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A B S T R A C T

Virus-like particles (VLPs) are nanostructures that resemble the structures of viruses. They are composed
of one or more structural proteins that can be arranged in several layers and can also contain a lipid outer
envelope. VLPs trigger a high humoral and cellular immune response due to their repetitive structures. A
key factor regarding VLP safety is the lack of viral genomic material, which enhances safety during both
manufacture and administration. Contemporary VLP production may take advantage of several systems,
including bacterial, yeast, insect and mammalian cells. The choice of production platform depends on
several factors, including cost and the need for post-translational modifications (PTMs), which can be
essential in generating an optimal immune response. Some VLP-based vaccines designed to prevent
several infectious diseases are already approved and on the market, with many others at the clinical trial
or research stage. Interest in this technology has recently increased due to its advantages over classical
vaccines. This paper reviews the state-of-the-art of VLP production systems and the newest generation of
VLP-based vaccines now available.
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Introduction: viral vaccines

Types of vaccine

The vast majority of preventative viral vaccines consist of an
attenuated or inactivated virus, for administration to the individual
to provoke a protective immune response. These types of vaccines
are very effective, and generally a second administration or the use
of adjuvants is not required. Nevertheless, attenuated vaccines in
particular present a risk at the level of manufacture or
administration since they can in principle revert to a pathogenic
form [1–3]. Newer generation vaccines improve safety by
removing whole viruses from the formulation altogether, instead
utilizing protein subunits, DNA, or virus-like particles (VLPs)
(Fig. 1). Subunit vaccines are composed of recombinant viral
proteins or purified proteins from the wild-type virus, which act as
antigens [4]. DNA vaccination is a technique that consists of the
direct administration to the recipient of plasmid DNA encoding an
antigenic protein which is expressed by the recipient’s cells,
subsequently generating an immune response [5].
Abbreviations: VLP, virus-like particle; B/IC, baculovirus-insect cell expression
system.
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Virus-like particles are artificial nanostructures that resemble a
virus. They are composed of all or some of the proteins that form
the viral capsid but lack genomic material, precluding any
possibility of reversion mutations or pathogenic infection. VLPs
are unable to replicate in the recipient but stimulate the immune
system through recognition of repetitive subunits, producing a
high cellular and humoral immune responses [6]. Due to the
advantages compared to other types of vaccines, the interest in VLP
technology has increased in recent years (Fig. 2).

Types of virus-like particles

Virus-like particles are composed of one or several structural
proteins that have the ability to self-assemble when recombinantly
expressed. The proteins can be arranged in single, double or triple
layers [7]. In the case of human papillomavirus (HPV) [8], the VLPs
are formed by a single structural protein that forms the basic
capsid of the particle. Other more complex VLPs comprise several
structural proteins, e.g. VLPs of the Reoviridae family are formed by
2 to 4 different proteins disposed in several layers [7]. VLPs can also
have an external lipid envelope. In this case, the structural protein
core exits the cell through a budding process, enveloping the
capsid within part of the cell membrane. This is the case for HIV-1
VLPs, which are formed by the Gag polyprotein and take part of the
host cell membrane as the envelope [9]. Influenza VLPs are also
formed by the protein core and the hemagglutinin spikes that are
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Fig. 1. Types of vaccines: a. Live-attenuated vaccine; b. Inactivated vaccine; c. Subunit vaccines; d. Gene based vaccines; e. Virus-like particles.
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displayed on its surface [10]. Hence, the choice of the producer cell
line is very important since enveloped-VLPs will contain the
proteins expressed on its membrane.

Recently, a novel type of VLP, termed “chimeric VLPs”, has been
developed. Their structure is composed of a viral protein while the
envelope proteins are derived from a second virus. Recently, a
porcine circovirus type 2 VLP was developed displaying a porcine
reproductive and respiratory syndrome virus GP5 epitope B [11].
This opens the possibility of using VLPs as a delivery system.
Envelope proteins can act as signals for specific tissue receptors. In
this way, VLPs may be targeted to a given tissue, with capsid
proteins linked to components for delivery to the targeted tissue.
Thus, VLPs have new applications in drug delivery, gene therapy,
and cancer treatment [12].

Production methods

The expression system chosen for VLP production must take
into consideration the requirements for protein folding and post-
translational modifications. Several expression systems are
Fig. 2. Increase in the interest in Virus-Like Particles. Tot
available, and the main advantages and disadvantages of each
system are summarised in Table 1.

Bacteria and yeast

Bacteria and yeast represent easily scaled up and cost-effective
production systems. Bacteria are a more suitable expression
system for VLPs formed with just one or two structural proteins
and no envelope. The main advantage is the high yield of the
proteins of interest; however, bacteria are unable to perform post-
translational modifications, which can be very important for VLP
immunogenicity [6]. Production of HPV Type 16 L1 VLPs has been
successfully carried out using Lactobacillus casei, where immuno-
fluorescence was used to confirm the presence of conformational
epitopes [13]. Conversely, E. coli bacteria were used for the
production of recombinant norovirus capsid, which was found to
be useful in antigenic and also receptor-binding studies, but not as
a vaccine candidate [14].

Due to the ability of yeast to perform post-translational
modifications, it represents a step forward in VLP production.
al number of publications from PubMed about VLPs.



Table 1
Advantages and disadvantages of the different VLP production platforms.

Production
platform

Advantages Disadvantages

E. coli � Ease of expression
� Ability to scale-up
� Low production cost

� Does not allow for glycosylation.
� Endotoxins

Yeast � Ease of expression
� Ability to scale-up
� Low production cost

� Non-appropriate protein glycosylation (i.e. high mannose glycoprotein
modification).
� Risk of incorrect folding & assembly.

Insect cells � Can produce large amounts of correctly folded VLP in high density cell culture
conditions
� Ability to scale-up
� The risk of culturing opportunistic pathogens is minimised compared to
mammalian cell culture
� Host-derived insect cell/baculovirus components may act as vaccine
adjuvants, help trigger a more effective immune response

� Limited to high mannose glycoprotein modification.
� Baculovirus contaminants may be difficult to remove
� Host-derived insect cell/baculovirus components may also mask the
immune response against the desired epitope

Mammalian
cells

� Producer cells more closely related to the natural host
� Appropriate PTMs and authentic assembly of VLPs

� Higher production cost
� Lower productivities

Plants � Ease of expression
� Ability to scale-up
� No human-derived virus contamination

� Cannot undergo PTMs and VLP assembly
� Low expression levels
� Stability: antigen degradation
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Recently, Chikungunya VLPs were produced using P. pastoris and
promising results were obtained in terms of murine immunisation
[15]. Indeed, several yeast-produced VLPs have already reached
approval by regulatory agencies, such as papillomavirus VLP [16].
Nevertheless, their PTM pattern is not exactly the same as in
humans.

Baculovirus/insect cell (B/IC) expression system

The B/IC system process is divided into two phases: an infection
phase and a production phase. Baculovirus design is a fast and easy
procedure, which makes it suitable for the production of vaccines
for viruses whose surface protein can vary between each outbreak
[17]. The B/IC system can produce protein quantities comparable
with those achieved with bacteria or yeast, but its capacity to
perform complex PTMs is greater [6]. Two main insect cell lines are
used for recombinant protein production using B/IC expression, Sf9
(Spodoptera frugiperda) and High Five cells (Trichoplusia ni). Many
VLP types have been produced using the B/IC system, including
Chikungunya, HIV or porcine parvovirus-like particles [18–20]. The
main disadvantage is that enveloped baculoviruses are also
produced at the same time as VLPs, making purification a difficult
and expensive step [10].

There are currently other platforms to produce VLPs that avoid
the use of baculovirus, hence simplifying purification. Stable cell
lines can be generated in which the protein of interest is
continuously expressed. HIV-1 VLPs were produced by stably
transfected Drosophila S2 cells [21]. If the protein produced has a
cytotoxic effect, it can be regulated by an inducible promoter.
Transient transfection can also be carried out in insect cells.
Cellfectin has been used for the production of influenza A VLPs
consisting of haemagglutinin (HA) and matrix protein (M1) in Sf9
cells [22]. Little research has investigated the use of cheaper
transfection reagents, such as polyethyleneimine (PEI), for
recombinant protein production in insect cells [23].

Mammalian cells

Several mammalian cell types are suitable for VLP production.
Although mammalian cells produce less of the protein of interest
compared to other systems, they have the capacity to produce
more complex and accurate PTMs [24]. For this reason, mammalian
cells are typically used to produce complex enveloped VLPs
composed of multiple structural proteins. Several mammalian cell
lines are available for recombinant protein production and are
adapted to grow in suspension using serum-free chemically
defined media [25]. One of the most extensively utilised is the
Chinese Hamster Ovary (CHO) cell line. In comparison with other
mammalian cell lines, it has the advantage that it is not human-
derived and therefore presents a lower risk of contamination by
human viruses [26]. CHO cells have already been used for the
generation of hantavirus-like particles, which were able to induce
a specific immune response in mice [27]. The HEK293 cell line is
another widely used mammalian production platform, which has
been tested for the production of many different types of VLP, such
as rabies, HIV, and influenza [9,28,29]. Other human cell lines being
evaluated for the production of complex recombinant proteins
include CAP-T cells, derived from human amniotic fluid, for HIV-1
VLP production [30].

There are two methods for producing VLPs in mammalian cell
cultures. The classical method is the generation of a stable cell line
in which the gene encoding the protein of interest is integrated.
This process starts with the transfection of a cell culture followed
by a single clone selection process in which high producers are
selected [28]. Up to six months later, a stable cell line can be
obtained. Transient transfection is a much faster process. In this
case, VLPs can be harvested approximately 48 to 72 h post
transfection [9], generating an appreciable quantity of the product
of interest within two weeks. This process is suitable when small
quantities of different VLPs are needed, such as in initial research
phases. It is also useful when the wild-type antigen of interest
undergoes frequent mutations, requiring the vaccine to be
frequently modified, or when one of the VLP proteins is toxic
for the producer cell line.

Plants

Transgenic plants have also been used for VLP production.
Agrobacterium tumefaciens is commonly used for infection and
transformation of the cells [31]. These bacteria can infect plant
cells and introduce a specific gene of interest into the host genome.
Several examples are available of VLP production in plants, such as
for HPV type 16 or influenza [32,33]. The most commonly used
plants for recombinant protein production are Nicotiana tabacum
and Arabidopsis thaliana [34]; others include potato or tomato
[35,36].
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Production yields

Comparison of production yields among different systems is not
always straightforward, since production is dependent not only on
the system but also on the complexity of the VLP. Nevertheless, a
wide range of yields can be estimated. As previously discussed,
bacteria and yeast are high-concentration production systems, and
yields can vary from 0.75 to 700 mg of protein per ml of culture
[37,38]. Animal-based systems achieve lower production yields:
between 0.2 and 18 mg/ml in the case of B/IC system [39,40] and
between 0.018 and 10 mg/ml for mammalian cell technology
[41,42]. Animal cells tend to be lower VLP-producers, but for
complex enveloped VLPs, they have become the platform of choice.
Transgenic plants are the most difficult to compare with the other
systems, since their production is generally calculated per mg of
vegetal tissue, with yields ranging from 4 to 2380 pg/mg of leaf
[43,44].

Culture modes

For VLP production, there are three different culture modes:
batch, fed-batch, and continuous cultivation. In the batch mode, all
the elements needed are added at the beginning of the culture. This
has the advantage that the medium is well utilised, and the product
is highly concentrated. It is the method most commonly used for
VLP production, and has been used for many types of VLP, including
HIV [30], Chikungunya virus [18], and Ebola virus [45]. To extend
the exponential growth phase, the fed-batch mode can be
implemented. Here, small quantities of nutrients or medium are
added during the culture to supply the cells with specific
components depleted. Fed-batch strategies can be used to reach
high cell concentrations. Fed-batch was tested for the production
of parvovirus-like particles in the B/IC system [20].

Finally, in continuous cultivation mode, fresh medium is added
while the conditioned medium is extracted. With this method,
continuous production is obtained and the product must be stored
under proper conditions while it is being produced. Product
concentrations remain the same as in the batch mode, but higher
total quantities are obtained. However, continuous production
requires large amounts of medium, which presents difficulties in
adapting this method to large-scale production. Recently, a novel
production strategy termed Extended Gene Expression (EGE),
using the HEK293 mammalian cell line and transient transfection,
was used for HIV1 VLP production. In this case, HEK293 cell
medium was renewed every 48 h and two retransfection rounds
were carried out at Erlenmeyer flask scale [46]. Continuous
cultivation has also been used to produce rabies VLPs in HEK293.
The HEK293 cell line was made to stably expresses the VLPs in a 5L
bioreactor scale [28].

Fed-batch and continuous cultivation modes can also be used
when genes encoding VLP proteins are stably expressed in cell line
platforms regulated by inducible promoters. After attaining high
density cell growth, gene expression is induced obtaining higher
protein concentrations.

Classically, bioreactors for recombinant protein production are
stainless steel vessels. Nevertheless, single-use technology is
gaining importance in the manufacture of biopharmaceuticals.
Most useful for small to medium scale production, it has certain
advantages for VLP production. It does not require an in situ
cleaning and sterilisation process, precluding cross-contamina-
tion. It has been reported that operation with single-use
bioreactors reduces significantly both the investment as well as
the operating costs. However, single-use vessels are less useful for
large volume production, with the maximum production volume
(200 L) limited by the process dependence on bags. The bags may
also release leachables and extractables to the cell culture, and
obtaining them can be a limiting factor in production. The probes
needed for monitoring the culture are also not well adapted to the
single-use technology [47].

VLP-based vaccines

Hepatitis B virus

Hepatitis B virus (HBV), a small DNA virus from the family of
Hepadnaviridae approximately 42 nm in size, is composed of a lipid
envelope and a capsid that contains the viral circular DNA genome
(3-3.3 kb) and a DNA polymerase. The core protein of the virus is
HBcAg and is coded by the C gene. The enveloped proteins (HBsAg)
are coded by the gene S in the viral genome [48].The first HBV
vaccines were derived from inactivated HBsAg particles from sera
of HBV-positive patients [49]. The development of recombinant
DNA technology and safety concerns regarding human plasma-
derived vaccines spurred interest in the development of new-
generation vaccines. HBsAg was initially produced in E. coli [50],
but was not secreted and the protein was misfolded. Eukaryotic cell
lines were then sought to produce the recombinant protein. Yeast
and mammalian cells are the two systems used for the production
of the HBV vaccine. Yeast lines stably express the enveloped
protein HBsAg, which can self-assemble and is secreted by the
yeast cell, resulting in 20 nm size particles similar to those
produced by infected human cells. The mammalian CHO cell line
has also been used for the production of HBsAg VLPs. These tend to
be larger than the ones produced in yeast and are composed of a
mixture of glycosylated and non-glycosylated HBsAg, in contrast
with yeast VLPs which are composed of only non-glycosylated
HBsAg. This difference in size and composition leads to the higher
immunogenicity of the particles [51]. This vaccine is also produced
by various transgenic plants [35]. Hepatitis E VLP vaccine has also
been approved in China under the name of Hecolin. Capsid protein
from Hepatitis E is expressed in E. coli and purified. The HEK 293
protein self-assembles into homodimers resulting in the formation
of VLPs. A VLP-based Hepatitis C vaccine is also currently in the
research stage [52].

Malaria

RTS,S/AS01 (Mosquirix) is the first vaccine generated against a
parasitic disease [53]. It is a VLP-based vaccine composed of the
surface of hepatitis B virus (S) and parts of the secreted
circumsporozoite protein (CSP) from the malaria parasite. These
are the central tandem repeat (R) and epitopes from the CSP
carboxy-terminal (T). The three parts (RTS) are engineered into the
hepatitis B surface antigen (HBsAg). Upon expression in yeast cells,
the fusion protein forms VLPs, which present the antigens to the
immune system, thus provoking a response [54].

Human papillomaviruses

VLP vaccines against HPV are based on the structural capsid
protein L1 [55]. There are two available vaccines for HPV
prevention: Gardasil and Cervarix. They protect against HPV types
16 and 18, which are both cancer-associated serotypes. Gardasil
VLP is produced by S. cerevisiae, and protects against HPV types 6
and 11. The recombinant protein L1 has the ability to self-assemble
inside the yeast and form the VLPs. To purify them, a cell disruption
process is carried out followed by a series of chemical and physical
purification steps. Cervarix is produced by Trichoplusia ni cells
infected with a recombinant baculovirus containing the L1 gene. A
cell disruption process is followed by several purification steps to
obtain the protein. After the purification process, L1 is assembled
into VLPs [56]. There are also other HPV VLPs for protection from
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other HPV types produced in yeast and even in bacteria at a
research stage [57].

Influenzavirus A

Influenzavirus A is between 80 and 120 nanometers in
diameter. The envelope is composed of two proteins: hemaggluti-
nin (HA) and neuraminidase (NA), which are the commonly
targeted protein in antiviral treatments. The B/IC platform has been
used for the production of influenza VLPs. Sf9 cells were infected
using three different baculoviruses. Each baculovirus encodes for
one gene: HA, NA and matrix protein gene (M1). The co-expression
of these three proteins leads to the formation of VLPs that can be
harvested from the culture supernatant. These VLPs provide a
broader immune response than the inactivated virus or the
recombinantly produced hemagglutinin [58]. Transgenic plant
technology has also been used for the production of influenza VLPs,
which have provided good results in the preclinical phases [33,59].

Human immunodeficiency virus (HIV)

A complete HIV particle measures approximately 80–120 nm.
The genome contains 3 major genes: gag, pol and env. Gag encodes
the three domains of the capsid of the virion. Specifically, the
matrix (MA) subdomain binds to the inner phase of the lipid
envelope that surrounds the particle. The capsid (CA) domain
forms a conical and more condensed core that contains the viral
RNA bound to the nucleocapsid (NC) domain and the viral
enzymes. The envelope proteins are encoded by the env gene
and are gp120 and gp41, which are placed in the lipid bilayer and
displayed on the viral surface. Finally, pol encodes the enzymatic
proteins involved in the viral cycle [60]. HIV VLPs have been
produced using different expression platforms. Expressed Gag
polyprotein has the ability to migrate to the cell membrane, self-
assemble, and bud from the cell. HIV VLPs produced by S. cerevisiae
have already reached the clinical trial phase. They are composed of
the structural proteins p17 and p24 [61,62]. HEK293, among other
mammalian cell lines, have been used for the production of HIV
VLPs based on the Gag and/or Env proteins using either transient
transfection or the generation of a stable cell line [9,63]. Insect cell/
Baculovirus systems have also been used for the production of Gag-
Env VLPs and stable insect cell lines producing the Gag polyprotein
have been developed for the expression of these VLPs [64].

Human parvovirus

Human parvovirus is a small, non-enveloped DNA virus of the
family Parvoviridae. It has two main structural proteins, VP1 and
VP2 [65]. Human parvovirus B19 (HPVB19) VLPs have reached the
clinical trial stage, and are composed of the proteins VP1 and VP2
produced in the B/IC system. Sf9 cells are infected by two
baculoviruses, which leads to the production and self-assembly of
immunogenic VLPs [6].

Norovirus

Norovirus (NV) is a 27-nm-diameter RNA virus responsible for
acute viral gastroenteritis and belongs to the Caliciviridae. It is non-
enveloped with a 7.5 kb genome encoding a large polyprotein that
is cleaved into both structural (VP1 and VP2) and regulatory
proteins (NS1/2 to NS7). NV VLPs in clinical trials are composed of
the capsid protein. The main structural protein VP1 has been
expressed in the B/IC system (Sf-9), and is producing promising
results in clinical trials. NV VLPs formed by this capsid protein have
also been produced by transgenic plants at the clinical trial level
[66].
Severe acute respiratory syndrome-related coronavirus (SARS-CoV)

SARS-CoV belongs to the Coronaviridae. It is enveloped, with an
unusually large (29.7 kb) single-stranded RNA genome encoding 14
proteinswhich have either regulatory or structural roles. The virus
is composed of four structural proteins: nucleocapsid (NP), spike
(SP), membrane (MP) and an envelope (EP). It has also been
produced by the B/IC system in Sf21 cells by the expression of SP, EP
and MP through infection of the culture with three different
baculoviruses, one per protein to be expressed, at a research level
[67].

Conclusions

Virus-like particles represent a step forward in vaccine
development. They resemble the actual structure of a virus, which
provokes a humoral and cellular immune response. Furthermore,
they contain no viral genetic material, which makes them safer for
vaccine recipients and operators that are in contact with the
vaccine. This is an advantage compared with the classical vaccines,
such as live-attenuated and inactivated, as there is no danger of
accidental infection. Bacteria and yeast are easy and fast platforms
for recombinant protein production, but they lack the ability to
produce complex structures and PTMs. This makes them suitable
for the production of simple and generally non-enveloped VLPs.
The B/IC system has the ability to produce much more complex
structures due to its ability to glycosylate recombinant proteins.
This system can reach high yields that are comparable with those
obtained with bacteria and yeast. Baculovirus design, construction,
and cell infection are also relatively straightforward processes,
further streamlining production. The main drawback of this
platform is the purification step, as enveloped baculoviruses are
produced at the same time as VLPs and possess very similar
physical and chemical characteristics. For this reason, other
baculovirus-free systems using insect cells are currently being
investigated. Finally, mammalian cells are most suitable for the
production of complex structures. This system faithfully replicates
human glycosylation patterns, representing a significant advan-
tage. However, yields obtained with mammalian cell lines are
generally much lower compared to other systems.

Selection of the producer cell line must consider the needs and
characteristics of the VLP being produced. It is an especially
important step in enveloped VLP production, since membrane
proteins from the producer cell line will be present in the VLP
envelope, possibly enhancing immunogenicity and acting as an
adjuvant.

A number of VLP-based vaccines are already available on the
market with good results. Many others are still in clinical and
preclinical trials. The interest in VLP design and production has
increased in recent years due to the advantages that they present
over classical vaccines. New applications in cell line targeting for
drug delivery have been explored, which opens the possibility of
new uses of VLP technology.
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