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Abstract

Background: Similarity search in protein databases is one of the most essential issues in computational
proteomics. With the growing number of experimentally resolved protein structures, the focus shifted from
sequences to structures. The area of structure similarity forms a big challenge since even no standard definition of
optimal structure similarity exists in the field.

Results: We propose a protein structure similarity measure called SProt. SProt concentrates on high-quality
modeling of local similarity in the process of feature extraction. SProt’s features are based on spherical spatial
neighborhood of amino acids where similarity can be well-defined. On top of the partial local similarities, global
measure assessing similarity to a pair of protein structures is built. Finally, indexing is applied making the search
process by an order of magnitude faster.

Conclusions: The proposed method outperforms other methods in classification accuracy on SCOP superfamily
and fold level, while it is at least comparable to the best existing solutions in terms of precision-recall or quality of
alignment.

Background
The biological function of a protein is consequence of
its spatial conformation rather than of ordering of its
amino acids (protein sequence). Thus, the protein struc-
ture is closer to the function than the sequence, there-
fore there was an enormous effort spent on protein
structure research. Moreover, the biological motivation
for protein structure similarity stems from the thesis
that proteins having similar structures also share similar
function. Hence, it is very useful to have tools for mea-
suring protein structure similarity in order to be able to
identify similar protein structures from a database of
protein structures with already known function.
Most of the protein structure similarity measures are

based on comparisons of positions of amino acids in the
space. For this purpose, amino acids are represented as
coordinates of their a-carbon (and sometimes b-carbon)

atoms. The protein structure similarity assessment
usually comprises two steps. In the first one, which we
call alignment search, an amino acid inter-protein pair-
ing is established. The second step, which we call super-
position search, includes superposition optimizing the
selected similarity function. This function usually aggre-
gates values based on spatial (euclidean) distances of the
paired amino acids after the superposition.
Although it has been shown that if the optimal solu-

tion is required, the above defined measuring of struc-
ture similarity is NP-hard [1] (non-deterministic
polynomial-time), each step of the problem can be
solved in polynomial time using the result of the other
step. If we know the alignment, there exist methods
how to obtain superposition optimizing given similarity
formula in polynomial time, e.g., the Kabsch algorithm
[2] for root mean square deviation (RMSD). On the
other hand, if we are provided with the superposition
and the similarity formula in a form of sum, we can use
dynamic programming to determine the optimal align-
ment with respect to the given superposition. The
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dynamic programming has to employ a scoring corre-
sponding to the inner part of the sum. If using RMSD,
the score of i-th and j-th amino acids of the superposed
proteins is defined as their squared euclidean distance.
As the solution of structure similarity consists of steps
that depend each on the other, at the beginning we do
not know neither the alignment nor the superposition.
We briefly describe the main ideas of some of the

state-of-the-art algorithms and also some solutions
which outperform the other ones and which we com-
pare to our contribution — DALI, ProtDex2, CE, SSAP,
MAMMOTH, Vorometric, Vorolign, PPM, db-iTM,
BLAST, PSI-BLAST, 3D-BLAST.
One of the earliest approaches to protein structure

similarity assessment was DALI, representing the pro-
tein’s structure by a two-dimensional matrix of inter-
residual distances [3,4]. Similar protein structures should
also share similar distance distribution, thus in the com-
parison process the matrices are split into overlapping
parts and similar (contact) patterns are stored. These
are further extended to obtain the alignment.
Similarly to DALI, ProtDex2 uses intra-residual dis-

tance matrices [5]. However, instead of chaining the
contact patterns, ProtDex2 splits them to constant-sized
submatrices which, together with their description, are
used as index terms for inverted index. Protein struc-
tures used as queries are processed in the same way.
The inverted index together with subsequent scoring is
utilized to identify similar protein structures in the data-
base. The query result could be furthermore refined by
an arbitrary alignment-based algorithm.
The CE method uses the concept of aligned fragment

pairs (AFP) for searching structurally similar portions of
the sequences [6]. In particular, a few seeds are chosen
and iteratively extended by chaining with other AFPs.
Three different measures are taken into account when
deciding whether a new AFP should be added to the
chain. At the end, a final optimization is performed
which results in the best alignment.
The SSAP method [7] heavily exploits Smith-Water-

man dynamic programming algorithm [8]. Each residue
is represented by distances to every other residue. For
each pair of amino acids in the compared protein struc-
tures a dynamic programming is used with scoring
matrix based on the residue distances (local similarity).
In the second-level dynamic programming, the matrices
are aggregated to obtain the resulting structure align-
ment (global similarity).
Another well-known method for comparison of two

protein structures is MAMMOTH [9]. MAMMOTH
represents each amino acid by its sequence neighbor-
hood that is 7 amino acids long (heptapeptide). The
unit-vector root mean square for each pair of heptapep-
tides is computed and forwarded into the Smith-

Waterman algorithm as a scoring matrix. The output of
Smith-Waterman forms an alignment of the two struc-
tures. Maximum subset of aligned pairs being spatially
close after superposition (based on the alignment) is
taken into account for computing so-called percentage
of structural identity (PSI). In the last step, probability
of obtaining the given PSI by chance (P-value) is calcu-
lated as the final result.
More recently, methods based on Voronoi diagrams

were proposed. The Vorometric method forms contact
strings from the Delaunay tessellation and these are
stored in a metric index [10]. For finding similar contact
string with the query, edit distance with metric scoring
matrix is used. The resulting hits are used as seeds for
the consequent step, where a modification of dynamic
programming is applied to the hits in order to obtain
the alignment.
Vorolign extracts nearest-neighbor sets for each amino

acid based on the Voronoi tessellation [11]. There is a
similarity of the sets defined, which is further used in
dynamic programming for assessing local similarity to a
pair of amino acids. The local similarities are used as
scores for second-level dynamic programming. The
same group of authors introduced later a solution called
PPM[12]. PPM identifies sufficiently similar (core)
blocks which are then used to create a graph of core
blocks. That path in the graph is chosen, that minimizes
the cost of mutations.
The db-iTM method is a recently proposed solution

which represents amino acids as a set of concentric cir-
cles [13]. Based on their densities and radii, the method
forms feature vectors used in local dynamic
programming.
Last of the structure-based methods presented in this

overview is 3D-BLAST[14]. This method derives struc-
tural alphabet from the �-a plot. The structures repre-
sented as strings over this alphabet are accessed using
the BLAST approach. That takes us to other methods
which are purely sequence-based and thus we are able
to provide comparison of structure-based approaches
with the sequence-based ones – BLAST[15] and PSI-
BLAST[16]. BLAST is the state-of-the-art tool for simi-
larity search in protein sequence databases. It is based
on heuristics which noticeably decreases runtime needed
for the full Smith-Waterman algorithm [8], which is the
optimal measure for assessing similarity to a pair of pro-
tein sequences. PSI-BLAST extends the original BLAST
algorithm by employment of a position-specific scoring
matrix, so that it is more sensitive to weak sequential
similarities.
In this work, we propose our own approach to protein

structure similarity, called SProt, based on high-quality
modeling of local similarity in the process of feature
extraction. SProt’s features are represented by the
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spherical spatial neighborhoods of amino acids, because
on them the similarity can be well-defined. Along with
the proposed similarity measure, we also introduce an
access method that reduces the number of applications
of the measure and so the real-time cost. The effective-
ness and efficiency of the proposed approach is evalu-
ated by experiments.

Methods
In contrast to most of the presented algorithms, in our
solution we put a lot of emphasis on high-quality mod-
eling of local similarities of the amino acids. We believe
that representing proteins by various derived features
might cause loss of information which is inevitable for
quality alignment. In this section we present our solu-
tion, called SProt, which aims to avoid the possible loss-
of-information drawback.

SProt fundamentals
As we have already mentioned, determining alignment
and superposition of protein structures is a nontrivial
problem. However, what holds true for whole protein
structures does not have to be valid for small substruc-
tures. If we want to align two small parts of two protein
backbones, the natural way is to execute gapless align-
ment for these parts. When aligning only a few amino
acids, it does not make sense to introduce gaps and thus
the alignment is defined unambiguously. As stated
above, the computation of the superposition of the
backbones is then a relatively easy task. We further
employ this superposition in a consequent step where
we add those amino acids to the alignment that are spa-
tially close to the already aligned backbone amino acids.
These do not have to be close in terms of sequence
order. In this way, we are able to take the spatial neigh-
borhood into account when modeling local similarity.
The above outlined principle is the central point of the
local measure used in SProt.
Before we describe the details of the algorithm in the

following sections, we briefly present the main ideas.
SProt represents each amino acid A by amino acids that
are spatially close to A (section Representation of a pro-
tein). To compute the local similarity between such
representations of amino acids, an alignment and super-
position are subsequently performed (section Sphere
similarity), as motivated above. The computed local
similarities are then used by a dynamic programing
method to obtain the global structural alignment. The
quality of this alignment is expressed in terms of a TM-
score value (section Alignment and superposition). The
overall computation time can be decreased in the pro-
cess of querying the database for the most similar pro-
tein structure. For this purpose we apply an access

method adopted from the field of metric indexing (sec-
tion Speedup by indexing).

Representation of a protein
Each amino acid A is represented by the amino acids
located within the euclidean sphere centered in A and
with given radius. Since the representation of A is based
on its spatial neighborhood bounded by the sphere, we
call the representation an aa-sphere.
SProt treats the position of each amino acid as its a-

carbon position. However, when testing intersection of
an amino acid with a sphere, all heavy atoms of the
amino acid are considered, not only the a-carbon. Such
an approach allows us to include amino acids into the aa-
sphere whose a-carbons are too far from the aa-sphere’s
center but their side chains are still close enough.
We divide the content of each aa-sphere into several

categories:
• Spherical backbone is the maximal continuous part

of the amino acid sequence that is included in the aa-
sphere and contains the central amino acid. A spherical
backbone is divided into upstream spherical backbone
and downstream spherical backbone. In the former the
amino acids precede the central amino acid in the pro-
tein sequence, while in the latter the amino acids follow
the central amino acid.
• Upstream neighborhood contains amino acids in the

aa-sphere that precede the central amino acid in protein
sequence and are not included in the spherical
backbone.
• Downstream neighborhood contains amino acids in

the aa-sphere that follow the central amino acid in pro-
tein sequence and are not included in the spherical
backbone.
See Figure 1 for an example of an aa-sphere, including

the categories.
For the purposes of the following steps, the amino

acids in each category preserve the original protein
sequence ordering. We also define the term quantity
characteristics for each aa-sphere to denote the number
of amino acids belonging to a particular category. The
whole protein is then modeled by a sequence of aa-
spheres built for every amino acid.

Sphere similarity
We measure similarity of aa-spheres using alignment
and superposition of their content, as this is simpler for
aa-spheres than for entire protein structures. Assessing
the similarity to a pair of aa-spheres consists of five
steps, where the first three steps construct the alignment
and the last two valuate it:
1. Generating seed spherical backbone alignment.

Spherical backbones are aligned using gapless alignment.
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The alignment is unique since it is gapless and the cen-
tral amino acids are aligned to each other.
2. Computing spherical backbone superposition. The

alignment from the previous step determines the spheri-
cal superposition carried out by the Kabsch algorithm,
which is of linear complexity [2].
3. Generating spherical alignment. In the previous

step, we have superposed the spherical backbones. How-
ever, to assess similarity to the whole aa-spheres, we
have to consider also the other aa-sphere content.
Therefore, the obtained superposition is used to align
the rest of the amino acids in the aa-sphere (upstream
and downstream neighborhoods). We apply the Needle-
man-Wunsch algorithm [17] (global alignment) sepa-
rately on the upstream and downstream neighborhoods.
The algorithm utilizes a scoring function in the form

Sij
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where dij is the euclidean distance of i-th and j-th
amino acids according to the superposition of the aa-
spheres, and ds represents a scale parameter (empirically
determined).
4. Computing raw spherical measure (SM-raw). The

raw spherical measure for aa-spheres x and y is com-
puted for the whole spherical alignment (steps 1, 2, 3) as
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where LA is the length of the alignment, di is the dis-
tance between i-th pair of amino acids according to the
spherical superposition, ds is the same scale parameter
as in the previous step, and max[x][y] is a normalization
factor (the maximal value of the sum that can be
obtained for aa-spheres with the same quantity charac-
teristics as the aa-spheres x, y have).
5. Computing normalized spherical measure. An SM-

raw value that is expected to occur for a pair of aa-
spheres only by chance depends highly on the quantity
characteristics of the compared aa-spheres. That is
because better superpositions are more probable for
smaller aa-spheres. Hence, there arises a problem when
comparing the similarities between pairs of aa-spheres
with different quantity characteristics. Therefore, we
compute the empirical cumulative distribution functions
(ECDF) for SM-raw that are specific to quantity charac-
teristics of the compared aa-spheres x and y (denoted as
F x y [ ][ ] ). The usage of ECDF allows us to express the
probability that a better result could not be obtained by
chance for aa-spheres with identical quantity character-
istics. However, such a modification is not yet sufficient.
For example, if aa-sphere w is obtained from aa-sphere
z by removing some amino acids, then SM-raw(w, z)
will be maximum for given quantity characteristics. It
implies that ECDF of SM-raw(w, z) will be maximal as
well, but that is not correct. Therefore, we added the
factor f that captures the differences in the quantity
characteristics of aa-spheres x and y:
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where qub, qdb, qun and qdn denote individual quantity
characteristics of an aa-sphere.
The full normalized measure of the aa-spheres x and y

is then

SM-score SM-raw( , ) ( , ) ( ( , )).[ ][ ]x y f x y F x yx y=  (4)

Alignment and superposition
To generate the global alignment of two protein struc-
tures, the logarithm of SM-score is used as a scoring
function together with the linear gap penalty model.
The SM-score estimates the probability that a matching
of given pairs of spheres is significant. Thus, the

upstream backbone downstream backbone
upstream neighborhood downstream neighborhood
central aminoacid non-sphere aminoacids

Figure 1 An example of an aa-sphere This example demonstrates
an aa-sphere for the 26-th amino acid of Ubiquitin [PDB:1UBQ].
Each amino acid is represented by a ball centered in its a-carbon
position. The tube corresponds to the protein backbone denoting
the protein sequence. The Euclidean sphere with center in the 26-th
amino acid (black) with radius 9 Å (gray). The different colors
emphasize amino acids included in the aa-sphere. Some of the
heavy atoms of the colored amino acids with their a-atoms outside
the Euclidean sphere intersect with the sphere and thus the
respective amino acids are also included in the aa-sphere. The
figure has been generated by VMD [30].

Galgonek et al. Proteome Science 2011, 9(Suppl 1):S20
http://www.proteomesci.com/content/9/S1/S20

Page 4 of 12



logarithm of SM-score used inside the Needleman-
Wunsch algorithm maximizes the probability that the
resulting alignment is significant. After obtaining the
alignment, we employ the widely used TM-score algo-
rithm to get the superposition and the final score [18].
The TM-score algorithm was designed in order to maxi-
mize the following formula:

TM-score =
+ ( )=

∑1 1

1
2

1
LT d

d Li

L

i

o T

A

( )

, (5)

where LA is length of the alignment, LT is size of the
query structure, di is distance between i-th pair of
amino acids according to the superposition computed
by the TM-score algorithm, and d0(LT) is a scale
function.
When speaking about similarity measure, we under-

stand high scores as high similarities. However, for
some applications it is more convenient to treat similar-
ity as distance. Thus, similar structures exhibit low dis-
tance. Since the TM-score is a similarity measure that
reaches 1 for identical structures, it can be easily con-
verted to a distance function as d(x, y) = 1–TM-score(x,
y).

Optimizations
The proposed SProt similarity measure depends on the
following parameters that must be tuned to obtain high-
quality results.
Sphere radius
This parameter determines the number of amino acids
in an aa-sphere. A small radius results in low number of
amino acids in an aa-sphere which leads to decreased
accuracy. On the other hand, using a large radius
increases the time needed to compute the aa-sphere
similarity. This is because a large aa-sphere influences
the runtime of the Needleman-Wunsch algorithm
(being of quadratic complexity).
In our experimental section, we used sphere radius 9

Å as a trade-off between time and accuracy.
Scale parameter ds
The SM-raw measure is a variant of TM-score that uses
scale parameter dependent on the size of the compared
proteins. However, TM-score’s parameterization is not
suitable for aa-spheres, because they are much smaller
than the whole protein structures. Therefore, we used
constant-value scale parameter as the ancestors of TM-
score did. For example, MaxSub [19] used value 3.5 Å,
S-score [20] used value 5 Å. We decided to set the para-
meter to 2 Å due to the generally smaller sizes of aa-
spheres in comparison to the average protein size.

SM-raw empirical cumulative distribution functions
The empirical cumulative distribution functions (ECDF)
of SM-raw measure were produced from the all-to-all
comparisons of proteins taken from ASTRAL-25 v1.65
database [21]. Since the ECDF computation is highly
space-consuming if every possible combination of quan-
tity characteristics has to be taken into account, a down-
sampling technique was used to decrease the space
complexity. The upstream and downstream neighbor-
hood characteristics were downsampled by a factor of 2,
the backbones of sizes 0 and 1 were treated identically as
well as each quantity characteristics exceeding value 7.
Gap penalty
Setting a gap penalty value has the essential impact on
the quality of the measure. We used log(0.75) as the gap
penalty value which has the best results for most of the
evaluations. This setting of the gap penalty is low
enough, thus only amino acids with significant similarity
will be paired.

Speedup by indexing
The proposed SProt measure is computationally very
expensive. This poses a challenge especially in the task
of selecting the most similar structures from a large
structure database where many SProt computations
have to be performed. One of the possible solutions of
this challenge is to employ indexing methods.
Metric access methods
Most of the domain-specific applications of similarity
search employ pairwise similarity only as a step within
the process of database search. Typically, we search for
the most similar object in a database to a given query.
The most straightforward solution in such a scenario is
to sequentially scan the database, compare the query
object to each object in the database and identify the
most similar object (the nearest neighbor) or the k most
similar objects (the k nearest neighbors).
The metric access methods (or metric indexes) [22]

form a set of index structures allowing to filter out data-
base objects not similar to the query, thus highly
decreasing the runtime while maintaining accuracy of
the search. The goal is achieved by resorting to metric
distance functions, which is the requirement of all
metric access methods. Hence, only the domains where
the distance d between objects fulfills the metric axioms
can benefit from the metric access methods (without
loss of accuracy). The metric axioms are as follows (∀x,
y, z):
1. Non-negativity: d(x, y) ≧ 0
2. Identity of indiscernibles: d(x, y) = 0 iff x = y
3. Symmetry: d(x, y) = d(y, x)
4. Triangle inequality: d(x, z) ≦ d(x, y) + d(y, z)
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The axiom of triangle inequality is the most important
for metric access methods. This axiom, in conjunction
with the other ones, allows to compute a lower bound
dLB(q, o) of the distance d(q, o) between a query object
q and a database object o through another database
object p (often called a pivot). Specifically, the following
equation follows directly from the axioms:

d q o d p o d p q d q oLB( , ) ( , ) ( , ) ( , )= − ≤ (6)

It is possible to compute multiple lower bounds of the
distance by using different pivots and select the maxi-
mum lower bound being the closest one to the distance.
This can provide a good estimate of the distance
between q and o. If the estimate is large enough, object
o can be filtered out, because it surely cannot be close
to the query and so cannot be a part of the result set.
One of the metric access methods, representing so-

called pivot-based approach, is LAESA [23,24] (Linear
Approximating and Eliminating Search Algorithm), being
suitable for time-expensive measures because of its filtra-
tion abilities [25]. LAESA uses a small part of the database
as the set of pivots. The pivots are used during the query
process to estimate distances between a query and all the
database objects. Based on these estimates, it is possible to
eliminate some of the database objects from the search, so
that the expensive distance computations between the
query and these objects are not needed to compute. To
compute the distance estimations as fast as possible, all
distances between the pivots and the database objects are
precomputed and stored in so-called metric index.
To perform the k nearest neighbor query, LAESA

maintains a set S containing not yet eliminated objects
that might be still included in the result. The elimina-
tion process is based on estimations of distances
between the query and database objects. Thus, LAESA
also maintains the estimation of the distance for the
query and each database object o (e(o)). These estima-
tions are continuously updated as more and more pivots
are taken into account. During the execution of the
algorithm, the k nearest neighbors from the set of
already processed objects are stored in a set R. At the
end of the algorithm, the set R contains the final result,
i.e., the k nearest neighbor objects.
The LAESA algorithm can be described as follows:
1. Initialization: At the beginning, all database objects

might be included in the result, therefore the set S con-
tains all database objects. Lower-bound estimations of
distances between the query and database objects are set
to 0 and the set R is empty.
2. The first pivot selection: An arbitrary pivot is

selected and denoted s.
3. The main loop: While s is defined:

(a) Distance computation: Remove s from the set S
and compute distance d(q,s). Update the set R to con-
tain k already processed objects having the smallest dis-
tances to the query object q.
(b) Approximation: If s is a pivot, use it to make the

estimations more accurate. That is, for each database
object o, compute a lower bound of its distance to the
query and set the related estimation e(o) to the value of
the lower bound if the lower bound is greater than the
original value of the estimation.
(c) Elimination: Use the greatest distance between the

query and an object from R as a threshold and eliminate
all objects o from S having e(o) greater than the thresh-
old. The distance between o and query q is never smal-
ler than the related estimation e(o), thus the eliminated
objects cannot be included in the result. However,
pivots contained in the set S are explicitly protected
against elimination during the first few steps. The num-
ber of such steps is a parameter of the algorithm.
(d) The next object selection: If S contains pivots, select

a pivot p Î S having the smallest estimation e(p) and
denote it as s. Otherwise, select b Î S having the smal-
lest estimation e(b) and denote it as s. If S is empty, s
becomes undefined and so the algorithm terminates.
4. Result: The set R contains results of the search.

Capability of indexing
From the description of LAESA (step 3c) it follows that
the speed-up is directly proportional to the number of
objects eliminated during the query process. It has been
shown [26] that the elimination ability (indexability)
depends of the distribution of the distances between
objects in the metric space. If a distance exhibits low
degree of indexability, it could be improved by applying a
convex function on top of the original distance, the so-
called similarity-preserving modifier[26]. The modifier vir-
tually makes the object clusters in the database more tight,
so that the indexability is increased. However, the use of
such a modifier may violate the triangle inequality axiom
to some extent. In particular, for some triplets of the data-
base objects x, y, z the triangle inequality formula does not
hold, which can cause inaccuracies in the search. In such
case the search becomes only approximate. Therefore, the
modifier has to be chosen carefully since it represents the
trade-off between accuracy and speed.
SProt access method
In contrast to what has been stated above, unfortu-
nately, SProt is not a metric distance, because it does
not satisfy symmetry and triangle inequality. The
absence of symmetry does not form a serious problem
— a small change in the lower bound formula 6 can fix
it:

d q o d p o d p q d q p d o p d q oLB( , ) ( ( , ) ( , ), ( , ) ( , ) ( , )= − − ≤max (7)
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It is important to note that this formula requires (due
to asymmetry) to compute both of the distances d(q, p)
and d(p, q). Both computations share the same align-
ment, utilizing more than 90% of the computation time.
Hence, d(p, q) can be computed relatively cheap when d
(q, p) is already computed. A more substantial problem
is that SProt violates the triangle inequality, although
the number of the violating object triplets is small.
However, it is important to realize that even a relatively
small probability that a triplet violates the axiom can
lead to a high probability that an estimation produced
by LAESA during the execution is overvalued and so is
incorrect. For example, suppose that the probability that
a triplet does not satisfy the axiom is 10–4. Then, if we
used 1000 pivots to estimate a distance, the probability
that the estimation is incorrect would be approximately
1 – (1 – 10–4)1000 ≈ 9.5%. The reason is that the estima-
tion of a distance is always set to the maximum of lower
bounds produced by different pivots. Thus, if one of the
lower bounds is overvalued, then the estimation is over-
valued as well, so that the estimate becomes incorrect.
Therefore, it is desirable to adjust the method to be

more robust against incorrect estimations. To do so, we
introduced two enhancements:
1. An object t is eliminated during the LAESA elimi-

nation step if the estimation e(t) of d(q, t) is greater
than a threshold θ. In such case the distance d(q, t) is
greater than θ. However, it may not be true if the esti-
mation is overvalued. Hence, we introduced requirement
that the estimation must be greater than θ by more than
v percent to make the algorithm robust against small
overvaluation in the estimations. If the estimations are
not overvalued by more than v percent, then the result
of the algorithm is equal to sequential scan. We call the
v value the approximation error tolerance factor.
2. The second improvement does not depend directly

on the rate of overvaluation. Assume that s is included
in the result corresponding to the sequential scan. Then,
if the algorithm processes s in the main loop, s has to be
added into the set R and will be never pushed away by
any other object. This is because there are no more
than k – 1 objects in the database having smaller dis-
tances to the query than s has. Thus, all incorrectness in
the result can be interpreted as a too early elimination
of the object (due to its overvalued estimation) before it
could be processed.

Once all objects are eliminated, the main loop is ter-
minated. Hence, the second improvement is intended to
delay the termination of the main loop and to process
some of the eliminated objects. Originally, the main
loop is terminated after there is no object s to be
selected from S. Thus, we modify the step of the next
object selection. If the set S is empty, the eliminated
objects are taken into account and an eliminated object

b with the smallest estimation e(b) is selected and
denoted as s. This type of selection can be performed
up to r times since the last change of the set R. In other
words, once the original stop condition is true the stabi-
lity of the set R must be additionally confirmed by r
consecutive iterations of the main loop during which R
must not be changed. We call the r value the order
error tolerance factor. This factor makes the method
more robust against some incorrectness caused be
wrong order of objects’ selection due to incorrect
estimations.
Proper settings of the introduced factors will prevent

from incorrect estimations. As we show later, this pre-
vention is so good that the use of modifiers improving
indexability is possible. However, it is important to note
that the searching is still approximative.

Results
In this section, we evaluate SProt from two points of
view. First, we assess the quality of SProt in terms of
retrieval effectiveness. Second, we examine the efficiency
(speedup) of search using SProt.

Effectiveness
In order to evaluate the quality of the proposed mea-
sure, we focus on expressing how well the measure fits
the view of experts on protein structure similarity. The
difficulty of this task lies in the absence of a large-scale
expert-moderated database of pairwise protein structure
similarities, which we could use as a standard of truth.
However, there exists the expert-moderated hierarchical
evolutionary classification SCOP (structural classification
of proteins) that could be used for this purpose [27].
Using SCOP, we are able to (indirectly) compare SProt
with domain expert’s conception of the structure simi-
larity. The SCOP hierarchy consists of four levels –
family, superfamily, fold and class. Proteins in the same
family have either high sequence similarity (> 30 %), or
they have a lower sequence similarity (> 15 %) but share
very similar function or structure. Proteins that share
common evolutionary origin (based on structural and
functional features) but have different sequence reside
in the same superfamily. Structures that share major
secondary structures in similar topological distribution
are in the same fold. And finally, similar folds are
grouped into classes.
Therefore, SCOP can provide us with the information

whether two protein structures are considered similar or
not (at the given level) by a human observer. Although
such a binary measure (similar or dissimilar) is not able
to express detailed qualities of the similarity measure,
such as the quality of alignment or superposition, it is
suitable to express performance of the measure in terms
of ability of classification and retrieval.
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Protein classification
Automatic classification of protein structures is one of the
traditional problems. The task is to determine SCOP clas-
sification of a query protein according to the investigated
measure. The category of the query protein is derived
from category of the database protein being most similar
to the query. Accuracy of classification at a given level is
measured as the percentage of correctly classified queries.
We used the dataset that was originally introduced for

evaluation of the Vorolign method (Vorolign dataset).
The dataset utilizes ASTRAL-25 v1.65 [21] containing
4,357 structures. As the query set, 979 structures from
difference set between SCOP v1.67 and v1.65 are used.
Results on this datasets are summarized in Table 1.

The table describes the classification accuracy for family,
superfamily and fold levels. It also shows average values
of several characteristics describing the algorithms from
different points of view. Namely, the table contains aver-
age TM-score, average RMSD and average alignment
cover (i.e., how many percent of amino acids of a query
is aligned) between each query and its most similar
structure used for classification. At the superfamily and
fold level, SProt outperforms the other solutions, while
at the family level SProt is slightly defeated by Voro-
metric. It is interesting to realize that although the other
solutions stand out in terms of average values of the
various characteristics, SProt outperforms them in terms
of classification accuracy. Thus, better partial character-
istics do not necessarily lead to better real-world results.
Information retrieval in protein structure databases
In the previous section, we measured the hit rate based on
the most similar database structure. Thus, the most similar
structure was the only determinant of the quality. How-
ever, the user often wants to obtain all relevant structures,
not just the most similar one. The result can be then
visualized as a list of database structures ordered accord-
ing to the given measure with the most similar structure
on top. Correctness of such ordering can be measured in
terms of precision and recall, used as standard

effectiveness measure in the area of information retrieval
[28]. Precision expresses how many percent of structures
at the given cut-off rank in the result list are relevant.
Recall expresses how many percent of all relevant results
are obtained at the given cut-off rank in the result list. The
precision-recall dependence can be expressed in a graph
that describes the average precision of queries for different
recall levels. As a single-value evaluation metric, it is possi-
ble to use the widely accepted mean average precision[28].
For a single query, the average precision is defined as the
average of precision values that are computed for prefixes
in the result list, where each of the list prefixes ends by a
relevant structure. The mean of these values for all queries
then determines the mean average precision.
Another single-value evaluation metric is described in

the Vorometric paper [10] and called here also average
precision. To avoid a confusion we will call it average
precision for standard recall levels. This evaluation
metric is defined as the mean of average precision
values for the 10 standard recall levels (10%–100%).
For this experiment we used the ProtDex2 dataset

consisting of 34,055 proteins that have been originally
used for evaluation of the ProtDex2 method. As the
query set, 108 structures from medium-size families of
the dataset were selected.
We consider a selected database structure as relevant

if it comes from the same SCOP family as the query.
Precision-recall graph for the used dataset is presented
in Figure 2. The SProt has better precision-recall curve
than the other methods, except Vorometric. In compari-
son with Vorometric, the curve of SProt is slightly
worse for medium recall levels while it is noticeably bet-
ter for high levels. When measuring the above defined
single-value evaluation metrics, SProt outperforms the
other methods as Table 2 demonstrates.

Table 1 Classification accuracy

Method Family Superfamily Fold RMSD Cover TM-score

SProt 90.4 96.9 98.6 4.14 81.1 0.63

Vorometric 90.7 94.9 97.6 2.43 87.2 0.74

PPM 88.3 94.5 97.5 n/a n/a n/a

db-iTM 86.6 95.8 98.2 n/a n/a n/a

Vorolign 86.4 92.4 97.7 1.90 76.3 0.74

CE 84.6 91.9 94.1 1.95 78.2 0.77

BLAST 48.9 52.5 52.8 – – –

The evaluation of classification accuracy was performed on the Vorolign
dataset for different levels of the SCOP hierarchy (family, superfamily and
fold). The table also describes average characteristics (RMSD, alignment cover
and TM-score) of the most similar structures to the query. The values of the
db-iTM method are taken from [13], and the values of the other compared
methods are taken from [10].
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Figure 2 Average precision-recall curves The curves were
computed for all 108 queries of the ProtDex2 dataset. The data for
the compared methods are borrowed from [10].
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Quality of structural alignments
It would also be appropriate to investigate what is the
quality of alignments and scores the measure produces.
For this purpose, 10 difficult pairs of structures were intro-
duced in [29]. It is obvious from Table 1 that SProt does
not produce high alignment cover and TM-score. How-
ever, to produce better alignment and TM-score, it is pos-
sible to apply iterative improvement of TM-score. In this
case, the superposition obtained by the original SProt is
used to produce a new better alignment. A similar
approach was utilized also by other methods, e.g., Voro-
metric. For the purpose of the improvement, Needleman-
Wunsch algorithm is used with the scoring function

S
d d L

ij

ij o Tdij
do LT=

<

−∞

⎧
⎨
⎪

⎩⎪
+( )

1

1
2 3

( )

( )if 

otherwise

(8)

where dij represents distance between i-th and j-th
amino acid according to the superposition, LT is the
length of the query protein, and d0(LT) is the scale func-
tion used in TM-score. The 3d0(LT ) threshold is used
to prevent aligning too distant amino acids. The result-
ing alignment is then used in the TM-score algorithm
to obtain new score and superposition. This procedure
is repeated while the score is being improved.
As shown in Table 3, this approach (denoted SProt +

TM-optimization) significantly improves the cover and
score. On the other hand, extensive use of the iterative
concept does not improve the results of the previous
evaluations whereas it noticeably downgrades perfor-
mance of the algorithm.

Efficiency
To evaluate the speedup possibilities based on indexing,
we utilized the ProtDex2 dataset. This dataset is large
enough to show advantages of indexing. On the other
hand, it is still size that allows to perform the sequence

scan in a reasonable time. Hence results of sequence
scan can be used for comparison.
The following settings were used. We selected 1651

protein structures as pivots, one from each family in the
dataset. The value tolerance factor was set to 2.5% and
the order tolerance factor was set to 128. The number
of steps over which the pivots were protected against
elimination was set to

1
64 of the total number of pivots.

These settings provide sufficient robustness to prevent
overvalued estimations for the used dataset.
A more important property is the impact of the

employed modifiers that seamlessly balance between the
retrieval accuracy and the speed. The SProt measure
ranges from 0 to 1 while most of the distances (approxi-
mately 95%) are higher than 0.7. Therefore, we decided
on the basis of our experience to use a modifier that,
simply said, smoothly expands the interval [0.7:1] at the
expense of the interval [0:0.7] which is condensed. One
of such modifiers is the RBQ(0.7,0.15)(w) modifier [26]
parametrized by a weight w. This modifier is defined as
the rational Bézier quadric curve, starting at point [0, 0]
going toward point [0.7, 0.15] and arriving in point [1,
1]. The weight w determines the degree of deflection of
the curve toward the point [0.7, 0.15] (i.e., the convexity
of the function). Thus, the weight w determines the
ratio of the expansion and condensation and thus it also
impacts the indexability. The RBQ[0.7,0.15](w) modifier
for various weights w is depicted in the Figure 3.
As shown in Figure 4, the computation time and the

number of protein structure pairs being compared
increases with the decreasing weight, and they also natu-
rally increase with the increasing number of the
requested nearest neighbors.
It is also important to describe the precision of such

approximative searches. The precision of approximate
search using k-nearest neighbor query is measured as the
retrieval error between the query result returned by the
SProt access method (R(q)) and the accurate query result
obtained by sequential scan of the database (Rseq(q)):

Table 2 Average precision

Method Mean average
precision

Average precision for standard
recall levels

SProt 88.3 86.9

Vorometric n/a 82.91

CE 83.4 80.9

MAMMOTH 82.1 80.8

3D-BLAST 78.2 76.2

PSI-BLAST 69.8 61.8

The experiments was performed against the ProtDex2 dataset and all 108
queries were utilized. The mean average precision values of the compared
methods are taken from [14], and the average precision for standard recall
levels values of the compared methods are taken from [10].
1 based on returning top 100 hits

Table 3 Comparison of the alignment quality

Method RMSD Cover TM-score

SProt + TM-optimization 3.29 85.8 0.65

SProt 7.29 73.8 0.43

Vorometric 3.02 84.8 0.65

Vorolign 2.28 51.7 0.56

DaliLite 2.82 80.0 0.61

SSAP 4.37 88.1 0.59

CE 3.17 83.4 0.60

The tests were performed on the special set of 10 difficult pairs of structures
and average values of various characteristics are presented. The values of the
compared methods are taken from [10].
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The retrieval error describes how many percent of
structures included in the sequential scan result are
missing in the result of the SProt access method.

As shown in Figure 5A, the retrieval error naturally
increases with the increasing weight. Moreover, with the
increasing number of the requested nearest neighbors,
the error increases. An exception is the retrieval error
for high weights and low numbers of the requested
nearest neighbors, where it also increases. However,
with the increasing number of the requested nearest
neighbors, the retrieval error becomes less significant.
The reason is that missing structures are often located
in the back positions of the result. As shown in the
information retrieval experiment, at the back positions
there are located relatively few of the relevant structures
(according to meaning of domain experts). So, we also
introduce SCOP retrieval errors that takes into account
the SCOP categories (family, superfamily or fold):
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where R(q) is the result set obtained by the method
for query q and Rseq(q) is the sequential scan result set
and SL(q) is a set of all structures having the same
SCOP category at level L (at the family, superfamily or
fold level) as the query structure q. Thus, the SCOP
errors describe how many percent of relevant structures
included in the sequential scan result are missing in the
result of the SProt access method. As it can be seen in
Figure 5, the SCOP errors still naturally increase with
the increasing weight. Nevertheless, the errors do not
negatively depend on the number of the requested near-
est neighbors and they are very small. Again, the
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Figure 4 Access method efficiency The efficiency of the SProt access method was measured for different weights of the modifier and for
different numbers of requested nearest neighbors. All the 108 queries of the ProtDex2 dataset were utilized and the average values are
presented. The efficiency is expressed both in terms of the relative (according to sequential scan) number of protein structure pairs being
compared (A) and in terms of the relative (according to sequential scan) computation time (B). Figure (B) also includes the absolute time which
was measured on a machine containing an Intel Xeon E7540 2.00GHz processor. The sequential scan takes 39.4 minutes on average. Vertical
dashed lines denote minimal, average and maximal size of the query families in the dataset.
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exceptions are the errors for high weights and low num-
bers of the requested nearest neighbors.
When searching in ProtDex2 dataset, we could con-

clude that the weight value of the modifier set close to
1 results in reasonably fast retrieval and low retrieval
errors. However, the optimal configuration of the SProt
access methods parameters may vary, depending on the
dataset used (especially on its size and indexability).
However, it is important that the above factors (except
from pivot selection) do not need to be know during
the database indexing and can be set right at the query
time. Thus, the user has the freedom to change the

settings if he is not satisfied with the obtained results,
and run the query again using the same index.

Conclusions
In this paper, we proposed SProt – a novel algorithm
for measuring protein structure similarity that puts
emphasis on high-quality modeling of local similarities
of the amino acids. This is achieved by representing
each amino acid by its spatial neighborhood containing
close amino acids. The approach leads to good real-
world results, especially for superfamily/fold classifica-
tion accuracy and for precision at high recall levels
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Figure 5 Retrieval errors The retrieval errors of the SProt access method were measured for different weights of the modifier and for different
numbers of requested nearest neighbors. All the 108 queries of the ProtDex2 dataset were utilized and the average values are presented. The
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where we outperform all the compared solutions. The
focus on the quality of the modeling results in high
computational demands of the method. We resolve this
handicap be introduction of SProt access method – a
modification of LAESA metric access method – that
highly decreases the runtime needed for scanning large
datasets of protein structures. The speedup makes SProt
competitive with the best contemporary solutions not
only concerning the effectiveness but also the efficiency.
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