) and video frames.The focus value
and color enhancement factor show that the enhancement level in the processed image is greatly increased compared to the original
endoscopic image. The overall contrast level of the processed image is higher than the original image. The color similarity test has
proved that the proposed method does not add any additional color which is not present in the original image. The algorithm has
low complexity with an execution speed faster than other related methods.

1. Introduction

Visual quality of color images plays an important role in
medical image diagnosis.Wireless capsule endoscopy (WCE)
is an established methodology that offers medical doctors
the capability of examining the interior of the small intestine
with a noninvasive procedure [1]. However, due to power and
hardware limitations, the image quality inWCE is lower than
high definition wired endoscopy [2]. Some GI tract related
diseases, such as stomach and colon cancers and ulcerative
colitis, are nowof great threats to human’s health [1]. Different
such GI diseases can be prevented and cured by means of
early detection. Despite several benefits of WCE, the images
acquired by this technique are often not clear enough to
see the mucosa structure, tissue and vascular characteristics
of the digestive tract compared with traditional endoscope,
which effects the detection accuracy and increase the miss
rate during clinical diagnosis [1, 3–5]. This is why new

techniques are being constantly persuaded to enhance certain
mucosal or vascular characteristics so that abnormal growths
can be visualized better.

There are both in-chip and postprocessing systems that
can enhance certain mucosal or vascular characteristics.
Among the in-chip technologies, narrow band imaging
(NBI) [6] and autoflorescence imaging (AFI) [7] are worth
mentioning. There are two types of NBI systems: one is the
RGB sequential illumination system, where narrow spectra
of red, green, and blue lights centered on 415 nm, 445 nm,
and 500 nm, respectively, are used for tissue illumination
[8]. In another type of NBI system, a band-pass filter with
bandwidths of 30 nm and central wavelengths of 415 nm
(for blue) and 540 nm (for green) is used to generate NBI
images [6]. On the other hand, in AFI system, a special
rotating color filter wheel is used in front of the xenon
light source to sequentially generate blue light (390–470 nm)
and green light (540–560 nm) for tissue illumination [7]. All
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of these techniques eventually increase the hardware com-
plexity and power consumption of the endoscopic system.
Virtual chromoendoscopy (CE) in contrast is a postpro-
cessing system that decomposes images into various wave-
lengths and produces reconstructed image with enhanced
mucosal surface [9]. Several researchers concluded that NBI
appears to be a less time-consuming and equally effective
alternative to CE for the detection of neoplasia, but with
higher miss rate [3]. Additionally, neither NBI nor CE can
improve the adenoma detection or reduce miss rates during
screening colonoscopy. No difference has been observed in
diagnostic efficacy between these two types of systems [4,
10].

There are some other global and adaptive techniques
to enhance contrast and texture information of an image
that is, adaptive histogram equalization (AHE) [11], contrast-
limited adaptive histogram equalization (CLAHE) [12], high
boost filtering (HBF) [13], brightness preserving dynamic
fuzzy histogram equalization (BPDFHE) [14]. AHE applies
locally varying grayscale transformation to each small blocks
of the image, thus requiring the determination of the block
size [15]. CLAHE operates on small regions in the image,
often called tiles, instead of the entire image, based on
user assigned parameters. Finally, the neighboring tiles are
combined using bilinear interpolation to eliminate artificial
included boundaries.

Two drawbacks of this technique are noise enhancement
in smooth regions and image dependency of the contrast
gain limit [15]. HBF emphasizes high frequency components
without eliminating the low frequency. It may add distortions
in the smoothing regions due to over filtering. BPDFHE is the
modification of the brightness preserving dynamic histogram
equalization (BPDHE) [16] that preserves the brightness and
improves contrast enhancement abilities while reducing its
computational complexity. However, it introduces additional
artifacts depending on the variation of gray level distribution
[17] which may lead to inaccurate diagnosis.

In this paper, a versatile endoscopic image enhancement
and color reproduction method is proposed which can
improve the detection rate of anomalies present in GI images.
The image enhancement is achieved in two stages: image
enhancement at gray level followed by space variant chromi-
nance mapping color reproduction. Image enhancement is
achieved in two steps using adaptive sigmoid function and
uniform distribution of sigmoid pixels. This is somewhat
similar to our previous work [18], where the enhancement
is achieved by applying histogram equalization followed by
adaptive sigmoid function; this can however enhance the
desiredmucosa and vascular features but cannot preserve the
brightness of the image. As a result, in this work modified
adaptive sigmoid function using precalculated gain and cutoff
value is applied first to preserve the brightness of the gray
image. The contrast level is enhanced in the next stage using
histogram equalization.

Secondly, space variant color reproduction is achieved by
generating a real color map by transferring and modifying
old chrominance values either from theme image or input
image. The proposed method can be useful in the following
scenarios.

(i) In white light imaging (WLI), white light is used for
illuminating the GI tract and color images are gener-
ated by the endoscope. Using the proposed method,
any low-contrast colorWLI image can be enhanced at
grayscale level and then be colorized with its original
color, which can help the gastroenterologists to better
inspect the vascular and mucosa structures.

(ii) It can be used in colorizing a grayscale image using
the tone of a different color theme image. This is
useful when only grayscale image is available (the
corresponding color image is either not available or
distorted). Secondly, it is useful in saving power and
bandwidth during transmission in wireless capsule
endoscopy (WCE). Instead of transmitting all color
images from the electronic capsule, it can only trans-
mit one color image followed by 3 or 4 grayscale
images. Using the proposed method, these grayscale
images can be later colorized using the first color
image as the theme image.

(iii) In narrow band imaging (NBI), lights of 415 nm
and 540 nm wavelengths are used to illuminate the
mucosa surface; the reflected light from themucosa is
captured in a monochromic CCD image sensor [19].
The grayscale images from the CCD image sensor are
then passed to an image processor where a pseudo-
color is added to the images [20]. Using the proposed
method, the grayscale NBI images can be further
enhanced for better visibility of the mucosa structure;
pseudocolors can then be added using the tone of any
color theme image.

2. Proposed Method

The proposed method consists of two stages: image enhance-
ment and space-variant chrominance mapping based color
reproduction. The method is shown in Figure 1. The stages
are briefly discussed below.

2.1. Image Enhancement. At first, the color endoscopic image
is converted into𝑌𝐶𝑏𝐶𝑟 color space using (1). Here,𝑌 is lumi-
nance or luma and 𝐶𝑏 and 𝐶𝑟 are chrominance components.
The color space conversion allows us to process different luma
pixels to enhance vascular features and chrominance pixels
for color reproduction. Consider

[
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. (1)

Here, 𝑌 is considered grayscale image. After conversion,
the proposed method normalizes grayscale image and each
chrominance plane between 0 and 1 using (2). Consider

𝑁norm (𝑥) =
𝑥 − 𝑥min
𝑥max

. (2)

Here, 𝑥min and 𝑥max are minimum and maximum pixel
values. Later, the normalized grayscale image is enhanced
using adaptive sigmoid function and uniform distribution.
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Figure 1: Proposed color image enhancement method.

2.1.1. Adaptive Sigmoid Function. The proposed method
uses contrast manipulation techniques for image enhance-
ment. Generally, contrast manipulation technique can be
performed either globally or adaptively. Global techniques
apply a transformation to all image pixels, while adaptive
techniques use an input-output transformation that varies
adaptively with local image characteristics. Our method
transforms the pixel values adaptively using sigmoid func-
tion.

In general, a sigmoid function is real valued and dif-
ferentiable, having either a nonnegative or nonpositive first
derivative that is bell shaped. It has been used in several
researches related to image processing [25–27]. Using 𝑥 for
the input, the sigmoid function is given below:

𝑓 (𝑥) =
1

(1 + 𝑒
−𝑥
)
. (3)

In the training mode, we have observed that in a certain
exponent the image highlights some vascular characteristics
and mucosa structure, which are not clearly visible in the
original image. To control the exponent, we have introduced
two coefficients in the sigmoid function. Using 𝑥 for the
input, 𝑔 for gain, and 𝑘 for cutoff, the modified sigmoid
function is expressed below:

𝑓 (𝑥) =
1

(1 + 𝑒𝑔(𝑘−𝑥))
. (4)

The cutoff value determines the midpoint of the input curve
and the gain controls the amount of bending. These two
parameters give us the control to train the proposed method
to generate a certain exponent that highlights some vascular
characteristics. Let, 𝑥 = 0, 0.1, 0.2, . . . , 1 normalized image
pixel values where sigmoid function (4) is applied. Figure 2
presents the sigmoid curve of input pixel values based on
different cutoff and gain.

These parameters (gain and cutoff) can control the overall
brightness and contrast level of the image too. The cutoff

value controls the amount of brightness and the gain controls
the consecutive difference between pixels. To maintain the
exponent into desired level, we have proposed algorithms
to generate cutoff and gain value. Based on the input pixel
values, (5) generate specific cutoff and gain value. Later on,
these values are used in (4) to generate the sigmoid image.
Consider

𝑘 =
∑
𝑛

𝑖=1
𝑥𝑖

𝑛
,

𝑔 = 𝐴 × log(
𝑆𝑚

𝑆𝑛

) ×
∑
𝑛

𝑖=1
𝑥𝑖

𝑛
,

(5)

where 𝐴 = 100, 𝑆𝑚 = 6, 𝑆𝑛 = 5, 𝑥𝑖 is the pixel values
of 𝑖th position and 𝑛 is the number of pixel. These values
are heuristically collected from simulation. First of all, we
processed endoscopic images in different combination of gain
and cutoff values. The images are collected from Gastrolab
[28] and Atlas [29] database and have comments from
gastroenterologist; as a result, they can be sub-divided into
different disease categories. Figure 3 shows some examples
of the original and corresponding sigmoid images. The
abnormalities in the images may be identified, but not the
tissue and vascular characterization (asmarkedwith an arrow
in Figures 3(a) and 3(c)). It is noted that mucosa structure,
tissue and vascular characteristics are important since by
analyzing them the status of gastric glands and pits can be
investigated [30–32].

During simulation, we observed that in certain cases,
with gain in a range of 7.5–8.5 and cutoff in a range of
0.4–0.5, the tissue and vascular characterization are highly
visible. To keep the gain and cutoff in that desired range,
we propose (5). For better illustration, we have presented
sigmoid images processed with different combination of gain
and cutoff values in Table 1. Here, the effects on images for
different combination of gain and cutoff values are observed.
For example, Image #1 and #5 have low intensity; image #2
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Figure 2: Sigmoid effect on pixel for different gain values (a) with 0.5 cutoff; (b) with 0.2 cutoff.
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Figure 3: (a) Original image with defected polyp and (c) Crohn’s disease; (b) and (d) adaptive sigmoid images of (a) and (c), respectively.
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Table 1: Sigmoid image with different combination of gain (𝑔) and cutoff values (𝑘).

Number Original gray scale
image Sigmoid image Used gain and

cutoff values

1 𝑔 = 5
𝑘 = 0.7

2 𝑔 = 6
𝑘 = 0.1

3 𝑔 = 8
𝑘 = 0.5

4 𝑔 = 7.5
𝑘 = 0.4

5 𝑔 = 9
𝑘 = 0.6

has high brightness; image #3 and #4 have highlighted tissue
and vascular characterization.

2.1.2. Uniform Distribution of Sigmoid Pixels. In the next
stage, the sigmoid pixels are uniformly distributed to increase
the contrast level. It helps to visualize the vascular char-
acteristic of darker part of an adaptive sigmoid image. It
is employed by effectively spreading out the most frequent
intensities.

Let, 𝑓 be a given sigmoid image represented as 𝑖 by 𝑗
matrix of integer pixel intensities ranging from0 to 255. Let,𝑝

denotes the normalized histogram of 𝑓 with bin for possible
intensities. So,

𝑝𝑚 =
Number of pixels with intensity 𝑚

total number of pixels
, (6)

where 𝑚 = 0, 1, 2, . . . , 255. The uniformly distributed
sigmoid image Ψ is defined as,

Ψ𝑖,𝑗 = floor((𝐿 − 1)
𝑓𝑖,𝑗

∑

𝑛=0

𝑝𝑚) , (7)
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Table 2: The Comparison between processed sigmoid image and uniformly distributed sigmoid image.
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where floor() maps to the largest integer but lesser than
the number. Normally, the cumulative distribution function
(CDF) of an image does not form a horizontal line, that
means, the pixel values are not equally likely to occur. In the
proposed method, a uniform distribution of sigmoid pixels
is achieved by applying (6) and (7); this technique is similar
to global histogram equalization. Table 2 shows the visual
comparison of uniform distribution of sigmoid pixels. This
uniformly distributed sigmoid image Ψ𝑖,𝑗 is later treated as
new enhanced grayscale image (Ψ).

2.2. Color Reproduction. In the second stage of the proposed
method, we apply color reproduction. It is a computer-
assisted process of adding color to a monochrome image
[33, 34]. In the proposed method, it is possible to retrieve the
original color with a better tone or add pseudocolor using a
theme image. This choice is controlled by the user through
the “color decision” module (see Figure 1) which selects the
chrominance components.

Case 1. To retrieve original color, we first create new 𝐶𝑏 and
𝐶𝑟 planes by matching the original 𝐶𝑏 and 𝐶𝑟 values for
corresponding 𝑌 pixels from the original grayscale image.
First of all, the positions of all 𝐶𝑏 and 𝐶𝑟 values in the plane
for a particular 𝑌 pixel are identified as expressed by (8):

[𝑚, 𝑛] = locate (𝑌 − 𝑌𝑖,𝑗) . (8)

Here, 𝑌 is normalized grayscale image, 𝑌𝑖,𝑗 is a pixel of
normalized grayscale image and [𝑚, 𝑛] holds one or multiple
positions. These positions will allow us to generate new
chrominance planes. Two scenarios may occur: (a) if only
one chrominance value is found, it places that value in
the corresponding positions in the new 𝐶𝑏 and 𝐶𝑟 planes.
(b) Otherwise, if multiple chrominance values are found, it

generates a new chrominance value using (9) and places it in
the corresponding positions of the new 𝐶𝑏 and 𝐶𝑟 planes

𝑥 =
∑
𝑛

𝑖=1
𝑥𝑖

𝑛
. (9)

These steps continue until all pixels of the grayscale image are
scanned. The new 𝐶𝑏 and 𝐶𝑟 will have the same dimension
of the original grayscale image. Later, the enhanced grayscale
image (Ψ) and the new 𝐶𝑏 and 𝐶𝑟 images are converted back
to RGB image using (10)

[
[

[

R
G
B

]
]

]

=
[
[

[

1.164 0 1.596

1.164 −0.392 −0.813

1.164 2.017 0

]
]

]

[
[

[

Ψ − 16

𝐶
new
𝑏
− 128

𝐶
new
𝑟
− 128

]
]

]

. (10)

Case 2. To add pseudocolor, a theme image is required. It is
applicablewhen only grayscale image or no color information
is available. As the color information in an endoscopic image
dictates clinical decision, the selection of theme image is
very important. The theme image must be selected from the
nearby location or region of GI tract. After selecting a proper
theme color image, it is converted into𝑌𝐶𝑏𝐶𝑟 space.Then, we
create new 𝐶𝑏 and 𝐶𝑟 planes by matching the chrominance
values of the theme image for the corresponding enhanced
pixel (Ψ𝑖,𝑗). Now, similar procedure as given in (8) is followed
to find the new 𝐶𝑏 and 𝐶𝑟 planes (given in (11))

[𝑚, 𝑛] = locate (𝑌𝑡 − Ψ𝑖,𝑗) . (11)

Here, 𝑌𝑡 is normalized theme grayscale image, Ψ𝑖,𝑗 is a
pixel of enhanced grayscale image and [𝑚, 𝑛] holds one or
multiple locations. These locations allow us to generate the
new chrominance plane with respect to the enhanced and
theme grayscale images. Here, the chrominance values are
generated from the 𝐶𝑏 and 𝐶𝑟 planes of the theme image.
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Figure 4: Flow chart: (a) Case 1: to retrieve original color; (b) Case 2: to add pseudocolor from theme image.

Three scenarios may occur: (a) if only one chrominance
value is found, it places that value in the corresponding posi-
tions in the new𝐶𝑏 and𝐶𝑟 planes. (b) ifmultiple chrominance
values are found, it generates a new chrominance value using
(9) and places it in the corresponding positions of the new
𝐶𝑏 and 𝐶𝑟 planes (c) if no chrominance value is found, it
reads the chrominance value respect to the positions of Ψ𝑖,𝑗
in theme 𝐶𝑏 and 𝐶𝑟 planes and places it in the corresponding
position of the new 𝐶𝑏 and 𝐶𝑟 planes. These steps continue
until all pixels of the enhanced grayscale image are scanned.
The new 𝐶𝑏 and 𝐶𝑟 will have the same dimension of the
original grayscale image. Later, the enhanced grayscale image

(Ψ) and the new𝐶𝑏 and𝐶𝑟 images are converted back to RGB
image using (10).

In Figure 4, the flow chart of the color reproduction
algorithm is presented. Some reconstructed images for the
two cases are shown in Figures 5 and 6. It can be seen that
the proposed method enhances color information in all
reconstructed images.

3. Results and Discussion

In order to evaluate the performance of the proposed
algorithm, we have applied it to several endoscopic images
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(a) (b)

Figure 5: (a) Original image and (b) enhanced color image (color reproduced from original image).

(a) (b)

(c)

Figure 6: (a) Original grayscale image (no color information is available) (b) enhanced color image (color reproduced from theme image
shown in (c)).

collected from Gastrolab [28] and Atlas [29]. The results are
summarized below in four categories.

3.1. Category 1: Low-Contrast Color Images. In this case, the
input image is first enhanced on gray level and then color
added. The chrominance values of the original input image
are used for color reproduction. As a result, the output image
has similar color tone with enhanced features as shown in

Table 3. It can be seen from the table that the vascular and
other mucosa structures are better visible and highlighted in
the output images, which can help the gastroenterologists in
better diagnosis.

3.2. Category 2: Low-Contrast Grayscale Images. In this case,
we show examples where low-contrast grayscale images are
used (i.e., color information is not available for these images).
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Table 3: Category 1: Enhancement of colored WLI images (where input image is used as theme image).

Number Input original image (color) Enhanced grayscale image Output enhanced color image

1

(a) (b) (c)

2

(d) (e) (f)

3

(g) (h) (i)

4

(j) (k) (l)

The grayscale images are first enhanced and then colorized
using a theme image. The choice of the theme image is
important as it may add color distortion if not properly
chosen. As a result, we choose a theme image from the same
or similar physical location of the GI tract. The results of the
enhanced color images are shown in Table 4 along with the
corresponding theme images.

3.3. Category 3: Raw NBI Images. In the next experiment,
we applied our algorithm on several NBI images (grayscale

in nature) as shown in Table 5. The raw NBI images are
enhanced first and then a color theme image is used to
generate pseudocolor.The theme images are chosen the same
way as described before. We can see from the table that
the output images have much better visibility of the mucosa
structure compared to the grayscale images.

3.4. Category 4: Image Transmission in WCE. The proposed
color generation method is very useful in saving power con-
sumption during transmission in wireless capsule endoscopy
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Table 5: Category 3: Enhancement and color reproduction of grayscale NBI images.

Number Input RAWNBI image Enhanced grayscale image Theme image Output enhanced color image

1

(a) (b) (c) (d)

2

(e) (f) (g) (h)

3

(i) (j) (k) (l)

(WCE). Instead of transmitting all color images from the
electronic capsule (which takes 24 bits per pixel per image), it
can only transmit one color image at the beginning followed
by a defined number of grayscale images (8 bits per pixel
per image). Using the proposed method, these grayscale
images will be later colorized using the first color image at
the receiver. In Table 5, we show the results of such case
where the R, G and B components of frame 1 are transmitted
first. Then only the luminance (𝑌) components of frame 2,
3, 4, and 5 are transmitted. At the receiver, these frames 2–
5 are reconstructed using the proposed color reproduction
method taking frame 1 as the theme image. Later on, the
color reconstructed images are compared with the original
color video sequences. In conventional case, the 𝑅, 𝐺, and 𝐵
components of all frames are transmitted. For the given case,
for five frames, it will require a total of 120 bits per pixel (i.e.,
24× 5). On the other hand, using the proposedmethod, it will
require only 56 bits per pixel (i.e., 24 + 8 + 8 + 8 + 8) which
results in a saving of 53% during the transmission. More
saving will be achieved using the number of grayscale frames

is increased. The original color video frames are also shown
in Table 6 for comparison. Here we see that the reconstructed
output images have the same color as compared with the
original color video frames with a power saving of 53%.

It should be noted here that, the previous work [18] was
only applied to color images whereas the proposed method
can be applied to both color and grayscale images. As a
result, low-contrast gray (category 2) and NBI raw (category
3) images can be colorized using the method using a theme
image.This feature alsomakes the algorithmhelpful in saving
power during WCE image transmission (category 4).

4. Performance Analysis

In the following section, the performance of the proposed
scheme is evaluated using focus value, statistic of visual
representation, measurement of uniform distribution, color
similarity test, color enhancement factor (CEF) and time
complexity. The results are discussed below.
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Table 6: Category 4: Reproduction of color frames from grayscale frame in WCE video; no enhancement was applied.

Frame
number 1 2 3 4 5

Original
video frames

Input images

Proposed
color images
(Frame
number 1
used as
theme image)

4.1. Focus Value. In our method, image enhancement is
achieved by adaptive sigmoid function and uniform distri-
bution of sigmoid pixels. As a result, the overall information
of sharp counters and contrast is increased. These changes of
an image are evaluated using focus value [35]. Focus value
is a mathematical representation of the ratio of AC and DC
energy values of a Discrete Cosine Transform (DCT) of an
image [36]. Let 𝐸AC be the AC values and 𝐸DC the DC value
of a DCT image. 𝐸AC values carry the information related
to high frequency component (i.e., changes of contrast level,
sharp counters and crisp edges) of an image. On the other
hand, 𝐸DC value carries only the information related to low
frequency components (i.e., luminance or brightness). The
expressions are given below:

𝐸DC = (𝐹DC (𝑢, V))
2
,

𝐸AC =
𝑛

∑

𝑢=1

𝑚

∑

V=1
(𝐹AC (𝑢, V) − 𝐹AC (𝑢, V))

2

.

(12)

Here, 𝑢 and V represent the row and column of the DCT
image, 𝐹DC is the DC part and 𝐹AC is the AC part of DCT
image. The resultant of the ratio of 𝐸AC and 𝐸DC is the focus
value 𝐹𝑆 as given by

𝐹𝑆 =
𝐸AC
𝐸DC

. (13)

If the overall information of sharp counters, crisp edges
and contrast of enhanced image is higher than the original
image, then 𝐹𝑆 of the enhanced image will be higher than

that of the original image and vice versa. We have compared
our method in terms of focus value using 60 sample images
with othermethods like AHE [11], CLAHE [12], HBF [13] and
BPDFHE [14]. The results are presented in Table 7. Here, we
see that the focus values of the proposedmethod are relatively
higher compared to the other methods.

4.2. Statistic of Visual Representation. Next, we used statistic
of visual representation [37] to measure the contrast and
intensity distortion between two images. Equations (14)
represent statistic visual representation. Consider

𝐶 =
𝜎out − 𝜎in
𝜎in

,

𝐿 =
𝐿out − 𝐿 in
𝐿 in

,

(14)

where 𝜎out and 𝐿out are the variance and mean of enhanced
image; 𝜎in and 𝐿 in are the variance and mean of origi-
nal image, respectively. Here, 𝐶 defines the percentage of
increment or decrement of contrast level and 𝐿 defines the
percentage of increment or decrement in intensity level. In
our experiment, we used 60 grayscale images. The results are
presented in Table 8. We can see that the 𝐶 and 𝐿 of the
first image using proposed method are 1.0636 and 0.0716,
whichmeans that the contrast and intensity level of proposed
image are 103.6 and 7.16 times higher than the original image,
respectively. Here, the negative sign denotes the decrement.
It is noticeable that the proposed method’s contrast level and
intensity level are higher compare to the other method.
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Table 7: Comparisons of focus value with other related works.

Image number Focus value
Original AHE [11] CLAHE [12] HBF [13] BPDFHE [14] Proposed

1 15.64 17.50 22.96 22.86 22.04 42.10
2 12.52 16.75 20.14 19.33 17.11 42.52
3 18.01 19.20 23.18 22.40 22.00 41.57
4 13.66 18.85 22.01 20.97 20.51 42.00
Average of 60 endoscopic images 13.77 19.08 21.11 20.49 19.49 41.17

Table 8: Comparisons of statistic of visual representation with other related works.

Image number Contrast measurement Intensity measurement
AHE [11] CLAHE [12] HBF [13] BPDFHE [14] Proposed AHE [11] CLAHE [12] HBF [13] BPDFHE [14] Proposed

1 0.3373 0.4735 0.4285 0.2025 1.0636 −0.1781 0.0598 0.0254 0.0065 0.0716
2 0.2767 0.6352 0.2395 0.3608 2.4684 −0.0312 0.1207 0.0095 0.0092 0.2526
3 0.1205 0.2935 0.2395 0.1192 1.12294 −0.1122 0.0410 0.0095 −0.0012 0.1322
4 0.3401 1.1598 0.8235 0.7206 2.0349 −0.1186 −0.0291 0.0134 −0.0100 0.0218
Average of 60
endoscopic images 0.2554 0.6411 0.4149 0.3371 1.6147 −0.1203 0.0381 0.0197 0.0174 0.1748

Table 9: Histogram of 𝑅, 𝐺, and 𝐵 planes in terms of uniform distribution (a) without and (b) with color reproduction.

Processed image Histogram of 𝑅 plane Histogram of 𝐺 plane Histogram of 𝐵 plane
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4.3.Measurement of UniformDistribution. Here, we calculate
the uniform distribution of R, G, and B planes by calculating
entropy [38, 39]. The more the uniform distribution of color
planes, the better the color enhancement. The entropy of 𝑛
distributed signals is defined by

𝐻(𝑥1, 𝑥2, . . . , 𝑥𝑛)

= −∑

𝑥1

∑

𝑥2

⋅ ⋅ ⋅∑

𝑥𝑛

𝑃 (𝑥1, 𝑥2, . . . , 𝑥𝑛) × log2 𝑃 (𝑥1, 𝑥2, . . . , 𝑥𝑛) .

(15)

First, we have showed the advantage of using proposed
color reproduction in Table 9. Here, in image (a), we used the
proposed image enhancement algorithm on the luminance
plane and left the chrominance planes unchanged. In image
(b), we applied proposed image enhancement on luminance

and color reproduction on the chrominance planes. From
both images, it is noticeable that the image in (a) without
color reproduction does not preserve brightness and shows
imbalance saturation level. On contrary, the image in (b)
with color reproduction has much balanced saturation and it
preserves the overall brightness. It happens because 𝑌𝐶𝑏𝐶𝑟 is
a nonuniform and nonorthogonal color space.That is why we
need tomanipulate both luminance and chrominance in such
a way that the correlation does not break and preserve the
brightness along with the color saturation level. Additionally,
our method achieves a higher entropy value, which means
that it produces amore uniformhistogram.The entropy value
of image (b) is 7.6237 which is higher than that of image (a)
that is 7.4961.

Table 10 shows the performance comparison with other
related methods. In shows that the proposed method
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Table 10: Comparison of the histogram of 𝑅, 𝐺, and 𝐵 planes in terms of uniform distribution.

Processed image Histogram of 𝑅 plane Histogram of 𝐺 plane Histogram of 𝐵 plane
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produces images with enhanced and highlighted mucosa
structures. The results are also summarized in Table 11.

4.4. Color Similarity Test. To validate the results statisti-
cally, the color similarity between the original and color
reproduced images is evaluated using several performance
metrics such as, CIE94 delta-𝐸 color difference [40], mean
structure similarity index (MSSIM) [41] and structure and
hue similarity (SHSIM) [42]. The purpose is to show that
our color reproduction method does not add any additional
color. CIE94 is used tomeasure the color differences between

processed and original image in LAB color space. In CIE94,
Δ𝐸
∗

94
≈ 2.3 indicates that the color difference between two

images is the lowest. MSSIM are used to measure color
similarity in the chrominance planes in 𝑌𝐶𝑏𝐶𝑟 color space.
SHSIM is used to measure the hue and structure similarity
between processed and original image in HSV color space.
Here, we have used 60 trial images to evaluate the color
similarity index. The results are compared with other color
reproduction methods and presented in Table 12. It can be
seen that the average MSSIM and SHSIM indices are higher
than others in our scheme with a color difference Δ𝐸∗

94
close
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Table 11: Comparisons of the measurement of uniform distribution based on entropy with other related works.

Image number Measurement of entropy
Original AHE [11] CLAHE [12] HBF [13] BPDFHE [14] Proposed

1 7.25 6.68 7.38 7.33 7.41 7.46
2 7.21 6.47 7.48 7.33 7.44 7.57
3 7.11 6.38 7.34 7.31 7.38 7.51
4 6.52 4.87 7.11 6.77 7.51 7.70
Average of 60
endoscopic images 7.41 7.01 7.68 7.31 7.75 7.91

Table 12: Color similarity assessment.

Similarity between two color images
Δ𝐸
∗

94
MSSIM SHSIM

Image 1 Image 2

Original image

Proposed 2.97 0.9851 0.9992
[21] 4.1 0.8605 0.8578
[22] 0.6 0.8714 0.8001

[23, 24] 3.01 0.9567 0.9942

Table 13: Comparisons of CEF indices with other enhancement works.

Image number AHE [11] CLAHE [12] HBF [13] BPDFHE [14] Proposed
1 0.9620 1.1197 1.0355 1.0149 1.7329
2 0.9623 1.0989 1.0077 1.0037 1.8897
3 0.9446 1.1716 1.0751 1.0547 1.8812
4 0.9946 1.2009 1.1913 1.1003 1.7443
Average of 60
endoscopic images 0.9661 1.1574 1.0614 1.0411 1.7477

Table 14: Comparisons of CEF indices with other color reproduction works.

Image number [23, 24] [21] [22] Proposed
1 1.1059 0.5987 0.5118 1.7784
2 1.0991 0.7481 0.5997 1.6599
3 1.1007 0.6187 0.6001 1.8413
4 1.1972 0.5249 0.4991 1.7749
Average of 60
endoscopic images 1.1391 0.5149 0.4977 1.5621

to 2.3. All these values indicate that the colorized images are
very close to the original images.

4.5. Color Enhancement Factor (CEF). We have also eval-
uated our scheme in terms of color enhancement. Here,
we have used a no-reference performance metric called
colorfulness matric (CM) [43]. The CM measurement is
based on the mean and standard deviations of two axes
opponent color representation with, 𝛼 = R − G and 𝛽 =
(1/2)(R + G) − B. The metric is defined as

CM = √𝜎
2
𝛼
+ 𝜎
2

𝛽
+ 0.3√𝜇

2
𝛼
+ 𝜇
2

𝛽
, (16)

where 𝜎𝛼 and 𝜎𝛽 are standard deviations of 𝛼 and 𝛽,
respectively. Similarly, 𝜇𝛼 and 𝜇𝛽 are their means. However,
in our comparison, we have used the ratio of CMs between
the enhanced and original image for observing the color
enhancement factor (CEF). If CEF < 1, than the original
image is better compared to the enhanced image in terms of
color image enhancement. CEF with value 1 indicates that
there is no difference between the enhanced and original
image in terms of color enhancement. The results have been
presented in Tables 13 and 14. Here we can see that CEF
values of the proposed method are highest compared to
other enhancementmethodswhich indicates that our scheme
performs better in terms of color enhancement. Figure 7
shows some reconstructed images.
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Table 15: Comparison of simulation speed between proposed method and other related works.

Methodology Image size Step 1 Step 2 Total time (sec.)
Enhancement time (sec.) Color reproduction time (sec.)

Proposed
256 × 256 1.909 20.614 22.523
512 × 256 2.597 40.119 42.716
512 × 512 3.182 81.779 84.961

[23, 24]
256 × 256 0.39 28.255 28.645
512 × 256 1.519 72.956 74.475
512 × 512 1.525 113.31 114.835

[21]
256 × 256 — 64.461 64.461
512 × 256 — 117.921 117.921
512 × 512 — 232.146 235.149

[22]
256 × 256 — 0.19 0.19
512 × 256 — 0.81 0.81
512 × 512 — 0.47 0.47

(a) (b)

(c) (d)

Figure 7: Enhanced color images using different color reproduction algorithms. (a) References [23, 24]. (b) Reference [21]. (c) Reference
[22]. (d) Proposed.

4.6. Algorithm Complexity. The time required to generate
an enhanced color image for different image sizes using the
proposed method and other related works [21–24] are shown
in Table 15. The experiment was conducted on a PC having
Intel (R) Pentium(R) dual CPU @ 2.00GHz and 6GB of
RAM. Here, it is noticeable that the proposed method is
the fastest method including both image enhancement and

color reproduction. For an image of 𝑛 pixels, the proposed
algorithm has linear computational time complexity, 𝑂(𝑛).
The average simulation time of proposedmethod for 256×256
images is approximately 22 seconds and for 512 × 512 images
is approximately 85 seconds. The work in [21, 23, 24] have
significantly higher execution time when compared with the
proposed method. Although the execution time of [22] is
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lower than ours, the quality of the color reproduction ismuch
worse as shown in Figure 7.

5. Conclusion

In this paper, we have presented an image enhancement
and color reproduction method for endoscopic images. The
work focuses on enhancing the mucosa structures present
in endoscopic image. The proposed color image enhance-
ment is achieved in two stages: image enhancement at
gray level followed by space variant chrominance mapping
color reproduction. Image enhancement is achieved in two
steps: adaptive sigmoid function and uniform distribution of
sigmoid pixels. Secondly, space variant color reproduction is
performed by generating a real color map by transferring and
modifying old chrominance values either from theme image
or input image.Thequality of the generated enhanced colored
images is evaluated using several standard performance
metrics, which show that the features are highlighted on the
new processed images.
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