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Abstract: The microbial metabolite butyrate serves as a link between the intestinal microbiome and
epithelium. The monocarboxylate transporters MCT1 and SMCT1 are the predominant means of
butyrate transport from the intestinal lumen to epithelial cytoplasm, where the molecule undergoes
rapid β-oxidation to generate cellular fuel. However, not all epithelial cells metabolize butyrate
equally. Undifferentiated colonocytes, including neoplastic cells and intestinal stem cells at the epithe-
lial crypt base preferentially utilize glucose over butyrate for cellular fuel. This divergent metabolic
conditioning is central to the phenomenon known as “butyrate paradox”, in which butyrate induces
contradictory effects on epithelial proliferation in undifferentiated and differentiated colonocytes.
There is evidence that accumulation of butyrate in epithelial cells results in histone modification and
altered transcriptional activation that halts cell cycle progression. This manifests in the apparent
protective effect of butyrate against colonic neoplasia. A corollary to this process is butyrate-induced
inhibition of intestinal stem cells. Yet, emerging research has illustrated that the evolution of the crypt,
along with butyrate-producing bacteria in the intestine, serve to protect crypt base stem cells from
butyrate’s anti-proliferative effects. Butyrate also regulates epithelial inflammation and tolerance to
antigens, through production of anti-inflammatory cytokines and induction of tolerogenic dendritic
cells. The role of butyrate in the pathogenesis and treatment of intestinal neoplasia, inflammatory
bowel disease and malabsorptive states is evolving, and holds promise for the potential translation
of butyrate’s cellular function into clinical therapies.
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1. Introduction

Biological understanding of the complex and dynamic homeostatic mechanisms of
the intestinal mucosa has recently become even more intricate, as investigators begin to
consider the role of the microbiome in health and disease. In this review, we focus on the
microbial metabolite butyrate, which represents one of the most extensively researched
molecular mediators in the host–microbiome relationship. Produced by colonic bacteria,
butyrate modulates several epithelial processes throughout the gastrointestinal tract, in-
cluding cell cycle progression, inflammation, and barrier integrity. Studies to date suggest
that butyrate is a chameleon in its ability to exert distinct, but sometimes contradictory
effects on epithelial cells under different conditions. Evolving knowledge of the intesti-
nal crypt at a molecular level has now permitted a more detailed and discriminating
appreciation for these incongruous experimental results. Understanding how butyrate
interacts differently with differentiated enterocytes as opposed to undifferentiated cells in
the epithelial crypt is of value for scientists and clinicians interested in intestinal neoplasms,
inflammatory bowel disease, and malabsorptive states.

2. Production and Fate of Butyrate in the Intestinal Lumen

Several species of commensal Gram-positive bacteria in the colon possess the abil-
ity to synthesize butyrate, primarily from dietary starch and fiber, with the two most
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abundant groups appearing to be Faecalibacterium prausnitzii and Roseburia species, belong-
ing to clostridial clusters IV and XIVa, respectively [1,2]. Bacterial synthesis of butyrate
involves formation of butyryl coenzyme A from two molecules of acetyl coenzyme A,
followed by conversion to butyrate by one of two known enzymatic pathways (reviewed
by Louis et al. [2]).

Butyrate is structurally classified as a short-chain fatty acid (SCFA), along with the
similar molecules, acetate and propionate. The luminal concentration of butyrate in humans
and animals has been estimated at 10–20 mM, which is higher than other SCFA [3,4]. Ninety-
five percent of butyrate in the colon is absorbed by colonocytes, for which it serves as a
dominant energy source via β-oxidation and the tricarboxylic acid cycle [5]. While small
intestinal enterocytes can also absorb butyrate, these cells primarily derive energy from
glucose and glutamate [6].

At physiologic pH, butyrate exists in its ionized form, and thus requires carrier-
mediated entry across the epithelial cell membrane. MCT1, a member of the proton-linked
monocarboxylate transporter group is an apically oriented membrane-bound protein that
is a major channel for intracellular SCFA transport [7]. Additional bicarbonate and sodium-
linked transport proteins, including SMCT1, mediate passage of butyrate across both the
apical and basolateral membranes, to a lesser extent (reviewed by Cook [8]). Systemic
absorption of butyrate is low, as the majority is rapidly metabolized for fuel by epithelial
cells. When absorbed, SCFAs travel via the portal circulation to the liver, where they are
metabolized for energy or serve as substrate for longer-chain fatty acids [3].

3. Butyrate and Intestinal Epithelial Proliferation
3.1. The Butyrate Paradox

Multiple studies have demonstrated an association between a high-fiber diet and
decreased risk of colon cancer [9–11]. These data naturally led into investigation of bu-
tyrate’s effects on colonocyte division, based on the link between dietary fiber and butyrate
production [12]. Whitehead et al. were among the first to demonstrate that butyrate slowed
proliferation and induced differentiation in a colon cancer cell line [13]. These findings
were subsequently replicated in various tumor-derived cell lines [14–16]. However, animal
models failed to show equivalent effects on the intestinal epithelium in vivo, and in fact
showed enhanced epithelial proliferation in response to butyrate [17–19]. Furthermore,
experiments with non-tumor cell lines showed that butyrate stimulated proliferation and
inhibited differentiation in culture. This phenomenon of the molecule’s opposing effects
on healthy versus cancerous colonocytes was dubbed the butyrate paradox [20,21].

An explanation for the butyrate paradox may be found in epigenetics. Butyrate
has long been known to modify chromatin structure through histone modification [22].
Whitlock is credited with first linking the histone deacetylase (HDAC) inhibitor properties
of butyrate with cell cycle inhibition [23]. In differentiated intestinal epithelial cells, butyrate
is rapidly metabolized for fuel and thus does not have the opportunity to inhibit HDAC. In
contrast, colon cancer cells preferentially use glucose, rather than SCFA, as fuel for cellular
function—an adaptation that facilitates survival of neoplastic cells, referred to as the
Warburg effect. The dominance of glycolytic metabolism over oxidative phosphorylation
in cancerous colonocytes allows butyrate to accumulate and act as an HDAC inhibitor,
thereby halting cell cycle progression through altered gene expression (see Figure 1) [24].
There is growing evidence that butyrate also directly binds and alters activity of metabolic
enzymes in colon cancer cells, thus conferring a protective anti-neoplastic effect through
reversal of the Warburg effect [25–27].
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Figure 1. Distinct metabolic pathways for cellular energy in differentiated and undifferentiated colonocytes are responsi-
ble for ‘the butyrate paradox’. Microbially-derived butyrate in the colonic lumen is transported intracellularly by SMCT1 
and MCT1, among other membrane-bound transport proteins. The fate of cytoplasmic butyrate depends on the cell’s state 
of differentiation. (1) In differentiated colonocytes, butyrate is rapidly oxidized and utilized for cellular energy production. 
In undifferentiated colonocytes, such as neoplastic cells, cellular fuel is preferentially derived from glycolytic pathways, 
leading to intracellular butyrate accumulation. (2) Butyrate is an HDAC inhibitor, which results in hyperacetylation of 
histone H3 with consequent chromatin relaxation and expression of genes otherwise silenced by HDAC activity. (3) Spe-
cifically, butyrate-induced histone modification is associated with transcriptional activation of genes involved in cell cycle 
inhibition and apoptosis. 

3.2. Transcriptional Activation of Cell Cycle Genes Offer Protection from Colon Cancer 
Butyrate-induced cell cycle arrest occurs predominantly in G1 phase, with lower lev-

els of inhibition also observed in G2 and M phases [28,29]. Chromatin analysis has re-
vealed that butyrate results in Histone 3 hyperacetylation with subsequent enrichment of 
important cell cycle regulatory proteins including cyclin D1 and p21 [30,31]. Importantly, 
cell cycle inhibition is accompanied by an increase in cellular differentiation, which is key 
in counteracting uncontrolled proliferation by tumor cells [32,33]. 

Daly and colleagues demonstrated that MCT1-dependent transport of butyrate 
across the cell membrane is linked to the differential gene expression described above [34]. 
Others have similarly suggested that the SMCT1 transporter functions as a tumor-sup-
pressor gene—in the colon and in other tissues—due to its importance in maintaining the 
intracellular butyrate concentration necessary for gene expression associated with cell cy-
cle regulation [35,36]. As such, intracellular butyrate transport may be an important prog-
nostic consideration in colon cancer. 

Transcriptional activation of proteins involved in cellular apoptosis also contributes 
to the anti-neoplastic effects of butyrate in colon cancer. Butyrate-induced expression of 
numerous pro-apoptotic genes, such as Bax and Bak, and suppression of anti-apoptotic 
genes such as Bcl-2, lead to induction of the caspase cascade in tumor cells [37,38]. Nota-
bly, expression of apoptotic genes was not reduced in cells exhibiting downregulation or 
absence of MCT1 [34]. The low intracellular concentrations of butyrate in these cells sug-
gests that regulation of colonocyte apoptosis occurs independently of histone modifica-
tion. Rather, the proposed mechanism involves binding of butyrate to GPR109a, a G-pro-
tein coupled receptor (GPCR) present on the apical membrane of intestinal epithelial cells 

Figure 1. Distinct metabolic pathways for cellular energy in differentiated and undifferentiated colonocytes are responsible
for ‘the butyrate paradox’. Microbially-derived butyrate in the colonic lumen is transported intracellularly by SMCT1 and
MCT1, among other membrane-bound transport proteins. The fate of cytoplasmic butyrate depends on the cell’s state of
differentiation. (1) In differentiated colonocytes, butyrate is rapidly oxidized and utilized for cellular energy production. In
undifferentiated colonocytes, such as neoplastic cells, cellular fuel is preferentially derived from glycolytic pathways, leading
to intracellular butyrate accumulation. (2) Butyrate is an HDAC inhibitor, which results in hyperacetylation of histone
H3 with consequent chromatin relaxation and expression of genes otherwise silenced by HDAC activity. (3) Specifically,
butyrate-induced histone modification is associated with transcriptional activation of genes involved in cell cycle inhibition
and apoptosis.

3.2. Transcriptional Activation of Cell Cycle Genes Offer Protection from Colon Cancer

Butyrate-induced cell cycle arrest occurs predominantly in G1 phase, with lower
levels of inhibition also observed in G2 and M phases [28,29]. Chromatin analysis has
revealed that butyrate results in Histone 3 hyperacetylation with subsequent enrichment of
important cell cycle regulatory proteins including cyclin D1 and p21 [30,31]. Importantly,
cell cycle inhibition is accompanied by an increase in cellular differentiation, which is key
in counteracting uncontrolled proliferation by tumor cells [32,33].

Daly and colleagues demonstrated that MCT1-dependent transport of butyrate across
the cell membrane is linked to the differential gene expression described above [34]. Others
have similarly suggested that the SMCT1 transporter functions as a tumor-suppressor
gene—in the colon and in other tissues—due to its importance in maintaining the intra-
cellular butyrate concentration necessary for gene expression associated with cell cycle
regulation [35,36]. As such, intracellular butyrate transport may be an important prognostic
consideration in colon cancer.

Transcriptional activation of proteins involved in cellular apoptosis also contributes to
the anti-neoplastic effects of butyrate in colon cancer. Butyrate-induced expression of nu-
merous pro-apoptotic genes, such as Bax and Bak, and suppression of anti-apoptotic genes
such as Bcl-2, lead to induction of the caspase cascade in tumor cells [37,38]. Notably, ex-
pression of apoptotic genes was not reduced in cells exhibiting downregulation or absence
of MCT1 [34]. The low intracellular concentrations of butyrate in these cells suggests that
regulation of colonocyte apoptosis occurs independently of histone modification. Rather,
the proposed mechanism involves binding of butyrate to GPR109a, a G-protein coupled
receptor (GPCR) present on the apical membrane of intestinal epithelial cells [39]. GPR109a
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binding exerts a tumor suppressive effect through reduced expression of Bcl-2 and Bcl-xL,
as well as through regulation of the Wnt/β-catenin signaling pathway that is fundamental
to colorectal carcinogenesis [39,40].

Though considerable data supports the antineoplastic potential of butyrate, clinical
application of what are largely cell culture-based experimental findings has yet to be estab-
lished. Progress toward therapeutic translation is being made, however, with in vivo stud-
ies demonstrating the success of HDAC inhibitors in preventing and treating malignancies,
including colorectal and prostate cancers [41,42]. Furthermore, microbiome characteriza-
tion using 16S rRNA sequencing has emerged as a tool for identifying specific microbial
signatures associated with colon cancer, which may aid in risk stratification [43,44].

3.3. Butyrate and the Crypt as a Lens into Microbiome–Host Coevolution

The intestinal crypt is the proliferative compartment of the epithelium, composed of
intestinal stem cells and rapidly dividing transit amplifying cells [45]. As such, disruption
of the cell cycle or cellular division in the crypt compartment has significant consequences
for the entirety of the intestinal epithelium. There is evidence that cells at the crypt base
rely predominantly on glycolysis over the citrate cycle and oxidative phosphorylation
for cellular fuel—similar to neoplastic cells—and thus are susceptible to the downstream
effects of intracellular butyrate accumulation [46,47].

Kaiko et al. recently presented evidence that the crypt morphology in humans and
higher order mammals may have evolved as a means to protect intestinal stem cells and
proliferating cells from the inhibitory effects of butyrate [46]. First, they illustrated that
rapid uptake and oxidation of butyrate by surface-level colonocytes decreases butyrate lev-
els at the crypt base and produces a butyrate gradient along the crypt axis in mouse colon.
In contrast, the evolutionarily primitive zebrafish lack butyrate-producing bacterial organ-
isms, as well as intestinal crypts. Second, the investigators demonstrated that exposure of
intestinal stem cells to butyrate resulted in HDAC inhibition-mediated expression of Foxo3,
a transcription factor that regulates cell cycle arrest and apoptosis through disruption of
cellular metabolism [48]. When butyrate comes in contact with intestinal stem cells, such
as under conditions of mucosal injury in crypt-containing mice, or from luminal infusion
in crypt-less zebrafish, there is resulting inhibition of stem cell proliferation (see Figure 2).

Notably, Foxo3 upregulation has not been specifically observed in colon cancer cells
treated with butyrate, although Foxo3 expression does modulate a number of pro-apoptotic
genes associated with butyrate’s antineoplastic effects [48]. The importance of this tran-
scription factor in intestinal stem cell cycle arrest, and the similarities in cellular metabolism
between stem cells and neoplastic cells, call for further characterization of the antiprolifera-
tive pathways activated by butyrate in cancer cells.

Others have highlighted the nuanced interaction between butyrate at different levels
of the crypt, as well. For example, butyrate induces expression of heat shock proteins (HSP)
in intestinal epithelial cells, which interfere with the Wnt-signaling pathway necessary
to maintain the undifferentiated state of intestinal stem cells [49]. Utilization of butyrate
by cells at the top of the crypt results in insufficient levels for HSP induction at the base,
and thus allows for unhindered Wnt activation and preservation of multipotent intestinal
stem cells. These data offer insight into how the intestinal epithelium has evolved to
tolerate—and benefit from—colonization by butyrate-producing microbial species.

3.4. Small Intestinal Enterocytes versus Colonocytes

The vast majority of data on butyrate’s regulation of intestinal epithelial proliferation
come from experiments with colonocytes. Despite the obvious relation and general sim-
ilarities between the small and large intestine, key differences in epithelial morphology
and function make it difficult to draw unfettered parallels between the two [50]. Existing
research into the proliferative effects of butyrate in the small intestine suggests that it
has a role in epithelial homeostasis, but it is insufficient to judge whether this interaction
is distinct from that in the colon. The butyrate receptors MCT1 and SMCT1 are present
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on small intestinal epithelial cells [51–53]. While these cells have the capacity to oxidize
butyrate for cellular energy in times of starvation, glutamate and glucose are their preferred
fuel sources [6].
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Figure 2. The epithelial crypt in mice facilitates production of a butyrate gradient which is necessary
to maintain the proliferative potential of intestinal stem cells. Butyrate is an abundant energy
source for surface level epithelial cells in the mammalian intestine. Rapid intracellular transport and
oxidation by these cells produces a butyrate gradient, with significant depletion of butyrate levels at
the crypt base. Disrupted crypt morphology, as in the case of mucosal injury, allows butyrate levels
to rise at the crypt base, where it induces antiproliferative activity in intestinal stem cells, mediated
by the transcription factor Foxo3.

In vitro, butyrate inhibits proliferation of immortalized small intestinal epithelial
cells [54]. However, it has been suggested that the role of butyrate in cell culture can be
influenced by the presence of alternate fuel sources—such as glucose—in cell media, and
thus should be interpreted accordingly [55].

In animal studies, increasing luminal butyrate concentration has resulted in higher
small intestinal crypt proliferation rates, whereas butyrate-deprivation has been associated
with increased expression of pro-apoptotic proteins in small intestinal epithelial cells [56].
However, it is unclear whether these changes were observed in differentiated or undif-
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ferentiated epithelial cells. The degree of cellular differentiation is an important factor in
predicting the downstream effects of butyrate on colonocytes, as described above, and
may have bearing on its interaction with the small intestinal epithelium as well. Since
regulation of intestinal proliferation is relevant to the management of malabsorptive and
inflammatory intestinal diseases, which have been associated with microbial dysbiosis,
further investigation of butyrate’s role in the small intestinal epithelium is warranted [57].

4. Butyrate as an Immunomodulator in the Intestine and Beyond

The delicate balance between tolerance of commensal gut bacteria and inflammation or
injury in the setting of altered epithelial homeostasis is a topic of immense scientific interest,
as it has the potential to elucidate the ways in which the environment, intestinal epithelium,
and immune system converge to manifest disease. Butyrate and other SCFA have been
identified at the center of this complex interaction. Specifically, butyrate-producing bacteria
and intestinal butyrate concentration are associated with both local inflammation, as in the
case of inflammatory bowel disease (IBD) or food allergy, and extraintestinal immunologic
activity, including neuroinflammation.

4.1. Butyrate’s Role in Attenuating Intestinal Inflammation

There is strong evidence that the pathogenesis of intestinal inflammation, for example
in inflammatory bowel disease (IBD) and food allergy, involve dysregulation of the ep-
ithelial immune response to the intestinal microbiome [58–60]. In particular, data showing
depletion of butyrate-producing bacteria in IBD patients, and lower intestinal concentra-
tions of butyrate in IBD patients compared to healthy counterparts drew attention to the
potential immunomodulatory role of butyrate [61–63].

It was previously hypothesized that barriers to butyrate oxidation predisposed indi-
viduals to epithelial injury, which thus led to intestinal inflammation [64]. Based on this
theory, butyrate supplementation was proposed as a treatment to attenuate IBD sever-
ity [65,66]. However, further research demonstrated that non-inflamed intestinal mucosa
in patients with IBD has the same capacity to transport and oxidize butyrate as mucosa
from healthy patients, thus refuting the theory that an inherent deficiency in butyrate
utilization is the basis for IBD [67]. Rather, butyrate deficiency appears to be a consequence
of intestinal inflammation, instead of its cause. Furthermore, MCT1 is downregulated in
inflamed intestinal tissue, thus decreasing intracellular butyrate availability and defeating
the purpose of butyrate supplementation during active inflammation [68,69].

Nevertheless, butyrate does modulate intestinal inflammation, and dysbiosis in IBD
may contribute to disease severity [70,71]. Butyrate mediates intestinal inflammation
predominantly through binding of free fatty acid receptors (FFAR), a family of GPCR
present on the epithelial cell membrane [72–74]. GPR41 and GPR43, also known as FFAR3
and FFAR2, respectively, are activated by SCFA in the colon and small intestine, and lead
to production of anti-inflammatory cytokines including IL-18 [75,76].

Additionally, butyrate has been associated with increased production of regulatory T
cells (Treg), which modulate the severity of immune response [77,78]. Butyrate-mediated
HDAC inhibition enhances expression of the Foxp3 locus via enhanced histone H3 acety-
lation, which is central to Treg differentiation [78]. In an animal model of colitis, mice
receiving oral butyrate supplementation demonstrated less severe inflammation and lower
levels of histone H3 acetylation in epithelial cells than untreated controls [79,80].

Overall, the local anti-inflammatory effects of butyrate appear to render epithelial cells
tolerant of commensal bacteria, and additionally confer a protective role against unchecked
inflammation [81,82]. There is a growing body of evidence to suggest that in IBD, epithelial
and immune cells exhibit resistance to butyrate’s anti-inflammatory function. Immune
cells from IBD patients require higher concentrations of butyrate to downregulate pro-
inflammatory cytokines than those from healthy patients [83], and butyrate induces greater
expression of anti-inflammatory genes in intestinal samples of healthy patients compared
to patients with ulcerative colitis (UC) [83,84]. Though this attenuated responsiveness may
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be due in part to the reduced cellular uptake of butyrate observed in inflamed epithelial
cells, this effect also appears to be mediated by GPCR signaling that occurs irrespective of
intracellular butyrate concentration [80].

Therapeutic application of butyrate and targeting of butyrate’s downstream targets
has yet to prove fruitful in the treatment of IBD. Small scale trials have demonstrated
the safety and tolerability of oral butyrate for patients with UC and Crohn’s disease, but
have failed to show significant improvement in symptoms or intestinal histology, which
may be due to presence of butyrate-resistant phenotype in IBD patients [85,86]. Early
investigation into the use of probiotics in intestinal inflammation has shown some promise
in attenuating epithelial cell resistance to butyrate’s anti-inflammatory effects [87]. Further
research into this nuanced interaction will be needed to develop translational therapies
exploiting butyrate’s protective function in intestinal inflammation.

4.2. Tolerogenic Effects of Butyrate in the Intestinal Epithelium

As mentioned above, butyrate has been linked to enhanced Treg production, which,
by modulating the epithelial immune response in the face of perpetual environmental and
food antigen exposure, is critical for prevention of food allergy [77]. The pathways by
which butyrate and other SCFA increase immunologic tolerance are varied. In addition to
enhanced T cell differentiation via butyrate’s HDAC properties, dietary fiber and butyrate
promote Treg production through increased activity of tolerogenic epithelial dendritic
cells [88]. Butyrate-induced dendritic cell tolerance in the epithelium is associated with
mucosal IgA production, which provides a critical line of immunologic defense in the
intestine [89,90]. Furthermore, there is evidence that butyrate may inhibit mast cell degran-
ulation in the intestinal mucosa, thereby limiting the release of circulating inflammatory
mediators [91].

Together, butyrate’s effects on the immunologic milieu of the epithelium have con-
sequences for the development and resolution of food allergy. Research into cow’s milk
allergy suggests that composition of the microbiome in early life is associated with allergic
phenotype, and that enrichment of butyrate-producing bacteria and higher fecal butyrate
levels predict tolerance [59,60].

The mechanisms by which butyrate protects against food allergy are closely related
to the barrier function of the epithelium, which comprises one of the intestine’s greatest
immunologic defenses (reviewed by Pardo-Camacho, et al. [92]). Specifically, inhibition of
mast cell degranulation and Treg proliferation precludes cytokine and histamine-induced
pathways toward increased intestinal permeability [93–96]. Through its impact on epithelial
oxygen consumption, butyrate also results in stabilization of hypoxia inducible factor, a
transcription factor involved in maintenance of epithelial tight junctions [97,98]. Moreover,
butyrate’s activity as an HDAC inhibitor enhances expression of antimicrobial peptides
and mucin, which serve to protect the intestinal epithelium from pathogens [99–101].

5. SCFA and the Gut–Brain Axis

Growing evidence linking microbiome composition and alteration to systemic disease
has elucidated the immunomodulatory role of circulating SCFA on extraintestinal organ
systems. Of particular interest is the bidirectional interaction between intestinal home-
ostasis and nervous system function, including memory, mood and neuronal recovery
after injury. As mentioned previously, systemic absorption of SCFA from the intestine is
minimal, with butyrate exhibiting lower bloodstream concentrations than propionate and
acetate [3]. Thus, despite permeability of SCFA across the blood–brain barrier, the actual
concentration of these molecules in the brain is negligible [102,103]. Rather than direct
activation of neuronal receptors, a more likely proposed mechanism for SCFA influence on
neural processes is through regulation of neuroinflammation [104,105].

SCFA activation of GPR43 and GP41 receptors on immune precursor cells leads
to neutrophil activation and recruitment to sites of infection, thus playing an impor-
tant role in mounting an inflammatory response, both within and beyond the intesti-
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nal epithelium [66,106]. In the brain, there is evidence that butyrate downregulated
lipopolysaccharide-induced neuroinflammation in microglia, a specialized population
of immune cells important for neuroprotection and neural remodeling [104]. Indeed, micro-
biome composition and SCFA levels have been implicated in the pathogenesis of substance
use disorders, Parkinson’s disease and depression [107–109].

Gut–brain crosstalk in disease pathogenesis is also evident in nervous system respon-
siveness to SCFA-induced gut hormone secretion [110]. Butyrate and propionate lead to
intestinal gluconeogenesis via FFAR activation, which in turn leads to central nervous sys-
tem sensing of portal glucose levels and metabolic regulation [105]. Additionally, butyrate
stimulates enteroendocrine cells in the intestinal epithelium to release hormones, includ-
ing glucagon-like peptide 1 and serotonin, which act on neuronal receptors to modulate
neuronal processes in normal and injured states [111–114].

6. Conclusions

Butyrate serves as a fundamental, yet versatile molecular link between the microbiome
and the host intestine. First, colonocyte and enterocyte oxidation pathways utilize butyrate
as cellular fuel, a basic cellular need. However, this simple function underlies the numerous
ways the epithelium has adapted to interact with it, both physiologic and pathologic.
Indeed, the epithelial crypt morphology demonstrates how the intestine has evolved to
conserve rapid glycolytic energy extraction for undifferentiated stem cells, and to protect
proliferating cells from direct effects from the microbiome. Furthermore, intracellular
accumulation of butyrate has evolved as a protective mechanism against carcinogenesis.
The nuances of transepithelial butyrate transport and activation of membrane-bound
receptors in colon cancer and intestinal inflammation reveal an impressive level of epithelial
cell auto-regulation in response to the microbial milieu. Continued research is warranted
to develop methods for measurement and regulation of butyrate activity in the intestinal
epithelium, as these tools have the potential to expand our capacity to treat, prevent and
evaluate intestinal disease.
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