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Abstract: This paper investigates the effects of the repetitive block-wise training process on the
classification accuracy for a code-modulated visual evoked potentials (cVEP)-based brain–computer
interface (BCI). The cVEP-based BCIs are popular thanks to their autocorrelation feature. The
cVEP-based stimuli are generated by a specific code pattern, usually the m-sequence, which is phase-
shifted between the individual targets. Typically, the cVEP classification requires a subject-specific
template (individually created from the user’s own pre-recorded EEG responses to the same stimulus
target), which is compared to the incoming electroencephalography (EEG) data, using the correlation
algorithms. The amount of the collected user training data determines the accuracy of the system.
In this offline study, previously recorded EEG data collected during an online experiment with
10 participants from multiple sessions were used. A template matching target identification, with
similar models as the task-related component analysis (TRCA), was used for target classification.
The spatial filter was generated by the canonical correlation analysis (CCA). When comparing the
training models from one session with the same session’s data (intra-session) and the model from
one session with the data from the other session (inter-session), the accuracies were (94.84%, 94.53%)
and (76.67%, 77.34%) for intra-sessions and inter-sessions, respectively. In order to investigate the
most reliable configuration for accurate classification, the training data blocks from different sessions
(days) were compared interchangeably. In the best training set composition, the participants achieved
an average accuracy of 82.66% for models based only on two training blocks from two different
sessions. Similarly, at least five blocks were necessary for the average accuracy to exceed 90%. The
presented method can further improve cVEP-based BCI performance by reusing previously recorded
training data.

Keywords: brain–computer interface (BCI); code-modulated visual evoked potentials (cVEP); BCI
speller; task-related component analysis (TRCA); canonical correlation analysis (CCA)

1. Introduction

The electroencephalography (EEG)-based brain–computer interface (BCI) is a technol-
ogy that has the potential of replacing, enhancing, and improving human interaction with
the surrounding/environment as well as enhancing digital life [1–4].

While the most popular and easy to implement paradigms are based on the visually
evoked potentials (e.g., SSVEP-based BCI [5,6]), the code-modulated VEP (cVEP) has been
highly researched in the recent past with very promising results in terms of accuracy and
information transfer rate (ITR) [7,8]. Spüler et al. used a one class support vector machine
and error-related potentials for an online adaptation of a cVEP-based BCI system [9]. In 2016,
Nakanishi et al. utilised canonical correlation analysis (CCA) and datasets recorded on two
different days to evaluate the performance of different session-to-session transfer learning
approaches, in order to optimise the SSVEP classification [10]. Nakanishi et al. presented
an enhanced ensemble task-related component analysis (TRCA) method, where the spatial
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filter created from different targets were combined in order to increase the overall SSVEP-
based BCI system performance [11]. In an online cue-guided experiment with 20 subjects,
a mean accuracy of 89.8% was achieved. In another relevant paper published in 2015, Yuan
et al. improved the performances of an SSVEP-based BCI while exploiting inter-subject
template transformation [12]. Compared to the standard CCA, when using the proposed
method, readings of 7.4% and 18.8% increases in accuracy for data lengths (time-window
lengths) of 2.0 s and 1.5 s, respectively, were obtained for 12 participants in a simulated
online experiment. Wong et al. presented a subject transfer-based CCA method to combine
the information between the subjects and within the subject, reaching an average ITR of
198.18 bits/min [13]. Wang et al. proposed an inter- and intra-subject template-based
multivariate synchronization index with an adaptive threshold for a 12-class SSVEP-based
BCI dataset [14]. The results from 10 subjects showed an average accuracy of 99.2% for the
new method compared to the standard CCA, which reached 93.6%. In 2020, Gembler et al.
presented a session-to-session training transfer for a cVEP-based BCI system [15]. Eight
out of 10 participants achieved an average accuracy of 97.1% when utilising the training
data recorded 2 weeks earlier in an online copy-spelling task.

Exploring inter-subject variability is recently a popular research interest in the BCI
field across different paradigms: in the sensorimotor rhythms (SMR)-based BCI system e.g.,
Saha et al. [16], Saha and Baumert [17]; in the simultaneous P300 event-related potential
(ERP) and functional near-infrared spectroscopy (fNIRS) by Li et al. [18]; and in SSVEP-
based BCI, Wei et al. [19], Tanaka [20]. In a recent review, Zarefa et al. compared different
approaches to the users’ training and feature extraction algorithms of SSVEP-based BCI
systems [21].

In 2021, Stawicki et al. [22] tested similarities in SSVEP and steady-state motion visual
evoked potentials (SSMVEP) training by cross-analysing the training sessions for SSVEP
and SSMVEP stimulus designs. The analysed data came from a previously performed
comprehensive study with 86 participants [8].

The common necessity is that long repetitive training sessions ensure good signal-to-
noise ratios for VEP-based BCI analysis. However, with respect to user-friendliness, these
commonly-used repetitive training sessions may be tedious, as subjects are required to
focus their gaze for a relatively long time on the stimulus, usually, multiple times. This
is a time-consuming approach that commonly causes visual fatigue [8]. While the BCI
system was developed for everyday use, alternative approaches were beneficial, such as
training-free algorithms or subject-independent methods. Recent popular approaches in
the SSVEP-based BCI systems are the transfer of subject-specific learning across stimulus
frequencies [23], by transferring the learning knowledge within the subject and between
subjects [24], or transferring training data between sessions [15].

Recently developed novel cVEP-based BCI systems focus on skipping the mostly
required training session [25,26]. In 2018, Nagel and Spüler developed a model that
predicts the arbitrary visual stimuli from EEG and the triggered brain response [25]. In an
online experiment, nine participants achieved an average accuracy and ITR of 98.0% and
108.1 bits/min, respectively, for an optimised EEG2Code model using 32 EEG electrodes. In
the recent paper, Thielen et al. developed a calibration-free method (0-training approach),
where in an online copy-spelling task, nine participants achieved an average accuracy
and ITR of 99.7% and 67.9 bits/min, respectively, using eight EEG electrodes and gold
codes-based stimuli [26].

The herein paper utilises previously recorded EEG data from a cVEP study with 10
subjects [15]. The recordings were analysed with transfer data from one session to another
session (both directions) of the same participant, and transfer data between different
participants and sessions were included. In other words, the models (training data) from
one participant were used to classify the data (testing data) from all participants from the
same session and for the testing data of all participants of the other session. During this
study (further referred to as the original study), two recording sessions took place per
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participant, which were spread apart by about 2 weeks. Here, we combine these recorded
data into one pool, which is further analysed.

2. Materials and Methods
2.1. Participants

The data of the 10 participants of the original experiment [15] were utilised in this
offline analysis. All subjects were recruited from Rhine-Waal University of Applied Sciences
(two female), with a mean (SD) age of 25.4 years (4.1). A written informed consent was
signed before the experiment; the experiment was approved by the ethical committee of the
medical faculty of the University Duisburg-Essen, Germany. Participants had normal or
corrected-to-normal vision and little to no prior BCI experience. All participants received a
financial reward for their participation.

2.2. Stimulus Presentation

The stimuli were presented on a 24.5-inch monitor (Acer predator XB252Q) with
a refresh rate of 240 Hz and a resolution of 1920 × 1080 pixels, which was positioned
approximately 60 cm from the subject’s eyes [15]. The stimuli consisted of 32 white-squared
targets with sizes of 150× 150 pixels or 4.3× 4.3 cm, which correspond to a visual angle of
4.1°, presented over a black background; see Figure 1. The distance between the targets
was 75 pixels or 2.1 cm (vertical and horizontal).

Figure 1. The graphical user interface (GUI) used in the training phase of online experiment [15] with
32 targets. During the training session, the current target on which the participants needed to fix their
gaze was marked with a green frame.

The cVEP stimuli used the 63-bit m-sequence c1 = 101011001101110110100100111000
101111001010001100001000001111110 [27], where ‘0’ represented ‘black’ and ‘1’ represented
‘white’, thus presenting at full contrast. The remaining stimuli ck, k = 2, . . . , K, where
K = 32, were generated by circularly left shifting c1 by k · 2 bits. The update rate was set to
60 Hz; thus, the colour of the stimulus changed in accordance with the bit sequence: every
fourth frame with the used refresh rate of 240 Hz. This m-sequence was displayed for a
duration of 1.05 s, which emulates to the historical vertical refresh rate of 60 Hz, which was
popular in many previous studies.

In order to achieve the most reliable stimulus presentation, the G-Sync® technology
was disabled. Instead, the fixed refresh rate (240 Hz) was used, where a single frame is
drawn within 4.17 milliseconds. Additionally, with the graphic card manufacturer tool,
the number of pre-rendered frames (in the graphics card memory) was set to 1 (minimal
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available value). This reduced the internal drawing delays usually present in graphics card
hardware to the actual drawing on the screen during the vertical screen refresh. Further
details regarding the stimulus design can be found in [15].

2.3. Recordings

The recordings used for this study were the training phase of the original study, which
consisted of a series of six repetitions (blocks). In every block, the participants had to focus
their gaze at each target, which was cued sequentially through all 32 targets, for 2.10 s with
a gaze shift pause of 1.0 s between every target. Between the blocks, the participants had
an opportunity for a short break (while the EEG was still connected and the participant
was still seated), after which they continued by pressing the space key.

2.4. Hardware and Software for Data Analysis

The hardware used for the offline analysis was a MSI GT73 notebook equipped with
an Intel processor (Intel Core i7-6820HK CPU @2.70 GHz) and 16 GB of RAM, running on
Windows 10 Education. The software utilised for the offline analysis was MATLAB® 2021b,
and the ensemble TRCA methods from [11] were adopted.

2.5. CCA-Based Spatial Filter Design and Template Generation

Canonical correlation analysis is the most popular and widely used method for gener-
ating the spatial filters, which finds a linear transformation that maximizes the correlation
between the recorded signal and a template signal, e.g., sine–cosine signals or averaged EEG
template signals [28,29]. Typically, only the first canonical correlation and corresponding
weights (w) are used for the classification and construction of filters [11].

Similar to our previous study, we combined the CCA method with the TRCA template
construction [15,22,30]. Each training trial was stored in an m× n matrix, where m denotes
the number of electrode channels (here, m = 16) and n denotes the number of sample
points (here, there are two 1.05 s stimulus cycles, n = 1.05 · FS · 2 = 1260).

Given two multi-dimensional variables X ∈ Rm1×n and Y ∈ Rm2×n, CCA identifies
weights wX ∈ Rm1 and wY ∈ Rm2 that maximize the correlation, ρ, between the so-called
canonical variates x = XTwX and y = YTwY by solving

ρ = max
wX ,wY

wX
TXYTwY√

wX
TXXTwX wY

TYYTwY
. (1)

The correlation value ρ that solves (1) is the canonical correlation. For most VEP-
based BCI realizations, only the first canonical correlation weights (wX, wY) are used for
classification or for the spatial filter design.

The recorded data were segmented into single trials Ti ∈ Rm×n, and used to generate
a CCA-based spatial filter w ∈ Rm. In total, 32 × 6 = 192 of such trials Ti,j ∈ Rm×n,
i = 1, . . . , K, j = 1, . . . , nb, where nb = 6, were recorded.

For each target, individual templates Xi ∈ Rm×n and filters wi were determined
(i = 1, . . . , K). In order to generate the spatial filters, the two matrices were constructed,

T̂i = [Ti,1Ti,2 . . . Ti,nb ] and Xi = [X̂iX̂i . . . X̂i︸ ︷︷ ︸
nb

], (2)

where X̂i represents the average of the nb trials corresponding to the i-th class. When
inserted into Equation (1), these two matrices yield the filter vectors: wi = wT̂i

, i = 1, . . . , K.

2.6. Classification

In order to add further improvements to the target classification, the ensemble spatial
filter w, introduced in the TRCA method [11], which concatenates the spatial filters of all
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targets (classes), and the filter bank-based analysis [31], were implemented. For the filter
bank design, ak was calculated as

ak =
αk

∑K
k=1 αk

, where αk = k−1.25 + 0.25, (3)

which gives the following normalised results: 0.386, 0.207, 0.156, 0.132, and 0.119. The
lower cut-off frequencies for the k-th sub-band were 6, 14, 22, 30, and 38 Hz, and the upper
cut-off frequency was 60 Hz for all-sub, which was filtered with an 4th-order Butterworth
filter. In order to cancel out any phase response, forward and reverse filtering methods
were applied.

The output command (C) was calculated based on the weighted linear combinations
of the Pearson’s correlation coefficient (ρk(X̂i

Twi, T̂i
Twi)) and the filter bank sub-bands (K)

and amplitude (ak),

C = arg max
k=1,...,K

λk , where λK =
K

∑
k=1

akρk (4)

for every trial in each block.
The information transfer rate was calculated utilising the regular ITR formula:

ITR = (log2(N) + Plog2(P) + (1− P)log2(
1− P
N − 1

)) ∗ 60/T, (5)

where N is the number of targets, P is accuracy, and T is the total time, including the
gaze shift (inter-trial) pause. An online ITR calculator can be found at (https://bci-lab.
hochschule-rhein-waal.de/en/itr.html, accessed on 31 December 2021).

2.7. Procedure

Both training sessions from the original study [15] were recorded on different days
(mean distance 14.4 days), where each training session contained 6 training blocks. All
the blocks from both sessions were used as follows: the testing data from 1st session (D1)
blocks were numbered from 1 to 6, and the testing data from 2nd session (D2) blocks were
numbered 7 to 12; see Figure 2.

For this study, the blocks were arranged in the following sequence (seq) = 1, 7, 2, 8,
3, 9, 4, 10, 5, 11, 6, and 12 for the leave-one-out, stepwise correlation and for 5 different
variant combinations, which are described as follows (see Figure 2):

Variant 1 (V1), where block bl12 was used for testing and blocks bl1–bl11 in seq order were
used for model building.
Variant 2 (V2), where blocks bl12 and bl6 were used for testing and blocks bl1–bl11 in seq
order without bl6 were used for model building.
Variant 3 (V3), where blocks bl12, bl6, and bl11 were used for testing and blocks bl1–bl10 in
seq order without bl6 were used for model building.
Variant 4 (V4), where blocks bl12, bl6, bl11, and bl5 were used for testing and blocks bl1–bl10
in seq order without bl5 and bl6 were used for model building.
Variant 5 (V5), where blocks bl12, bl6, bl11, bl5, and bl10 were used for testing and blocks
bl1–bl9 in seq order without bl5 and bl6 were used for model building.

Additionally, a cross testing between session 1 (D1) containing bl1–bl6 and ses-
sion2 (D2) containing bl7–bl12 was performed, where models built from one session were
used for testing the data from the other session, e.g., model M (training data, x-axis) from
subject 1 session 1 was used to classify the testing data (y-axis) of all subjects from the
same session (session 1, Figure 3, left side) and all subjects from the other session (session 2,
Figure 4, left side). The other direction was also analysed e.g., model M (training data,
x-axis) from subject 1 session 2 was used to classify the testing data (y-axis) of all subjects
from the same session (session 2, Figure 3, right side) and all subjects from the other session

https://bci-lab.hochschule-rhein-waal.de/en/itr.html
https://bci-lab.hochschule-rhein-waal.de/en/itr.html
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(session 1, Figure 4, right side). The accuracy of these results is presented in Figures 3 and 4,
and the detailed diagonals are presented in Table 1.

The stepwise increasing concatenated models were built as follows (e.g., for test-
ing bl12):

• Step 1—model bl1
• Step 2—model bl1 + bl7
• Step 3—model bl1 + bl7 + bl2
• Step 4—model bl1 + bl7 + bl2 + bl8
• Step 5—model bl1 + bl7 + bl2 + bl8 + bl3
• Step 6—model bl1 + bl7 + bl2 + bl8 + bl3 + bl9
• Step 7—model bl1 + bl7 + bl2 + bl8 + bl3 + bl9 + bl4
• Step 8—model bl1 + bl7 + bl2 + bl8 + bl3 + bl9 + bl4 + bl10
• Step 9—model bl1 + bl7 + bl2 + bl8 + bl3 + bl9 + bl4 + bl10 + bl5
• Step 10—model bl1 + bl7 + bl2 + bl8 + bl3 + bl9 + bl4 + bl10 + bl5 + bl11
• Step 11—model bl1 + bl7 + bl2 + bl8 + bl3 + bl9 + bl4 + bl10 + bl5 + bl11 + bl6

For the leave-one-out cross-validation, if one block was tested, the steps would be
built accordingly without these blocks.

The accuracy was calculated for every trial out of 32 in one block.

126115104938271

Blocks arranged in the testing sequence

Variant testing sequences

126115104938271

Blocks arranged in the sequence for leave-one-out cross validation

126115104938271

126115104938271

126115104938271

126115104938271V1

126115104938271V2

126115104938271V3

126115104938271V4

126115104938271V5

- Testing data - Model data - Session 2- Session 1

Figure 2. Different testing arrangements used in this study. The training data from the original
experiment [15] were divided into 12 blocks and rearranged into a testing sequence, which was
divided into model building and testing datasets.
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Figure 3. Cross-validation of the training EEG data (2.1 s). This figure shows the accuracy of
Msession1Datasession1 and Msession2Datasession2 tested across all participants, where e.g., the model (M)
from session 1 was used to classify the session 1 training EEG data (left side), and model (M) from
session 2 was used to classify the session 2 training EEG data (right side).
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Figure 4. Cross-validation of the training EEG data across paradigms for 2.1 s time window. This fig-
ure shows the accuracy of Msession1Datasession2 and Msession2Datasession1 tested across all participants,
where e.g., the model (M) from session 1 was used to classify the session 2 training EEG data (left
side), and model (M) from session 2 was used to classify the session 1 training EEG data (right side).

Table 1. Cross sessions accuracies (%) and ITR (bits/min) results. The data of session 1 (bl1–bl6) and
session 2 (Dbl7–bl12) were used to create the models Msession1 and Msession2, respectively.

Accuracy Model Session 1 Model Session 2

Subject Data Session 1 Data Session 2 Data Session 1 Data Session 2

1 97.40 98.96 96.88 99.48
2 100 68.75 84.90 94.27
3 100 94.27 98.96 98.96
4 99.48 99.48 98.44 99.48
5 98.44 82.29 96.35 96.88
6 75.00 25.52 2.08 70.83
7 99.48 98.96 99.48 100
8 99.48 96.88 92.71 100
9 79.17 4.69 11.98 89.06
10 100 96.88 91.67 96.35

Mean 94.84 76.67 77.34 94.53
SD 9.45 34.21 37.39 9.00
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Table 1. Cont.

ITR Model Session 1 Model Session 2

Subject Data Session 1 Data Session 2 Data Session 1 Data Session 2

1 90.91 94.16 89.9 95.37
2 96.77 49.47 70.44 85.15
3 96.77 85.15 94.16 94.16
4 95.37 95.37 93.03 95.37
5 93.03 66.75 88.9 89.90
6 57.10 9.50 0 51.95
7 95.37 94.16 95.37 96.77
8 95.37 89.90 82.49 96.77
9 62.51 0.10 2.14 76.64
10 96.77 89.90 80.78 88.90

Mean 88.00 67.45 69.72 87.10
SD 15.03 36.13 36.95 13.88

3. Results

Table 1 shows the results for session 1 (bl1–bl6) vs. session 2 (bl7–bl12) cross analysis,
where the training data of one session were used to create the reference models M and the
data from both were used for testing D. The training data of session 1 was used to build the
model session 1 (Msession1), and this model was used to classify the testing data from session
1 (Dsession1) and the testing data of session 2 (Dsession2). Similar, the training data of session
2 was used to build the model session 2 (Msession2), and this model was used to classify the
testing data of sessions 1 (Dsession1) and session 2 (Dsession2). A pairwise Mann–Whitney U-
test between the Msession1Dsession1 vs. Msession1Dsession2 showed a statistical significance with
U = 21.5, Z = −2.17, p < 0.05; between the Msession1Dsession1 vs. Msession2Dsession1 showed
a statistical significance with U = 23.0, Z = −2.05, p < 0.05; between the Msession2Dsession2
vs. Msession1Dsession2 showed no statistical significance with U = 30.5, Z = −1.48, p = 0.14;
between the Msession2Dsession2 vs. Msession2Dsession1 showed no statistical significance with
U = 30.5, Z = −1.48, p = 0.14.

The bottom part of Table 1 shows the corresponding information transfer rates (ITRs),
as shown in Equation (5).

The values in Table 1 also represent the corresponding diagonals of Figures 3 and 4,
where the additional cross-subject validation was performed. In Figure 3, the models and
data from the same session (intra session) were cross-validated between the subjects and in
Figure 4 the models and data from the other session (inter session) were cross-validated
between the subjects.

In order to test the interchangeability of single training blocks from different multi-day
sessions, the testing sequence arrangement (see Figure 2) was constructed and evaluated
in Figure 5 with a single block bl12 against a concatenating increasing model from both
sessions. This approach was also used to compare all other block from the multi-day pool
in a leave-one-out cross-validation with a stepwise increasing (concatenating) models,
including all other blocks in Table 2. The eleven bars in Figure 5 corresponds to the column
labelled 12 in Table 2.

The different variants constructed in Figure 2 and evaluated in Table 3 test the different
multi-day training data in order to build a minimal training model for improving the
accuracy. Here, a Kruskal–Wallis Test showed no statistical significance between the
different variants V1–V5 with H(4) = 0.271, p = 0.992.
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bl12 vs seq, stepwise increasing models
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Figure 5. This figure shows the classification accuracy of the bl12 against models built from all other
blocks arranged in the testing sequence (seq) = 1, 7, 2, 8, 3, 9, 4, 10, 5, 11, 6. The models were built
stepwise added together; the blocks in the seq order, e.g., “1”, “7”, “2”, “8”, etc. represent the models
built from bl1, bl1 + bl7, bl1 + bl7 + bl2, and bl1 + bl7 + bl2 + bl8, respectively. The whiskers mark
the standard error.

Table 2. Averaged accuracy (Acc.) results of the leave-one-out cross-validation of every single block
of the testing sequence with the stepwise increasing model (step). Presented are means and SD
(bottom table) of all 10 participants. The mean (SD) in the top part are average values for every step.

Acc. Single Blocks of Testing Sequence

Step 1 7 2 8 3 9 4 10 5 11 6 12 Mean SD

1 13.44 13.13 19.69 15.63 21.25 11.88 18.44 12.50 22.81 10.63 16.56 12.81 15.73 3.35
2 83.13 75.00 83.75 89.69 83.44 82.81 82.81 84.06 84.69 79.69 81.56 81.25 82.66 2.19
3 85.63 86.25 86.25 90.31 86.25 85.94 87.19 89.38 85.94 82.81 87.50 83.75 86.43 1.44
4 88.13 89.06 88.13 90.94 88.44 89.38 89.38 91.56 87.81 87.50 85.94 88.75 88.75 1.09
5 89.06 90.31 88.44 95.31 88.13 90.00 92.81 90.94 90.63 88.44 88.44 89.69 90.18 1.51
6 90.31 92.19 90.00 96.88 90.31 90.00 92.50 92.81 92.50 91.56 88.13 91.88 91.59 1.54
7 90.31 93.75 90.63 95.94 90.94 92.81 93.13 94.69 94.38 92.50 90.63 92.50 92.68 1.43
8 93.13 93.75 92.81 95.63 93.13 92.81 93.75 94.69 93.44 92.81 90.94 94.38 93.44 0.83
9 93.13 94.06 91.88 95.94 93.75 93.75 95.00 95.31 94.06 92.81 91.25 94.38 93.78 1.02
10 93.44 94.06 94.38 96.25 93.13 93.44 96.25 94.06 95.63 92.50 91.56 95.00 94.14 1.13
11 93.13 94.38 93.13 96.56 92.81 94.06 96.25 95.31 96.25 93.44 92.50 95.31 94.43 1.26

SD Single Blocks of Testing Sequence

Step 1 7 2 8 3 9 4 10 5 11 6 12

1 6.92 8.94 23.25 11.79 22.43 12.83 23.91 10.21 26.23 10.54 22.87 10.46
2 33.79 34.86 32.93 18.81 31.84 29.4 29.4 27.02 28.81 34.37 31.06 28.41
3 28.65 25.48 28.65 19.51 26.85 26.69 25.66 21.61 28.08 29.98 22.63 25.55
4 24.15 19.78 24.77 18.72 22.44 19.72 22.59 18.58 26.49 22.92 25.1 18.41
5 23.95 20.75 24.7 10.65 23.24 18.85 12.85 17.27 20.62 21.45 21.95 16.41
6 21.52 17.26 19.7 6.91 19.62 19.08 13.6 15.8 17.07 16.01 21.13 12.6
7 20.96 13.34 18.16 9.78 18.37 13.59 12.66 11.6 11.67 12.94 17.37 10.44
8 15.22 13.34 14.44 10.74 14.49 13.74 11.41 13.59 13.3 13.01 16.76 8.18
9 15.92 12.36 16.35 11.79 13.26 11.69 8.98 11.62 11.55 13.01 16.46 7.48
10 13.78 12.36 11.1 10.81 14.49 12.45 6.56 12.8 7.68 12.94 15.45 6.94
11 14.64 11.39 13.72 8.77 15.17 10.36 6.56 10.65 6.56 10.97 13.91 6.29
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Table 3. Accuracies of the different variants for the tested 10 participants (P1–P10).

Acc V1 V2 V3 V4 V5

P1 100 98.44 97.92 98.44 98.75
P2 93.75 98.44 96.88 97.66 98.13
P3 96.88 100 100 100 100
P4 100 98.44 98.96 98.44 98.75
P5 93.75 96.88 96.88 98.44 96.25
P6 71.88 70.31 68.75 68.75 66.25
P7 100 100 100 100 100
P8 100 98.44 98.96 99.22 99.38
P9 75.0 67.19 70.83 75.0 80.0
P10 93.75 96.88 96.88 97.66 98.13

Mean 92.50 92.500 92.61 93.36 93.56
SD 10.44 12.58 12.09 11.45 11.30

4. Discussion

This paper focuses on the offline analysis of the cVEP training data only of the original
study [15]; the training sessions were unified for all participants of the original study, which
was performed on 2 separate days, spread apart for around 14 days.

Here, the focus lies on finding the suitable training process for the used cVEP system
by cross-analysing the training data of both sessions and finding the best training strategy.
First, the training data of each session were used for TRCA model building and testing (see
Figure 3). When analysing this training intra-session’s classification accuracies, averaged
over all six blocks of a leave-one-out cross-validation, session 1 and session 2 reached 94.84%
and 94.53%, respectively, which correspond to an ITR of 88.0 bits/min and 87.1 bits/min,
respectively (see Table 1).

Both training sessions’ data from the 1st and the 2nd day, session 1 and session 2,
respectively, were cross-validated against the models from the other session (inter-session);
see Table 1 and Figure 4. Interestingly, this cross-session analysis (presented in Table 1)
shows that the participants could still achieve reliable control over the system with ac-
curacies at around 76.67% and 77.34%, which shows that the fresh model can classify
old data.

In order to avoid favouring the second session and the dependencies arising from
the session continuity, the blocks data of both sessions were interchangeably (alternately)
stacked, creating a continuous testing sequence seq. This sequence was also used for
stepwise increasing models. These models were analysed with a leave-one-out cross-
validation of every block and averaged across participants (Table 2), yielding a maximum
accuracy of 96.88%, which is higher than the intra-session average of both of the sessions
(Table 1). This result was achieved for testing the block bl8 with the model at the step 6. The
results of the testing sequence show a relevant increase in accuracy when additional blocks
are added (increasing step number) to the model build. Interestingly, in step 2, where just
two blocks were used for the model, the averaged accuracy was 82.66%. This accuracy
increased with every additional step until it reached 94.44%.

Lastly, to find the minimalistic training procedure, the tested sequence seq data were
arranged into five variants. In every variant, the accuracy was calculated by averaging the
results for every testing block (see Table 3, Figure 2) with a fixed model. When analysing
these results, the average accuracy had almost no difference between the variants V1–V5.
Interestingly, when more testing data were used in a variant (e.g., V5), there was only a
slight increase in the classification accuracies, reaching 93.56% when compared to e.g., V2,
which achieved 92.5%, the same as V1.

These results show that from at least two sessions a minimum of two training blocks are
required, in order to achieve sufficient cVEP-based BCI system control, so that the accuracy
exceeds 80%, as mentioned in Renton et al. [32]. In this case, the average classification
accuracies achieved 82%, and if at least five training blocks are used, the average accuracy
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exceeds 90% (see Table 2). The 2nd step of the tested sequence included the 1st blocks
of both sessions, thus, one old (previous session) and one new (current session) block of
training data. The findings of this study suggest that the already collected training data
can be efficiently reused, e.g., as transferred training data, to increase the user-friendliness
of the BCI system by reducing repetitive training and thus minimising the potential visual
fatigue caused by the stimuli.

Compared to the system developed by Thielen et al. [26], which only requires an
initial warm-up period of 12 s, the here-presented approach requires a minimum of one
new training block, which corresponds to 98.2 s (including the inter-trial time of 1.0 s). On
the other hand, some minimal training can be beneficial (easier adaptation) for different
stimulation hardware (higher refresh rates which corresponds to higher cVEP carrier
frequency), where the number of gold codes can be limited; instead, longer m-sequences
can be implemented: one example is a 124-bit quintary m-sequence [33]).

5. Conclusions

Our findings show that at least two training blocks from two sessions form a sufficient
starting point for further improvements in a modern cVEP-based BCI system, which in
future research can further be improved with e.g., an online adaptation process. While the
novel developed/emerging systems can work without a user-specific training (e.g., Spüler
et al. [9] or Thielen et al. [26]), most of the currently used and popular cVEP-based BCI
systems require some training phase that could benefit from previously collected training
data, also from other subjects. This cross-subject feature extraction requires further research.
While nothing can replace a “fresh” EEG data from the training (a necessity for an optimal
model), the need for new re-training data can be reduced to the bare minimum. This
can help some potential users in re-using their own previously collected data for the BCI
system for everyday use and thus boost the setup times and further increase the initial
daily performance of a cVEP system. This is also valid for many other BCI paradigms.
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