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This article aims to improve the problem of slow convergence speed, poor global search

ability, and unknown time-varying dynamic obstacles in the path planning of ant colony

optimization in dynamic environment. An improved ant colony optimization algorithm

using time taboo strategy is proposed, namely, time taboo ant colony optimization

(TTACO), which uses adaptive initial pheromone distribution, rollback strategy, and

pheromone preferential limited update to improve the algorithm’s convergence speed

and global search ability. For the poor global search ability of the algorithm and the

unknown time-varying problem of dynamic obstacles in a dynamic environment, a time

taboo strategy is first proposed, based on which a three-step arbitration method is

put forward to improve its weakness in global search. For the unknown time-varying

dynamic obstacles, an occupancy grid prediction model is proposed based on the time

taboo strategy to solve the problem of dynamic obstacle avoidance. In order to improve

the algorithm’s calculation speed when avoiding obstacles, an ant colony information

inheritance mechanism is established. Finally, the algorithm is used to conduct dynamic

simulation experiments in a simulated factory environment and is compared with other

similar algorithms. The experimental results show that the TTACO can obtain a better

path and accelerate the convergence speed of the algorithm in a static environment and

can successfully avoid dynamic obstacles in a dynamic environment.

Keywords: path planning, mobile robot, ant colony algorithm, dynamic environment, time taboo strategy

INTRODUCTION

In mobile robot navigation, global path planning has always been one of the research hotspots. At
present, the research on path planning of mobile robot in static environment has been relatively
mature, bringing many excellent kinds of algorithms. There are some traditional algorithms,
such as A∗ algorithm, artificial potential field method (Rimon and Koditschek, 1992), and
Dijkstra. Besides, heuristic optimization algorithms are also among the lists, including genetic
algorithm, neural network algorithm (Khan et al., 2020c), particle swarm optimization algorithm,
ant colony algorithm (Fan et al., 2003), cuckoo algorithm (Mohanty and Parhi, 2016), bug
algorithm (Khan et al., 2020a), and so on. However, all kinds of algorithms are more or less
limited to algorithm deficiencies. Compared with the traditional gradient descent algorithm, the
metaheuristic algorithm performs better in convergence speed, and global optimization ability and
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hence is widely used in trajectory planning (Khan et al., 2020b),
prediction, resource scheduling, and other fields. Ant colony
algorithm with its good robustness, positive feedback, and
parallel computing ability has been widely used in robot path
planning and achieved good results.

In Zhou et al. (2013), an improved ant colony optimization
(ACO) algorithm is proposed. By modifying the initial
environment pheromone and state transition probability,
the search deadlock can be eliminated. The combination of
deterministic search and random search can reduce redundant
paths. Jiang et al. (2019) adopt a method to make the initial
pheromone uneven, which can reduce the blind search path of
ants, cut down the running time of the algorithm, and improve
the convergence rate of the algorithm. In Luo et al. (2019), the
improved pheromone updating strategy was used to update
the excellent path and punish the poor path; meanwhile, the
upper and lower limits of pheromone were set. In Liu and
Zhang (2016), the simulated annealing algorithm is added to
the process of simulated annealing ant colony algorithm formed
by ant colony algorithm, and it is applied to path planning
to solve the local optimal problem caused by premature ant
colony algorithm. However, the working environment of mobile
robot is always dynamic, such as intelligent factory, hospital,
supermarket, and so on. Therefore, it is a difficult problem to
avoid obstacles successfully and make quadratic optimal path
planning after encountering dynamic obstacles. In Li et al.
(2019), an inertial positioning strategy is proposed to enable
the robot to predict the position of the target in advance. From
the predicted position, the robot path is generated by cubic
spline interpolation, and then the improved particle swarm
optimization algorithm with random positive feedback factor in
speed update is used to optimize the path. As it is very important
to track and predict dynamic obstacles in dynamic environment,
Ferguson et al. (2008) proposed that if a dynamic obstacle runs
on a straight road, it is likely that it will continue to travel along
the same straight line in the future. Li et al. (2017) constructed
a prediction model to avoid obstacles. In Kim et al. (2017),
a trajectory prediction method based on occupancy grid and
neural network is proposed. In Qu and Huang (2015), different
obstacle avoidance strategies were set up to avoid dynamic
obstacles when the mobile robot met with dynamic obstacles.
The size of dynamic obstacles is considered in Xu et al. (2019)
on the basis of Qu and Huang (2015). The above literatures
predict that the dynamic obstacles are moving on a straight line
without considering the change of the speed of the dynamic
obstacles. There are unknown dynamic obstacles in the dynamic
environment. Ant colony algorithm also has the problems of
slow convergence speed and poor global search ability.

This article proposes a novel, improved ACO algorithm using
time taboo strategy, namely, time taboo ant colony algorithm,
which aims to solve the path planning problem of mobile
robot in dynamic environment. It utilizes the adaptive initial
pheromone uneven distribution to reduce the blindness of
ants in early path finding. And, the problem of deadlock is
solved by the rollback strategy; pheromone preferential limited
update is adopted to reduce pheromone redundancy. The above
improvements are designed to improve the convergence speed

and global search ability of the algorithm. The corresponding
strategies, mechanisms, and prediction models are proposed to
avoid dynamic obstacles. Based on the improvement, strategy,
and prediction model mentioned above, the dynamic obstacle
avoidance of mobile robot is effectively realized and verified
by simulation.

ANT COLONY OPTIMIZATION

ACO is a heuristic global optimization algorithm in evolutionary
algorithm. In the process of searching the path, ants release
pheromones on the path through which they have passed. The
shorter the path is, the higher the concentration of pheromone
released will be. Therefore, the following ants will favorably
choose the path with highest concentration of pheromone, as a
result of which an optimal path can be obtained.

In order to reduce the detour of ants in the process of
searching, the algorithm introduces the concept of taboo table.
In the process of ant searching, the taboo table is added to the
path nodes that have been explored, and the next time ants select
the path nodes, optional nodes will exclude those in the taboo
table. At the same time, the heuristic function η is introduced,
and the following transfer function is used to improve the search
efficiency of ant colony. The transfer formula (1) and the heuristic
function (2) are as follows:

P =







[τij(t)]
α[ηij(t)]

β

∑

s∈A [τij(t)]
α[ηij(t)]

β if j ∈ A

0 else
(1)

ηij (t) =
1

dj
(2)

In the formula,τij represents the pheromone concentration from
the ith node to the jth node on the feasible path node. ηij
represents the heuristic value from the ith path node to the
jth path on the feasible path, and its value is the reciprocal of
the distance from the jth node to the end point, as shown in
formula (2), dj represents the distance from the jth node to the
end point. S represents the current path node. A represents the
nodes that ants can still choose after removing obstacles and
path nodes in the taboo table. α and β represent the importance
of pheromone and heuristic pheromone, respectively. According
to this formula, we can know that the higher the pheromone
concentration is, the higher the heuristic pheromone will be, and
the greater the probability of ants selecting the node will be.

At the same time, the pheromone concentration on the map
will gradually evaporate with the running time. The updating of
pheromone is shown in the following formulas (3) and (4).

τij (t + 1t) = (1− ρ) τij (t) + 1τij(t) (3)

1τij (t) =
∑m

k = 1
1τ kij (t) (4)

ρ stands for the evaporation coefficient of pheromone. The larger
the value is, the more the pheromone evaporates, with its value
between (0 and 1). Pheromone evaporation can avoid excessive
accumulation of pheromone. 1τij(t) represents the pheromone
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increment from the ith node to the jth node at time t. Its
definition is shown by formula (5).

1τ kij (t) =

{ Q
Lk

P
(

i, j
)

∈ P

0 P
(

i, j
)

/∈ P
(5)

In the formula, K represents the kth ant, Lk represents the total
length of the kth ant’s path, P represents the nodes in the path,
P(i, j) represents the path nodes from i to j, and Q represents
the pheromone strength. The formula shows that only the ants
that have reached to the destination can update pheromones, and
the pheromone concentration is inversely proportional to the
length of the path. Although the ants in the ant colony do not
communicate directly, they communicate through pheromone,
an indirect medium, to achieve the goal of optimal path planning.

ANT COLONY OPTIMIZATION
IMPROVEMENT

Some factors will directly affect the performance of ant colony
algorithm, such as pheromone, pheromone updating rule,
heuristic pheromone, state transition rule, and deadlock and
self-locking of ant colony algorithm. However, the improvement
of the initial pheromone is still rigid, which is not conducive
to the global search of the algorithm, and the processing of
pheromone change caused by the improved deadlock problem
is not perfect yet. In this article, pheromone, deadlock and
self-locking, and pheromone update mechanism are improved.
Based on these improvements, the time taboo ACO (TTACO) is
further proposed.

Adaptive Initial Pheromone Distribution
In the basic ant colony algorithm, the pheromone distribution is
quite even; even pheromone distribution may cause ants wander
around and backtrack, rendering too-long search time of ants in
the early stage of the algorithm, and the length of the search path
is increased. In this article, the pheromone near the connection
line is added according to the distance from the starting point
to the end point, and the pheromone of the node closer to the
connection line is higher in concentration. At the same time, in
order to prevent the algorithm from falling into local optimum
due to the initial pheromone, the algorithm will determine the
number of pheromones added according to the proportion of
obstacles on and near the starting and ending lines. The formula
is as follows:

{

τ = τ0 + ϑC
ϑ = µε

(6)

In the formula, τ is the pheromone of ant colony algorithm, τ0 is
the basic pheromone, ϑ is the adaptive parameter, and µ is the
distance between the node and the line; the closer the distance is,
the greater the value will be, with the range of the value being [0,
1]. When the distance between the obstacle and the connection
exceeds a set value, the value of u is taken as zero. The closer
the grid is to the line, the higher the pheromone concentration
will be. Because of the existence of obstacles, ε will decrease,

resulting in the decrease of the overall pheromone. According to
the connection between the starting point and the end point, it
is highly probable that the optimal path is the path near the line,
and the condition of the obstacle near the line will hinder the
degree of the optimal path near the line. Therefore, the uneven
distribution of the initial pheromone is conducive to the ants’
searching for the best path in the early stage.

Solving Deadlock and Self-Locking
Problems
When the ants explore the path in the early stage, because of
the restriction of the map environment and the taboo table, the
individual ant may fall into the dilemma of finding nowhere to
go before reaching the end point. It can be divided into deadlock
and self-locking. Inspired by Dai et al. (2019), this article uses a
rollback strategy to solve the deadlock and self-locking problems
and divides the taboo table into a global taboo table and a
local taboo table. The global taboo table records information of
deadlock location, and the local taboo table, inherited from the
global taboo table, records the information of the ant’s walking
path node and the self-locking position node. The ant chooses
the path according to the local taboo table. When the ant has a
deadlock problem caused by the environment, the ant is made
to retreat two steps, and the place where the ant falls into the
deadlock will be added to the global taboo table to reduce the
possibility that the ant falls into the same deadlock again. When
the ant is self-locked because of its walking path, the ant is made
to go back two steps. Different from the deadlock, the position
where the ant self-locking occurs will be added to the local taboo
table to prevent the ant from repeatedly walking into the same
self-locking node.

Pheromone Update Rules
Because of the introduction of the rollback strategy, all ants can
successfully find the end point. Although the search ability of the
algorithm is improved, the increase in the number of ants that
successfully reach the end point leads to pheromone redundancy.
So pheromones of ants will be updated only with the shortest
path and shorter path to reduce the redundancy of pheromones
on the map. The number of ants updated with the pheromone is
determined by the scale of the map. The larger the map is, the
more ants can get pheromone updates.

TTACO
The basic ant colony algorithm introduces a taboo table, but its
use of the taboo table is limited to preventing ants from walking
nodes that have been already walked. In order to further improve
the algorithm’s global search capability, algorithm convergence
speed, and the ability to avoid dynamic obstacles, this article
proposes a time taboo strategy: In the case of path redundancy
or detection of dynamic obstacles, ants will be prohibited from
accessing certain path nodes for a certain period of time until
path redundancy is avoided, or dynamic obstacles are successfully
avoided, and then the prohibition is canceled in a specific way.
And based on this strategy, a three-step arbitration method and
an occupancy grid prediction model are proposed to improve

Frontiers in Neurorobotics | www.frontiersin.org 3 March 2021 | Volume 15 | Article 642733

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Xiong et al. Mobile Robot Path Planning

FIGURE 1 | Schematic diagram of path redundancy.

TABLE 1 | Determination rules.

Path condition Determination formula

Situation I S13 <2

Situation II S13 ==2&&S12 !=1

the algorithm’s global search ability and the ability to avoid
dynamic obstacles.

Three-Step Arbitration Method
In the crawling process of ants, there will inevitably be path
redundancy, as for which this article divides it into two situations:
one is redundancy situation I, and the other is redundancy
situation II. The two cases are shown in Figure 1, where the top
two grids show situation I, and the bottom two are situation II.

When the redundancy situation occurs, the path is divided
into three steps. The first step is before the situation occurs, the
second step is when the situation occurs, and the third step is
after the situation occurs. The specific judgment method is as
follows. S12 and S13 are used to represent the distance between the
first step and the second or third step, respectively. The specific
determination rules are shown in Table 1 below.

When it is determined that the second step is redundant, the
algorithm will record the node where the problem occurs. When
the ant crawls to the first step, the algorithm will temporarily add
the path node of the second step to the taboo table, so that the
ant cannot choose the second step. In this way, the algorithm
will accelerate the convergence speed and improve global search
capability. The crawling paths of ants in the early stage are more

FIGURE 2 | Schematic diagram of dynamic obstacle movement area.

FIGURE 3 | Schematic diagram of dynamic obstacle prediction angle.

chaotic, and more redundant ones will also occur, so the method
is disabled in this period. The algebra that specifically enables the
method is shown in formula (7):

Ks = mod(MM, 5) (7)

Ks is the algebra of activating the method, and MM is the scale of
the map. The larger the scale of the map is, the later the method
will be activated. In order to enable a suitable number of ants
to invoke the method and avoid multiple redundant path nodes
caused by an individual ant to trigger the method at the same
time, which will lead to redundant path, and having referred to
the cuckoo algorithm (Luan et al., 2015), the following trigger
mechanism is proposed.

1. This method is only enabled from the generation of ants
crawling a relatively stable path.

2. The use of this method or not will be determined by the
probability before each ant searches.
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FIGURE 4 | Schematic diagram of prediction of dynamic obstacle occupancy

grids.

3. When the ant using this method encounters a redundant
node, the use of this method or not will be once again determined
at the node according to the probability.

Occupancy Grid Prediction Model
Highly dynamic scenes have brought great challenges to robot
path planning. In Zhao et al. (2020), the classical method
of detecting and planning at the same time cannot meet the
requirement of safely avoiding dynamic obstacles. Kim et al.
(2017) use a prediction method based on occupancy grids, where
the scene is divided into grids, and the occupancy grids are
used to represent the possible locations of dynamic obstacles
in the future. Ferguson et al. (2008) propose that if a dynamic
obstacle is driving on a straight road, it is very likely that it
will continue to drive along the same straight line in the future.
Rummelhard et al. (2014) proposes a new grid-based collision
risk prediction method. Li et al. (2017) take the mobile robot’s
kinematics model as the algorithm’s trajectory prediction model.
Riosmartinez et al. (2013) propose a pedestrian area based on
Gaussian distribution. Two individual areas of different sizes
are constructed with pedestrians as the center, with the area in
front of the pedestrian being lager, assuming that our dynamic
obstacles are most likely to be moving mechanical vehicles and
pedestrians, as shown in Figure 2.

The kinematics of mobile robot is described in Boukens et al.
(2019) and Keyvan et al. (2020). The motion model of a dynamic
obstacle can be expressed by the following differential equation,
where (x, y) is the position, θ is the angle of the dynamic obstacle
velocity, v is the velocity, k is the curvature, and ω is the angular
velocity. It can be seen from the formula that when the velocity
is constant, the greater the curvature is, the greater the value of

θ will be, and the greater the angular velocity ω of the dynamic
obstacle will be.







ẋ = vcos(θ)
ẏ = vsin(θ)

θ̇ = kv

(8)

ω = vk (9)

It is assumed that the dynamic obstacle has two predicted steering
angles, a safe steering predicted angle and an emergency steering
predicted angle. Let θ in the above formula be the safe steering
prediction angle, that is, the angle at which a slight path deviation
of dynamic obstacles may occur is considered, and the safe
steering angle is considered only when starting to predict. θd is
the emergency steering predicted angle, which represents the
angle when the emergency steering of the dynamic obstacle
occurs, and each step of the prediction has an emergency steering
angle. The schematic diagram is shown in Figure 3.

In the figure, θ is the predicted angle of safe steering, and
θd is the predicted angle of emergency steering, and its formula
is as follows:

θ = arctan(
la

lb
) (10)

θd = arctan(
La

Lb
) (11)

In the above formulas, La is the offset distance in the vertical
direction when the dynamic obstacle makes an emergency turn,
and Lb is the distance in the horizontal direction when the
dynamic obstacle is making an emergency turn. la is the vertical
distance when the dynamic obstacle slightly deviates from the
path, and lb is the horizontal distance when the dynamic obstacle
slightly deviates from the path. And the angle of θ is set as (0,
26.12◦) and the angle of θd (0, 45◦).

Figure 4 shows a schematic diagram of path nodes that have
been marked as occupied. According to the previously set angle,
further specific analysis of whether a path node is affected by
dynamic obstacles is determined by the following formula, where
m is the ratio of the affected area of a grid to the whole grid area.
As shown in Figure 4, the ratio of the area of the blue trapezoid
to the area of the whole grid and the value is affected by θ . Li is
the vertical distance from the center of the ith grid to the velocity
direction of the dynamic obstacle, as shown by the golden yellow
straight line in Figure 4. γ is an adaptive parameter whose value
is shown in formula (13). θ i is the angle between the center of the
ith grid and the speed direction of the dynamic obstacle, which
includes θd. When the value of f is > 0.5, it means that the grid is
affected and will be tinted yellow.

f =
γ

Li
+m (12)

γ = sin(θi) (13)

Combining the possible movement of the dynamic obstacle and
the dynamic obstacle movement model, the following occupancy
grid prediction model is proposed. When the mobile robot
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FIGURE 5 | Schematic illustration of step-by-step occupancy grids prediction for dynamic obstacles with different angular velocities.

FIGURE 6 | Schematic diagram of misplaced overlap elimination of occupancy grids.

detects a dynamic obstacle, it is predicted that the future path of
the dynamic obstacle will continue to follow the current speed
direction of the dynamic obstacle, as shown in the red grids
in Figure 5 below, and a certain probability of deviation to the
original speed direction, as indicated in yellow grids. The longer
the path is, the higher the probability of deviating from the red
path may be. We set that the predicted footprint of the dynamic
obstacle is related to the angular velocity of the movement of
the dynamic obstacle. The forecast is shown in Figure 5 below.
v is the current speed of the dynamic obstacle and remains

unchanged. The upper part of Figure 5 shows the step-by-step
occupancy grid prediction map when the angular velocity ω

of dynamic obstacle movement is large, and the lower part of
Figure 5 shows the step-by-step occupancy grid prediction map
when the angular velocity ω of dynamic obstacle movement is
small. The solid circle in the figure represents the location of
the dynamic obstacle at the current time, and the dotted circle
represents the location of the dynamic obstacle at the future time.

According to the original path and the predicted path of the
dynamic obstacle, it should be judged whether it is necessary
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FIGURE 7 | Dynamic obstacle avoidance simulation in Environment 1.

to call the model, and the time point to call the occupancy
grid prediction model should be calculated. Suppose the mobile
robot is walking along the original path, when the distance
between the mobile robot and the dynamic obstacle is less
than the safe distance, the occupancy grid prediction model
is called in the first two-unit time when it is less than the
safety distance. After the time and location of the occupancy
grid prediction model are obtained, the nodes affected by the
occupancy grid prediction model are recorded. The formula for
the distance between the mobile robot and the dynamic obstacle
is as follows, where (xa, ya) represents the position of the mobile
robot, (xb, yb) represents the position of the dynamic obstacle, S
represents the safety distance, and let S0 be the judgment limit for
safety distance.

S =

√

(xa − xb)
2
+ (ya − yb)

2 (14)

Occupancy grid prediction model predicts the distance of
dynamic obstacle based on the track length of dynamic obstacle

TABLE 2 | Description of TTACO for solving path planning.

Algorithm TTACO

Begin

Create grid environment

Adaptive initial pheromone distribution according to

formula (6)

Repeat

for each ant k do

Trigger the three-step arbitration taboo method

based on probability

Add the grids involved in the Occupancy grid

prediction model and three-step arbitration taboo

method to TABUs

if grid i ǫ allowk then

if grid i ǫ TABUlock then

Rollback

end if

According to formula (1) and (5) select next grid j

Update taboo

end if

Pheromone preferential limited update for each

iteration

Until Meet the iteration end condition

Return best grid serial number

END

when the distance between mobile robot and dynamic obstacle is
less than safety distance. As shown in the following formula (15),
F (s) represents the cumulative length of the dynamic obstacle
track length Sb when the distance between the mobile robot
and dynamic obstacle is less than the safety distance, and the
rounded-up value is the predicted distance of the algorithm for
dynamic obstacles.

F (s) =
∑

S<S0

Sb (15)

ST =
⌈

F(s)
⌉

(16)

The rules for calling the occupancy grid prediction model are
as follows:

1. When the mobile robot detects an unknown dynamic
obstacle, it is predicted based on the occupancy grid prediction
model to obtain the initial predicted position, time, and occupied
grids of the dynamic obstacle.

2. According to the position, time, and occupied grids
obtained in the first step, the path nodes that may be affected
will be added to the local taboo table. The TTACO will be run,
and every time a moment has passed, the path nodes that the
dynamic obstacle has passed and are no longer possible to pass
are removed from the local taboo table until all the occupancy
grids do not exist in the local taboo table.

3. We only consider the possible path nodes during the period
of time when the dynamic obstacle has an impact on the mobile
robot. Therefore, if the dynamic obstacle deviates from the red
predicted line during this process, we repredict and repeat the
above processes 1, 2, and 3.
When removing path nodes from the local taboo table, we adopt
dislocation overlap elimination. To be specific, we overlap the
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FIGURE 8 | The path planning results of the three algorithms in Environment 2.

TABLE 3 | Comparison of simulation results in static environment.

Environment Algorithm Optimal solution of

the algorithm

Average

shortest

distances

Average

iteration times

E2② ACO – – –

IACO① 50.7280 51.0605 8.4

TTACO 49.5564 50.6422 6.7

E3 ACO 31.556 – 27

IACO1 31.556 – 8

TTACO 30.97 31.4974 3.5

E4 ACO 47 55.1 80

IACO2 45.69 – 40

TTACO 44.12 45.219 9

E5 ACO 47 54.5727 82

JPACSPF 44.5269 – 9

TTACO 43.9411 44.234 9

①: IACO, IACO1, IACO2, JPACSPF represent the algorithms in Xiaoxu et al. (2018), Dai

et al. (2019), Zhang et al. (2019), and Ma and Mei (2020).

②: E2, E3, E4, E5 represent the environment maps in Xiaoxu et al. (2018), Dai et al. (2019),

Zhang et al. (2019), and Ma and Mei (2020).

occupancy grid prediction maps of two moments to obtain the
occupancy grid map of the next moment. The schematic diagram
is shown in Figure 6 below.

The predictivemodel is used to predict the possible path nodes
of dynamic obstacles in the future moments, study the influence
of the possible path nodes of dynamic obstacles on the path of
the mobile robot, and give the mobile robot enough time to
meet the real-time requirements of the algorithm in the high
dynamic environment.

DYNAMIC OBSTACLE AVOIDANCE

Two Cases of Dynamic Obstacle Avoidance
Dynamic obstacle avoidance is divided into two situations:
“encounter” and “chase.” Such division is based on the angle

between the speed direction of the mobile robot and the dynamic
obstacle speed. When the angle is > 90◦, the “encounter”
happens, and when it is ≤ 90◦, the “chase” occurs. In both cases,
the occupancy grid prediction method is used to avoid obstacles.
However, when the mobile robot is in a chasing situation with a
dynamic obstacle and as the distance is getting closer and closer,
it cannot safely pass through. That is, in the TTACO, when the
movement of the dynamic obstacle reaches the last predicted
ending position, the ant still has not avoided the dynamic
obstacle, and the occupancy grid predictionmodel is called again.
If a better path cannot be obtained after calling themodel again or
several times, the next-generation ants of the TTACO will choose
a safe position according to the occupancy grid prediction model
and wait for a period of time when avoiding obstacles.

Ant Colony Information Inheritance
Mechanism
When using the occupancy grid prediction model for dynamic
obstacle avoidance, in order to improve the calculation speed
of the algorithm, we put forward the ant colony information
inheritance mechanism. The initial pheromone and taboo table
of ACO are determined as follows:

Tuad = Tua+ Tuas (17)

TABUd = TABUs (18)

Among them, Tuad is the initial pheromone when the algorithm
is called to avoid dynamic obstacles. Tua is the original ant
colony pheromone matrix, and the values in the matrix are all
constant C. Tuas is the pheromone matrix left by the global
ACO algorithm after the upper and lower limits are optimized.
TABUd is the global taboo table that calls the ant colony algorithm
when the mobile robot avoids dynamic obstacles, and TABUs is
the global taboo table obtained after the global ACO algorithm
runs, and it contains all deadlock position information. Through
the inheritance mechanism of the above initial pheromone and
the global taboo table, the running speed of the algorithm can
be accelerated.

Algorithm Flow
The pseudocode of this algorithm is shown in Table 2. TABUs is a
local taboo list; allowk is the list of optional nodes; and TABUlock

is the deadlock taboo list. And the computational complexity
of the algorithm is O (n ∧ 3). The robot first performs global
path planning according to the TTACO and then detects whether
there are unknown dynamic obstacles and dynamic obstacle
information through its sensors. If there are dynamic obstacles,
the occupancy grid prediction model will be used to predict
based on the information of the detected dynamic obstacles, and
the TTACO is called to replan the path after the ant colony
pheromone inheritance mechanism is activated.

SIMULATION EXPERIMENT

In order to verify TTACO’s algorithm convergence speed,
global search ability, and capability to avoid dynamic obstacles,
a simulation experiment of dynamic obstacle avoidance was
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FIGURE 9 | The path planning results of the three algorithms in Environment 3.

FIGURE 10 | The path planning results of the three algorithms in

Environment 4.

carried out in a 30 × 30 simulated factory environment. In
order to further verify the performance of the algorithm, it was
compared with the algorithms produced by similar articles. The
computer performance parameters for the simulation are Intel
Core i5-6300HQ processor with a main frequency of 2.30 GHz, a
memory size of 8G, the running system of Windows 10, and the
simulation software of MATLAB.

Simulation Experiment in Dynamic
Environment
The following simulation is to verify the path planning ability
and dynamic obstacle avoidance ability of TTACO in dynamic
environment. As shown in Figure 7, Environment 1 is a
simulated 30 × 30 factory environment, with three dynamic
obstacles set up along the way. Obstacle 1 is a dynamic obstacle

FIGURE 11 | The path planning results of the three algorithms in

Environment 5.

moving upward at a speed slightly faster than the mobile robot;
Obstacle 2 is a dynamic obstacle moving to the left with a slightly
slower speed; and Obstacle 3 is a dynamic obstacle moving
downward whose speed is the same as that of the mobile robot.
The golden path in the picture is the current planned global path,
and the red path is the trajectory of the mobile robot after it has
walked along the path. The pink path node is the position of
the dynamic obstacle when calling the occupancy grid prediction
model. The red path node is the predicted walking path for
dynamic obstacles. The yellow path node is the path node where
the dynamic obstacle may deviate and make a turn. When the
mobile robot encounters a dynamic obstacle, the occupancy grid
prediction model is called, and the path is replanned. From the
results, we can see that themobile robot first moves forward along
the preset path; then, it calls the obstacle avoidance algorithm
and occupation prediction model three times and replans the
path three times. The first two calls of occupancy grid prediction
model have successfully enabled the robot to avoid the obstacles,
and the last call also achieved the purpose of obstacle avoidance
through changing the path.

Comparison of Similar Algorithms
In order to further verify the performance of the TTACO
algorithm, the following four sets of comparative experiments
are designed to compare the algorithm in this article with the
algorithms from other articles.

Environment 2 is shown in Figure 8 as the environment
map in Dai et al. (2019). The improved ant colony algorithm
in the literature uses the characteristics of A ∗ algorithm and
maximum–minimum ant system and introduces the retraction
mechanism to solve the deadlock problem. IACO is used to
represent the algorithm in Dai et al. (2019). It can be seen from
Figure 8 and Table 3 that both TTACO and IACO successfully
find a path; however, the path obtained by TTACO is shorter and
converges faster, with the optimal path length being 49.5564 and
the average time of iteration 6.7, whereas ACO fails to plan a path.

Frontiers in Neurorobotics | www.frontiersin.org 9 March 2021 | Volume 15 | Article 642733

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Xiong et al. Mobile Robot Path Planning

Environment 3 is shown in Figure 9 as the environment map
in Zhang et al. (2019). In the algorithm, the ant colony is inspired
to search the planned path by the improved artificial potential
field algorithm. At the same time, the negative feedback channel
is constructed by the convergence times, and the size of the
environment map is 20 × 20. IACO1 is used to represent the
algorithm in Zhang et al. (2019). It can be seen from Figure 9

and Table 3 that the path and times of iteration obtained by the
algorithm in this article are better than those given by Zhang et al.
(2019) and the ACO algorithm. The optimal path length is 30.97,
and the average time of iteration is 3.5.

Environment 4 is shown in Figure 10 as the environment map
in Xiaoxu et al. (2018); this article mainly adopts the strategy
of death and rollback for the deadlock problem of ant colony,
improves the state transition rules of ant colony algorithm,
optimizes the composition structure of pheromone, and replaces
the algorithm in the literature with IACO2, with the map size of
30 × 30. From Figure 10 and Table 3, we can see that the path
obtained by the algorithm in this article is shorter, which is 44.12,
and the average time of iteration is nine times, which is better
than the algorithm in Xiaoxu et al. (2018) and ACO.

Environment 5 is shown in Figure 11 as the environment
map in Ma and Mei (2020). The reference algorithm is
JPACSPF, which combines the search strategy of ant colony
algorithm and jump point search algorithm, and introduces
the decreasing coefficient of potential field resultant force.
The size of environment map is 30 × 30. Figure 11 shows
the paths planned by different algorithms. It can be seen
from Figure 11 and Table 3 that the path obtained by the
TTACO algorithm is shorter than the path obtained by
JPACSPF and ACO, and the average time of iteration of
TTACO is better than that of the ACO algorithm. The optimal
path length is 43.9411, and the average time of iteration
is 9.

By comparing with other algorithms, it can be concluded that
both the length of the path and the time of iteration in TTACO
are better than those in similar literatures, and the algorithm of
this article can get a better path in a shorter time than the ACO.

CONCLUSION

This article introduces a novel approach using the TTACO to
solve the path planning problem of mobile robots in a dynamic
environment. Through the improved adaptive initial pheromone,
the death rollback strategy, and the improved pheromone
update strategy, the algorithm’s convergence speed and global
search ability are effectively improved. The three-step arbitration
method and occupancy grid prediction model based on the
time taboo strategy further improve the algorithm’s global search
ability and the capability to avoid dynamic obstacles. Through
simulation on MATLAB, the experimental results prove that the
algorithm can plan a better path in a dynamic environment, so
as to realize the navigation of the mobile robot in a dynamic
environment. Although the algorithm proposed in this article
is novel and has some practical significance, the experimental
results need to be further improved, and the details of the article
need to be further polished.
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