
ORIGINAL RESEARCH
published: 23 May 2018

doi: 10.3389/fnins.2018.00291

Frontiers in Neuroscience | www.frontiersin.org 1 May 2018 | Volume 12 | Article 291

Edited by:

Jorg Conradt,

Technische Universität München,

Germany

Reviewed by:

Terrence C Stewart,

University of Waterloo, Canada

Fabio Stefanini,

Columbia University, United States

*Correspondence:

Sacha J. van Albada

s.van.albada@fz-juelich.de

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 12 September 2017

Accepted: 13 April 2018

Published: 23 May 2018

Citation:

van Albada SJ, Rowley AG, Senk J,

Hopkins M, Schmidt M, Stokes AB,

Lester DR, Diesmann M and

Furber SB (2018) Performance

Comparison of the Digital

Neuromorphic Hardware SpiNNaker

and the Neural Network Simulation

Software NEST for a Full-Scale

Cortical Microcircuit Model.

Front. Neurosci. 12:291.

doi: 10.3389/fnins.2018.00291

Performance Comparison of the
Digital Neuromorphic Hardware
SpiNNaker and the Neural Network
Simulation Software NEST for a
Full-Scale Cortical Microcircuit
Model
Sacha J. van Albada 1*, Andrew G. Rowley 2, Johanna Senk 1, Michael Hopkins 2,

Maximilian Schmidt 1,3, Alan B. Stokes 2, David R. Lester 2, Markus Diesmann 1,4,5 and

Steve B. Furber 2

1 Institute of Neuroscience and Medicine (INM-6), Institute for Advanced Simulation (IAS-6), JARA Institute Brain

Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany, 2 Advanced Processor Technologies

Group, School of Computer Science, University of Manchester, Manchester, United Kingdom, 3 Laboratory for Neural Circuit

Theory, RIKEN Brain Science Institute, Wako, Japan, 4Department of Physics, Faculty 1, RWTH Aachen University, Aachen,

Germany, 5Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University,

Aachen, Germany

The digital neuromorphic hardware SpiNNaker has been developed with the aim

of enabling large-scale neural network simulations in real time and with low power

consumption. Real-time performance is achieved with 1 ms integration time steps, and

thus applies to neural networks for which faster time scales of the dynamics can be

neglected. By slowing down the simulation, shorter integration time steps and hence

faster time scales, which are often biologically relevant, can be incorporated. We here

describe the first full-scale simulations of a cortical microcircuit with biological time

scales on SpiNNaker. Since about half the synapses onto the neurons arise within the

microcircuit, larger cortical circuits have only moderately more synapses per neuron.

Therefore, the full-scale microcircuit paves the way for simulating cortical circuits of

arbitrary size. With approximately 80,000 neurons and 0.3 billion synapses, this model

is the largest simulated on SpiNNaker to date. The scale-up is enabled by recent

developments in the SpiNNaker software stack that allow simulations to be spread

across multiple boards. Comparison with simulations using the NEST software on a

high-performance cluster shows that both simulators can reach a similar accuracy,

despite the fixed-point arithmetic of SpiNNaker, demonstrating the usability of SpiNNaker

for computational neuroscience applications with biological time scales and large

network size. The runtime and power consumption are also assessed for both simulators

on the example of the cortical microcircuit model. To obtain an accuracy similar to that

of NEST with 0.1 ms time steps, SpiNNaker requires a slowdown factor of around

20 compared to real time. The runtime for NEST saturates around 3 times real time

using hybrid parallelization with MPI and multi-threading. However, achieving this runtime

comes at the cost of increased power and energy consumption. The lowest total

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2018.00291
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2018.00291&domain=pdf&date_stamp=2018-05-23
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:s.van.albada@fz-juelich.de
https://doi.org/10.3389/fnins.2018.00291
https://www.frontiersin.org/articles/10.3389/fnins.2018.00291/full
http://loop.frontiersin.org/people/21990/overview
http://loop.frontiersin.org/people/407227/overview
http://loop.frontiersin.org/people/472690/overview
http://loop.frontiersin.org/people/542510/overview
http://loop.frontiersin.org/people/174360/overview
http://loop.frontiersin.org/people/185930/overview
http://loop.frontiersin.org/people/57993/overview
http://loop.frontiersin.org/people/630/overview
http://loop.frontiersin.org/people/71641/overview

van Albada et al. Neuromorphic Hardware for Full-Scale Networks

energy consumption for NEST is reached at around 144 parallel threads and 4.6

times slowdown. At this setting, NEST and SpiNNaker have a comparable energy

consumption per synaptic event. Our results widen the application domain of

SpiNNaker and help guide its development, showing that further optimizations such as

synapse-centric network representation are necessary to enable real-time simulation of

large biological neural networks.

Keywords: neuromorphic computing, high-performance computing, parallel computing, accuracy of simulation,

energy to solution, benchmarking, strong scaling, computational neuroscience

1. INTRODUCTION

Tools for simulating neural networks fall into two categories:
simulation software and neuromorphic hardware. The available
features, the speed at which the simulation engine arrives at
the solution, and the power consumption differ between tools,
but the tools are rarely systematically compared. To find out
where we stand and to provide guidance for future research,
we need to learn how to port network models discussed in the
current literature from conventional software implementations
to neuromorphic hardware and how to quantitatively compare
performance.

The distinction between simulation software and

neuromorphic hardware is not clear-cut. Next to the hardware,

a neuromorphic system readily usable by neuroscientists
requires a multi-level software stack engaging in tasks from the
interpretation of a domain-specific model description language
to the mapping of the neural network to the topology of the
neuromorphic hardware. Reversely, simulation software profits
from computer hardware adapted to the microscopic parallelism
of neural networks with many computational cores and a
tight integration of processing hardware and memory. For the
purpose of the present study we refer to simulation software as a
system that runs on conventional high-performance computing
hardware without dedicated neuromorphic hardware.

The time as well as the energy required to arrive at the solution
are becoming relevant as neuroscientists turn to supercomputers
to simulate brain-scale neural networks at cellular resolution.
Today’s supercomputers require tens of minutes to simulate one
second of biological time and consume megawatts of power
(Kunkel et al., 2014; Jordan et al., 2018). This means that any
studies on processes like plasticity, learning, and development
exhibited over hours and days of biological time are outside our
reach.

Although this is sometimes forgotten, not only speed and
power consumption but also the accuracy of the simulation
results is of importance: a highly inaccurate solution can be
obtained arbitrarily fast. In other words, a statement on the
wall clock time required to arrive at the solution is meaningless
without a statement on the achieved accuracy. Like runtime,
energy consumption depends on the level of simulation accuracy.
Low energy consumption is emphasized in the development of
neuromorphic hardware, but accuracy is generally not explicitly
taken into account when characterizing energy consumption.
How one quantifies accuracy should be determined in the light of

the trade-off between the combination of precision and flexibility
on the one hand and the combination of speed and energy
efficiency on the other hand which is the main idea behind
dedicated hardware. If a dedicated hardware trades precision
for speed and energy efficiency, for instance by having noisy
components or not delivering every single spike, this is acceptable
if the given precision still yields the desired network behavior.
The relevant issue is then not whether but how to assess accuracy,
that is, defining how the network should behave.

Here, we consider as a use case the digital neuromorphic
hardware SpiNNaker (Furber et al., 2013) and the neural network
simulation software NEST (Gewaltig and Diesmann, 2007),
both in use by the neuroscientific community and supporting
the simulator-independent description language PyNN (Davison
et al., 2008). Both NEST and SpiNNaker are designed to enable
the simulation of large neural network models. SpiNNaker
enhances its efficiency through asynchronous update where
spikes are processed as they come in and are dropped if the
receiving process is busy over several delivery cycles. It is
especially suited to robotic applications enabling the simulation
to operate in real-time, but since it is general-purpose, in
principle any type of neural network model can be simulated,
including biological and artificial neural networks. In the context
of the European Human Brain Project (HBP) a large system is
under construction at the University of Manchester targeting
brain-scale simulations. The networks in question may have
static synapses or include plasticity. For simplicity, and since
there is a close relationship between simulator performance
with and without synaptic plasticity (e.g., Knight and Furber,
2016), we here focus on a non-plastic network: a spiking cortical
microcircuit model (Potjans and Diesmann, 2014).

The microcircuit is regarded as unit cell of cortex repeated
to cover larger areas of cortical surface and different cortical
areas. The model represents the full density of connectivity in
1 mm2 of the cortical sheet by about 80,000 leaky integrate-and-
fire (LIF) model neurons and 0.3 billion synapses. This is the
smallest network size where a realistic number of synapses and a
realistic connection probability are simultaneously achieved. The
capability to simulate this model constitutes a breakthrough as
larger cortical models are necessarily less densely connected, with
only a limited increase in the number of synapses per neuron
for increased model size. Consequently, from this network
size on, the computer memory required to store the synaptic
parameters grows close to linearly with network size (Lansner
and Diesmann, 2012). Further, a simulation technology can

Frontiers in Neuroscience | www.frontiersin.org 2 May 2018 | Volume 12 | Article 291

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

van Albada et al. Neuromorphic Hardware for Full-Scale Networks

be devised such that the memory consumption of a compute
node is independent of the total number of neurons in the
network (Jordan et al., 2018). This renders the total memory
consumption approximately directly proportional to the number
of neuronal and synaptic elements in the model. The model
already serves as a building block for a number of further
studies and larger networks (Wagatsuma et al., 2011; Cain
et al., 2016; Hagen et al., 2016; Schmidt et al., 2016; Schwalger
et al., 2017), and a first comparison of the simulation results of
NEST and SpiNNaker for this model has served as a test case
for a workflow implementation on the collaboration platform
of the Human Brain Project (Senk et al., 2017). The original
implementation uses NEST, which can also handle much larger
networks with trillions of synapses (RIKEN BSI, 2013; Kunkel
et al., 2014; Forschungszentrum Jülich, 2018; Jordan et al.,
2018) under the increased memory consumption and run time
costs indicated above. The previously largest simulations on
SpiNNaker comprised about 50 million (Sharp et al., 2014;
Knight et al., 2016) and 86 million synapses (Stromatias et al.,
2013). Thus, the present study describes the largest simulation
on SpiNNaker to date, and also the first to implement the
connectivity at full biological density.

SpiNNaker achieves real-time performance for an integration
time step of 1 ms, which is suited to networks with dynamics
on time scales sufficiently greater than 1 ms. While a resolution
of 1 ms generally suffices for today’s applications in robotics
and artificial neural networks, a time step of 0.1 ms is typical
for neuroscience applications due to the neurobiological time
scales and the need to avoid artifacts of global synchronization
(Morrison et al., 2007b). The model of Potjans and Diesmann
(2014) has synaptic time constants of 0.5 ms, and therefore
requires integration time steps smaller than this. The current
software controlling SpiNNaker enables using small time steps
by slowing down the simulation. In the present work, we show
how this feature in combination with further improvements
of the software stack allows the cortical microcircuit model to
be accurately integrated. This result demonstrates the usability
of SpiNNaker for large-scale neural network simulations with
biologically realistic time scales.

To assess accuracy, we compare simulation results with a
reference solution obtained with an alternative solver (Morrison
et al., 2007b; Hanuschkin et al., 2010) available in the NEST
simulation code where spikes are not restricted to the grid
spanned by the computation step size. The spike times
from the cortical microcircuit model obtained with different
simulation engines can only be compared in a statistical sense.
Therefore we also look at single-neuron accuracy (Henker et al.,
2012). Here, we consider both the 0.1 ms time step used in
the microcircuit simulations, and 1 ms, the original design
specification of SpiNNaker, and further, we investigate different
spike rates to vary the relative contributions of subthreshold
and spiking activity. This is relevant because NEST integrates
the subthreshold dynamics exactly (Rotter and Diesmann, 1999),
whereas SpiNNaker uses exponential integration (MacGregor,
1987), in which the synaptic currents are treated as piecewise
constant. For the microcircuit model, we characterize accuracy
based on distributions of spike rates, spike train irregularity,

and correlations. Spike rates are chosen as a first-order measure
of neural activity, and correlations together with spike train
irregularity are relevant because cortical activity is known to be
asynchronous irregular (van Vreeswijk and Sompolinsky, 1998);
mesoscopic measures of brain activity like the local field potential
(LFP) primarily reflect correlations in the microscopic dynamics
(Hagen et al., 2016); and correlations in spiking activity drive
further aspects of network dynamics like spike-timing-dependent
plasticity (STDP; Morrison et al., 2007a) underlying system-level
learning. The three aforementioned measures of spiking activity
are also the focus in the work of Potjans and Diesmann (2014).

Previous work has evaluated the energy consumption of
various types of processors (Hasler and Marr, 2013) including
SpiNNaker (Sharp et al., 2012; Stromatias et al., 2013) in relation
to the number of operations performed. Here, we take a different
approach, comparing the energy consumption of two simulation
engines under the condition of comparable accuracy. This
accuracy depends not only on the number of operations of a given
precision, but also on the algorithms employed. For comparison
with previous results (Sharp et al., 2012; Stromatias et al., 2013),
we further derive the energy consumed per synaptic event.

In the following, we compare the accuracy of single-
neuron LIF simulations between NEST and SpiNNaker,
describe the adjustments made to SpiNNaker to enable the
cortical microcircuit model to be implemented, and compare
both simulators in terms of accuracy, runtime, and energy
consumption. We also discuss the sources of differences
in simulation results and performance between NEST and
SpiNNaker. Thus, our study enables neuromorphic engineers to
learn more about the internal workings of SpiNNaker and the
implications for performance, and brings SpiNNaker closer to
being a tool of choice for computational neuroscience use cases
with large network size and short biological time scales.

Preliminary results have been presented in abstract form (van
Albada et al., 2016, 2017).

2. METHODS

2.1. The Leaky Integrate-and-Fire Neuron
Model
The cortical microcircuit model uses leaky integrate-and-fire
(LIF) model neurons with synaptic currents modeled as jumps
followed by an exponential decay. The subthreshold dynamics of
each neuron is given by

τm
dVi

dt
= − (Vi − EL) + RmIi(t),

τs
dIi

dt
= −Ii + τs

∑

j

Jijsj(t − dj),

where τm and τs are membrane and synaptic time constants, EL
is the leak or resting potential, Rm is the membrane resistance,
Vi is the membrane potential of neuron i, Ii is the total synaptic
current onto the neuron, Jij is the jump in the synaptic current

due to a single spike from neuron j, sj =
∑

k δ(t − t
j

k
) are the

incoming spike trains, and dj is the transmission delay. When

Frontiers in Neuroscience | www.frontiersin.org 3 May 2018 | Volume 12 | Article 291

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

van Albada et al. Neuromorphic Hardware for Full-Scale Networks

Vi reaches a threshold θ , a spike is emitted, and the membrane
potential is clamped to a level Vr for a refractory period τref.
Table 1 lists the single-neuron parameters.

NEST integrates this model using exact integration (Rotter
and Diesmann, 1999), so that the subthreshold dynamics
precisely follows the analytical solution. The spikes can either be
constrained to the time grid or interpolated between grid points
to yield precise spike times (Morrison et al., 2007b; Hanuschkin
et al., 2010). In the present study, we consider both options, the
latter providing a reference solution. For reasons of modularity,
SpiNNaker separates the neuron and synapse dynamics and
uses exponential integration (MacGregor, 1987; reviewed in
Rotter and Diesmann, 1999), in which the input current to the
membrane potential equation is treated as piecewise constant.
The synaptic currents are decayed over one time step before being
added to the input, to ensure that the total charge transferred per
synaptic event is Jτs, as in the exact solution.

2.2. Single-Neuron Tests
Simple systems such as single LIF model neurons allow a
deterministic assessment of simulation accuracy (Henker et al.,
2012). We assess the accuracy of NEST and SpiNNaker by
comparing with precise solutions the subthreshold and spiking
dynamics of single LIF model neurons receiving excitatory
Poisson input with synaptic strength 87.8 pA, equal to the
mean synaptic strength for the excitatory connections between
most populations in the network model. The study considers
both integration time steps of 0.1 ms to match the network
simulations, and 1ms, matching the primary design specification
of SpiNNaker. Two input rates are investigated: 8,000 spikes/s
(giving an output rate of around 17 spikes/s) and 10,000 spikes/s
(giving an output rate of around 47 spikes/s), to study different
proportions of subthreshold activity and spiking. As in the
network simulations, the input spikes are constrained to the time
grid. The simulations with the lower input rate are run for 16 s
and those with the higher input rate for 4 s biological time to
yield comparable total numbers of spikes for the low-rate and
high-rate simulations, and a total of 10 simulations with different
random seeds are performed for each setting. The other neuron
parameters are as in the network model.

We characterize the accuracy of the single-neuron simulations
in four ways, in each case comparing with NEST simulations
with precise spike timing: (1) cross-correlation histograms of
spike times with bin width equal to half the integration time

TABLE 1 | Parameters of the leaky integrate-and-fire model neurons used in the

simulations.

Membrane time constant τm 10 ms

Synaptic time constant τs 0.5 ms

Refractory period τref 2 ms

Membrane resistance Rm 40 M�

Leak potential EL −65 mV

Threshold θ −50 mV

Reset potential Vr −65 mV

step; (2) Pearson correlation coefficients between membrane
potential traces recorded at the integration time steps; (3)
the average percentage lead or lag in spike times; and (4)
the root mean square error (RMSE) of the spike times after
correcting for the average lead or lag. To determine the
accumulated percentage lead or lag in spike times, we first
find N = min

(

Nspikes

[

precise
]

, Nspikes

[

discrete
])

, where
discrete refers to simulations with SpiNNaker or with NEST
with spikes constrained to the grid and Nspikes is the total
number of spikes in the respective simulation. The accumulated
fractional lead or lag in spike times is then computed
as

[

tdiscrete(N)− tprecise(N)
]

/tdiscrete(N), where tprecise(N) and
tdiscrete(N) refer to the time of the Nth spike in the respective
simulation. The correction for the accumulated lead or lag
before determining the RMSE is performed to obtain a measure
of the variability of the spike times independent of overall
rate differences between simulation methods. It consists of
warping the spike times in the discrete simulation by the factor
tprecise(N)/tdiscrete(N) such that the last spike times considered
coincide. Denoting the resulting spike times as t∗

discrete
, the RMSE

is then determined as

√

∑N
i=1

(

t∗
discrete

(i)− tprecise(i)
)2

/N.

2.3. Cortical Microcircuit Model
The model, taken from Potjans and Diesmann (2014), represents
the neurons under 1 mm2 of surface of generic early sensory
cortex, organized into layers 2/3, 4, 5, and 6 (see Figure 1).
It comprises 77,169 neurons connected via approximately 3 ×
108 synapses, with population-specific connection probabilities
based on an extensive survey of the anatomical and physiological
literature. The connectivity is otherwise random, drawing both
source and target neurons with replacement. Each layer contains
one excitatory and one inhibitory population of LIF model
neurons. We denote the eight populations by 2/3E, 2/3I, 4E,
4I, 5E, 5I, 6E, and 6I. The synaptic strengths Jij are normally
distributed with mean± standard deviation of 351.2± 35.21 pA
for inhibitory source neurons and 87.8 ± 8.78 pA for excitatory
source neurons except for connections from 4E to 2/3E, which
have weights 175.6± 8.78 pA. Transmission delays are normally
distributed with mean ± standard deviation of 1.5 ± 0.75 ms
for excitatory source neurons and 0.75± 0.375 ms for inhibitory
source neurons, truncated at the simulation time step. All
neurons receive independent Poisson inputs with population-
specific rates reflecting connections from adjacent cortex, other
cortical areas, and subcortical regions. For further details we refer
to Potjans and Diesmann (2014).

We run the simulations over 10 s of biological time with a
time step of 0.1 ms, the original time step used for simulating
the model and one of the time steps for which SpiNNaker
is designed. In one set of simulations, the Poisson input of
the original model is replaced by a DC drive corresponding
to its mean current. The second set of simulations uses
Poisson input, drawn independently for each simulation. A
1 s transient is discarded before analysis. The accuracy of
the network simulations is assessed by statistical comparisons
with NEST simulations with precise spike timing, which avoid
synchronization artifacts (Morrison et al., 2007b; Hanuschkin

Frontiers in Neuroscience | www.frontiersin.org 4 May 2018 | Volume 12 | Article 291

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

van Albada et al. Neuromorphic Hardware for Full-Scale Networks

FIGURE 1 | Schematic illustration of the microcircuit model of early sensory

cortex. The model represents 1 mm2 of cortex with the full density of neurons

and synapses, for a total of 77,169 neurons and about 3× 108 synapses.

Each of the layers 2/3, 4, 5, and 6 contains an excitatory (E) and inhibitory (I)

population of leaky integrate-and-fire model neurons. All neurons receive an

external Poisson drive representing inputs from the rest of the brain. Figure

adapted from Potjans and Diesmann (2014) with permission.

et al., 2010). Specifically, we compute the Kullback-Leibler
divergence DKL between three sets of smoothed histograms for
each neural population; (1) single-neuron firing rates averaged
over the simulation duration; (2) single-neuron coefficients of
variation of interspike intervals (CV ISI); (3) Pearson correlation
coefficients between spike trains binned at 2 ms (corresponding
to the refractory time) from all disjoint neuron pairs within
a subpopulation of 200 neurons, which provides a trade-
off between statistical precision and computation time. For
each neural population and dynamic variable, the histogram
bin sizes are determined using the Freedman-Diaconis rule
(Freedman and Diaconis, 1981) on the histograms for NEST

with precise spike timing, bin size = 2
IQR(x)

3
√
n

with IQR

the interquartile range and n the number of observations. For
each population and variable, we determine DKL(P||Q) where
Q represents the grid-based NEST or SpiNNaker data, and
P represents the data from NEST with precise spike timing.

The histograms are first smoothed via Gaussian kernel density
estimation using the scipy.stats.gaussian_kde function with
bandwidth 0.3 s−1 for the rates, 0.04 for the CV ISIs, and
0.002 for the correlations. To avoid excessive contributions
of low-probability bins due to division by vanishingly small
numbers, bins where the normalized histograms have values
smaller than 10−15 are ignored. We do not perform significance
tests on the results, because we know the ground truth:
the simulation methods differ. The comparisons between the
simulationmethods therefore focus on the sizes of the differences
between the outputs.

2.4. Implementation
The network model was originally implemented in the native
simulation language interpreter (SLI) of NEST. To allow
execution also on SpiNNaker and to unify the model description
across back ends, we developed an alternative implementation in
the simulator-independent language PyNN (version 0.7; Davison
et al., 2008). On SpiNNaker, this works in conjunction with the
sPyNNaker software (Rowley et al., 2015).

The NEST (version 2.8; Eppler et al., 2015) simulations are
performed on a high-performance computing (HPC) cluster with
32 compute nodes. Each node is equipped with 2 Intel Xeon E5-
2680v3 processors with a clock rate of 2.5 GHz, 128 GB RAM,
240 GB SSD local storage, and InfiniBand QDR (40 Gb/s). With
12 cores per processor and 2 hardware threads per core, the
maximum number of threads per node using hyperthreading
is 48. The cores can reduce and increase the clock rate (up
to 3.3 GHz) in steps, depending on demand and thermal and
power limits. Two Rack Power Distribution Units (PDUs) from
Raritan (PX3-5530V) are used for power measurements. The
HPC cluster uses the operating system CentOS 7.1 with Linux
kernel 3.10.0. Formemory allocation, we use jemalloc 4.1.0 in this
study (see Ippen et al., 2017, for an analysis of memory allocation
in multi-threaded simulations).

The SpiNNaker simulations are performed using the 4.0.0
release of the software stack. The microcircuit model is simulated
on a machine consisting of 6 SpiNN-5 SpiNNaker boards, using
a total of 217 chips and 1934 ARM9 cores. Each board consists
of 48 chips and each chip of 18 cores, resulting in a total of 288
chips and 5174 cores available for use. Of these, two cores are
used on each chip for loading, retrieving results and simulation
control. Of the remaining cores, only 1934 are used, as this is all
that is required to simulate the number of neurons in the network
with 80 neurons on each of the neuron cores. Cores are also used
for simulating delays of greater than 16 time steps using a “delay
extension” implementation, and for simulating the Poisson input
noise. Each of these cores also simulates 80 units per core, i.e., 80
sources in the case of the Poisson sources, and the extra delay for
80 neurons in the case of the delay extensions.

The given number of neurons per core was chosen as this is
the smallest number of neurons that can be simulated on each
core for this particular network, whilst still being able to allocate
routing keys to the neurons and having the SpiNNaker routing
tables fit within the hardware constraints of the machine with
the current software implementation. The routing tables grow
as the problem is distributed across more chips on the machine,

Frontiers in Neuroscience | www.frontiersin.org 5 May 2018 | Volume 12 | Article 291

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

van Albada et al. Neuromorphic Hardware for Full-Scale Networks

as this requires additional paths to be made to allow the cores
to communicate. The fact that the number of neurons per core
cannot be reduced further also restricts the maximum speed
with which the network can be simulated given the network
traffic rates of the microcircuit; we find that we need to slow the
simulation down by a factor of 20 from real time to maintain a
0.1 ms time step and be able to process all the spikes without
overrunning the time allocated for each step. The simulation
could otherwise run faster by having fewer neurons per core, and
so less work to do on each core.

Whereas NEST represents parameters and dynamic variables
as double-precision floating-point numbers, SpiNNaker uses the
ISO draft s16.15 fixed-point arithmetic type.

All analyses are carried out with Python 2.7.9, using the
Elephant package (version 0.2.1; Yegenoglu et al., 2016) for
computing spike train statistics.

2.5. Performance Benchmarks
We compare the power efficiency and runtime of themicrocircuit
simulations with DC input between NEST and SpiNNaker. For
NEST, the strong-scaling efficiency of the simulation is assessed
on the HPC cluster. In line with NEST’s hybrid parallelization
strategy, we use one MPI process per compute node and
OpenMP-basedmulti-threading within each process. Since NEST
internally treats threads like MPI processes, they are also referred
to as “virtual processes,” and the total number of virtual processes
vp equals the number of MPI processes times the number of
threads per MPI process (Plesser et al., 2007; Kunkel et al.,
2014). For the benchmark simulations, vp is increased from
one single thread on one compute node up to the saturation
of the full cluster. One compute node is first filled with one
thread per core, first on one and then on the second processor,
before threads are also assigned to the second available hardware
thread of each core (hyperthreading). During the benchmark
simulations, the power consumption of the compute nodes under
load is measured with the PDUs. The active power is read
approximately once per second remotely from the PDUs using
the Simple Network Management Protocol (SNMP). To account
for additional contributions to the overall power consumption,
we furthermore estimate the usage of service nodes and switches
(2 Ethernet and 1 InfiniBand) based on PDU measurements and
data sheets.

Timestamps in the simulation scripts allow the identification
of different execution phases, such as “network construction” and
“state propagation,” and to relate them directly to the temporally
resolved power measurements. For the phase during which the
dynamical state of the neural network is propagated, we compute
the average power consumption, the energy consumption and the
energy per synaptic event. The energy consumption is obtained
by integrating the measured power. The energy per synaptic
event is defined as the energy divided by the total number of
transmitted spikes Ntspikes. Ntspikes is composed of all occurring
spikes times the number of outgoing connections from the
respective sending neurons.

On SpiNNaker, a maximum number of neurons to be
simulated on each core can be specified in the current software
implementation. Populations of neurons are specified in the

PyNN script, and a core runs a subset of the neurons from at
most a single population; neurons from several populations are
not combined. Thus if the network specifies a population of 100
neurons and a second population of 50 neurons and requests 90
neurons on a core, three cores will be used split as 90 on the first
core, 10 on the second core and 50 on the third, despite the fact
that the last 10 neurons of the first population could be combined
with the second population within the given constraints. This is
purely due to software engineering decisions; it is easier to keep
track of the neurons if a core can only contain part of a single
population. This could change in a future version of the software.

SpiNNaker boards are either single boards or combined in
units of 3 boards. This makes it easier to deal with the coordinate
space on the boards. The boards are physically placed into
subracks of 24 boards, where each subrack has a backplane
providing power to the boards and a 48-port switch providing
networking from the outside world to the boards, with one
100 Mb/s Ethernet connection to each board and a second
Ethernet connection to the management processor on each
board. This external network is used purely for I/O interactions
with the boards; network traffic generated during the simulation
is passed entirely via the SpiNNaker network on and between the
boards. The management processors allow each of the boards to
be powered on independently and the links between boards to
be turned on and off; thus within a single 24-board rack, boards
are allocated either individually or in groups of units of 3 boards.
The software is capable of working out an approximate number
of boards required for the simulation and then requesting
this allocation; in the case of the cortical microcircuit model
simulation, 6 boards are requested.

Once a SpiNNaker machine has been allocated, it interacts
with a host computer, which reads the machine configuration
information (including the layout of the machine and any
hardware issues such as faulty cores, chips and links), and works
out how the neural network is to be run on the machine. Once
this has been determined, the network data is generated and
loaded, and the network is run.

For estimates of power consumption we connected a single
24-board rack to a consumer power measurement device at
the mains socket, and ensured that there were no other users;
thus only 6 of the 24 boards were ever active, with the other
18 remaining switched off. The power measurement device
integrates the power usage over time providing an energy
consumption in kWh at chosen points in time. An estimate of
baseline power results from a measurement with the power on
but with all the boards powered off. This allows eliminating the
power usage of the rack itself, including the power consumption
of the network switch, though not the cooling system, which is
activated dynamically. A webcam pointing at the meter takes
snapshots of the device at appropriate moments in the simulation
setup, loading, execution, and result extraction phases to obtain
readings for these stages. These measurements yield the total
energy consumption for each execution phase in steps of 1E =
0.01 kWh. When computing the power for a phase of duration
T, we propagate this measurement inaccuracy according to
1P = 1/T · 1E. The software of SpiNNaker presently does not
allow turning off individual cores and chips. Therefore it is not

Frontiers in Neuroscience | www.frontiersin.org 6 May 2018 | Volume 12 | Article 291

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

van Albada et al. Neuromorphic Hardware for Full-Scale Networks

possible to subtract the power consumption of unused hardware
components on each board.

For both NEST and SpiNNaker, the respective machines are
exclusively used for the simulations under consideration. There
are no contributions to the overall energy consumption from
other jobs running.

3. RESULTS

3.1. Conceptual Separation of Biological
Time and Wall-Clock Time
Model neurons in the SpiNNaker system are updated at regular
intervals in wall-clock time; this allows the simulation to be
divided between several CPUs with independent timers, and still
maintain reasonable synchronization across the system. A typical
setting in previous studies is hw = 1 ms. As SpiNNaker was
originally designed for real-time operation, the interpretation of
the biological model of the time span between two update events
was considered to be identical to the wall-clock time passing
between two updates, hb = hw. However, from the point of view
of a general simulation engine the two quantities are conceptually
not identical. If the equations of a neuron model require updates
in intervals of 0.1 ms in order to achieve the desired numerical
accuracy, hb can be interpreted as hb = 0.1 ms. Without further
changes to the parameters of the SpiNNaker system this means
that the dynamics of the neural network now evolves 10 times
slower than wall-clock time. However, the number of spikes
occurring per second of wall-clock time is now reduced by a
factor of 10: if a neuron model emits a spike within 1 ms with
probability 1, the probability to emit a spike within an interval of
0.1ms is 0.1. Therefore, if the limiting factor for reliable operation
of the hardware is the number of spikes per second of wall-
clock time, it might be possible to increase the clock-speed of
the system by a factor of 10 (hw = 0.1 ms) and recover real-
time performance while safely staying within the limits of the
communication bandwidth.

However, the communication bandwidth is rarely the limiting
factor in simulations on SpiNNaker; we must also consider
the CPU cycles required to process each spike received, and
each synapse the spike activates. The design specifications of
SpiNNaker assume a connectivity of 1,000 incoming synapses
per neuron; the cortical microcircuit model has a value closer to
10,000, which means that the simulation must be slowed down
further to accommodate the extra computation this requires,
otherwise the synchronization of the simulation is liable to drift
between the cores, and the results will be unpredictable and
unreliable. If we assume that at the design specifications of
SpiNNaker, the computation is split roughly as 10% or 20,000
CPU cycles per time step for neural updates and 90% or 180,000
CPU cycles for synapse processing, setting the time step to 0.1ms
means that 10 times more work is required for neural processing,
giving 200,000 CPU cycles per ms of biological time but the
amount of work for synapses remains constant at 180,000 CPU
cycles per ms as the number of synaptic events per time step
is reduced by a factor of 10. Setting the number of synapses
per neuron to 10,000 means 10 times more work, or 1,800,000

CPU cycles per ms, leading to a total of 2,000,000 CPU cycles
per ms of biological time for all the computation required. This
can be achieved by slowing down the simulation by a factor of
10. In practice, there are additional overheads in these processes,
and we achieve reliable operation when hw = 2 ms, meaning a
slow-down of the dynamics compared to real time by a factor
of 20.

3.2. Steps Toward Implementation on
SpiNNaker
We iteratively refined the SpiNNaker interface for PyNN to
extend the range of functions covered, and to match their
syntax and functionality. Furthermore, we enabled running long
simulations, where it was previously only possible to have short
runs due to the memory filling up with the recorded data.
We also implemented the NEST connectivity routine used by
Potjans and Diesmann (2014) on SpiNNaker. The representation
ofmultapses (multiple synapses between a pair of neurons; Crook
et al., 2012) was already supported in the software, and all that
was required was to generate the connectivity data using the
host Python software. The large number of synapses, however,
were more of an issue; for previous models, the synaptic data
for the entire network was generated in advance of execution.
The representation of this data in Python required a large
amount of RAM on the host PC. We therefore modified the
software to perform initial estimates of resource usage on the
SpiNNaker machine based on statistical information about the
PyNN connectors, including the multapse connector created
specifically for this network. The software now generates the
actual connectivity data lazily for each core, one by one, just
prior to loading onto the machine, reducing the RAM usage
on the PC by orders of magnitude. This method is also faster,
reducing the data generation time from more than 8 h to around
1 h. This process could be parallelized to further reduce the data
generation time, but this is not done in the current software due
to restrictions of Python running in parallel.

The limited resources and efficiently implemented data
structures within the SpiNNaker simulation environment enforce
a limit of 1.6 ms for connection delays when the biological time
step is 0.1 ms, due to the use of 16-element ring buffers for
synaptic inputs (for an explanation of ring buffers in neural
network simulations, see for instance Morrison et al., 2005). The
mean delay of excitatory connections in the microcircuit model
is 1.5 ms, so it was not initially possible to draw delays from
a normal distribution with reasonable width. To resolve this
issue, we implemented a “delay extension” mechanism, whereby
delays > 1.6 ms were split into a multiple of 1.6 ms steps plus a
remainder:

delayextended =
⌊

delaytotal

1.6 ms

⌋

× delaytotal,

delayremaining = delaytotal − delayextended.

The extended delay is handled by a separate core. Knowing that
the delay is a multiple of 1.6 ms allows up to 8 such multiples, or
12.8 ms of delay, to be simulated within the limited resources of
this core. These can in principle be chained together allowing any

Frontiers in Neuroscience | www.frontiersin.org 7 May 2018 | Volume 12 | Article 291

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

van Albada et al. Neuromorphic Hardware for Full-Scale Networks

delay, but a single additional core combined with the maximum
1.6 ms in the neuron model itself (a total of 14.4 ms) was deemed
sufficient in this model. Besides enabling longer delays to be
represented, support for distributed delays was added.

The synaptic weights of the model are of the order of 102 pA.
On SpiNNaker, a single synapse is represented by a 32-bit number
consisting of 8 bits for the target neuron index (allowing up to
256 neurons per core—the identity of the core is not stored in
the synaptic word but in the routing tables, so neurons can have
more than 256 targets), 4 bits for the delay (allowing up to 16
values, as described above), 2 bits for the synapse type (excitatory
or inhibitory), and 16 bits for the synaptic weights; 2 bits are
reserved to allow for increasing the number of synapse types.
The 16-bit weight values are stored as fixed-point values, but
the position of the binary point is adjusted to ensure that also
the largest summed synaptic inputs occurring in the simulation
can be represented. The reason for this adjustment is that when
a spike is received on a core, the weight from each synapse is
added into one of the 16-delay ring-buffers, each of which is
also 16 bits in size; thus ideally the combination of the additions
of several weights should not overflow the buffer. Additionally,
an appropriate degree of precision is required to represent the
weight values given; for example, using 8 bits for the decimal part
of the numbers would lead to a precision of 1/

(

28
)

nA ≈ 4 pA.
This would give a fairly large error as a fraction of the synaptic
weights in our simulations. The calculation of the position of
the binary point is done by finding the maximum value likely
to be added to any single ring buffer element. In previous
implementations, this was done by simply adding together all
the weights incumbent on each of the neurons and taking the
maximum. This guaranteed that the ring buffer elements would
never overflow but tended not to leave enough precision in the
weights for correct representation, especially not in the case
of the cortical microcircuit where there are a large number of
connections, but a relatively low firing rate. This calculation was
therefore updated to combine the statistics of the connectivity
to get an approximate upper bound on the sum of the weights
in any ring buffer element. This is done by firstly assuming an
average input spike rate and choosing a scale factor σ to use for
the overhead in the calculation. We treat the ring buffer elements
equally, since, although the delays are distributed, the ring buffer
element that represents the given delay from the current time step
is moving as the time steps progress. Also the number of ring
buffer elements is unimportant, since, regardless of how many
there are, delay values will appear which could place the weight
in any one of the elements. Thus, the calculation concerns any
delay ring buffer element. We then look to the distribution of the
weights combined with the timing of the spikes, since it is the
arrival of a spike that causes a weight to be added to the ring
buffer. For the purpose of determining the maximal resolution
of the synaptic weights that allows the summed inputs to the
neurons to be represented, we assume a Poisson distribution in
the number of spikes arriving. This does not mean that inputs in
the model indeed need to be Poissonian; the estimated resolution
will work under moderate deviations from Poisson statistics, and
the resolution can be decreased in case of highly synchronous
input. Under the Poisson assumption, we can expect this same

distribution in the addition of the weights to the ring buffer
elements. Taking the mean and standard deviation of the weights,
we can then compute an expected mean and standard deviation
in the sum of the weights in any ring buffer element. Thus, we
can approximate the maximum weight as a number of standard
deviations above this mean value. Applying these assumptions,
the following closed-form solution is derived from standard
results on means and variances of products of independent
variables:

vr = nw2
mean (1)

U = round[n+ 3
√
n]

vw =
e−n nwvar(−nU + en Ŵinc[1+ U, n])

Ŵ[1+ U]
,

M = nwmean + σ
√
vr + vw

where M is the expected maximum value over time in any of
the delay ring buffer elements, which is calculated using n, the
average number of expected incoming spikes in a time step;
wmean, the mean of the incoming weights; σ , the number of
standard deviations above the mean for safety overhead (set
to 5 here); wvar, the variance of the incoming weights; the
gamma function Ŵ, and the incomplete gamma function Ŵinc.
In the cortical microcircuit simulation, we take the expected
rates within the network to be 30 spikes/s and use the known
rates of the Poisson generators for calculating the synaptic
weight resolution. Requiring that M from Equation (1) can be
represented leads to weights with 6 or 7 bits for the integer
part (respectively allowing summed input values with integer
parts up to 26 − 1 = 63 nA and 27 − 1 = 127 nA) and 10
or 9 bits respectively for the fractional part, depending on
the total number of incoming synapses to the population in
question, since it is the summed weights in the ring buffer
elements that determine the necessary resolution. In terms of
weights of single synapses, with 10 bits for the fractional part
of the number, the weight of 0.0878 nA would be represented
as 0.0869140625, and with 9 bits for the fractional part, the
representation is 0.0859375. By comparison, the nearest double-
precision (64-bit) floating point representation of 0.0878 is
0.0878000000000000030420110874729289207607507705688476
5625, and the nearest single-precision (32-bit) representation
is 0.087800003588199615478515625; using half-precision
floating point (16-bit) for the value would result in the value
0.08779296875 being used. Thus, the precision of the weight
values on SpiNNaker is reasonable given the 16 bits available
for use. During the single-neuron tests, the whole 16 bits were
used as the fractional part of the number, leading to 0.0878 being
represented as 0.087799072265625. Note that even with this
calculation, the chances of overflow of the buffer are non-zero,
and overflows will still likely occur in long-running simulations.
Thus the software counts the number of times an overflow occurs
and reports this to the user at the end of the simulation.

The communication network of SpiNNaker can support up to
6 million spike packets per second, but it does not cope well with
all the traffic occurring within a short time window within the
time step. This is exacerbated by the initial synchronization of

Frontiers in Neuroscience | www.frontiersin.org 8 May 2018 | Volume 12 | Article 291

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

van Albada et al. Neuromorphic Hardware for Full-Scale Networks

the simulation engine at the code level, making all cores likely
to send spikes at the same time. The neuron cores pause the
processing of neurons and thus the sending of spikes whilst
they are processing incoming spikes, so after the initial spikes
there is some spreading of the network traffic over the time
step occurring naturally. However, the Poisson noise generating
cores and the delay extension cores have little to no inputs, so
they have no automatic spreading of the sending of the spikes
over the time step due to time spent processing incoming spikes.
Furthermore, in the microcircuit simulations, the spikes tended
to be concentrated within a small window within the time step
despite the desynchronization due to the processing of inputs.
Without any correction, it is likely that all the network traffic will
therefore occur within a small window at the start of the time
step, and all cores will send simultaneously. To overcome this
issue, each core is firstly given a random wait time at the start of
every time step. This gives a basic offset so that the first network
packet sent by a core is unlikely to be synchronized with that of
the other cores. Given the maximum number of network packets
to be sent by the application within a single time step, it is then
possible to work out an expectedminimumnumber of CPU clock
cycles between sending packets within a time step; in the case of
neurons each neuron can only send at most one spike per time
step, but with Poisson sources, the likely maximum number of
spikes per time step has to be calculated statistically. For example,
with a 0.1 ms biological time step in real time, a 200 MHz CPU
and 100 neurons being executed on the core, there are at most
100 packets to be sent each time step, and 20,000 clock cycles in
which to send them, so there should be 200 clock cycles between
the sending of packets. In practice, we spread the packets over half
the time step, to allow the spikes to be processed at the receiving
end, so there would be 100 clock cycles between packets in this
example. If the execution arrives at a point at which a packet is to
be sent, but the expected number of CPU cycles since the start of
the time step has not passed, the core is simply made to wait until
this occurs. On neuron cores, the neurons continue processing
spikes during this pause, whereas the delay extension and Poisson
generator cores have little else to dowhen this occurs. Prior to this
change, there were quite a few dropped packets in the simulation.
With this change no packets were lost during the simulation.

The independent Poisson input sources of the cortical
microcircuit model also required modifications of the SpiNNaker
software stack. The software was designed for an input spike
rate to each neuron around 10 spikes/s and assuming each
source neuron to have synapses onto multiple target neurons
within each population. This means that there is not too much
network traffic, and that each Direct Memory Access (DMA)
performed when a spike is received retrieves multiple synapses
from the SDRAM, increasing the overall efficiency of the transfer
by reducing the overheads of each transfer. The one-to-one
connectivity of the Poisson sources coupled with their high
firing rate breaks both these assumptions. The revised software
contains a heuristic in the placement algorithm which attempts
to place one-to-one connected populations on the same chip
where possible. This reduces the communication overhead, since
only the internal network-on-chip is used to transfer the spikes
between the Poisson sources and the populations they feed.

Furthermore, the synaptic connectivity data for the one-to-one
connected populations are now stored in local Data Tightly
Coupled Memory (DTCM); a DMA to transfer the data is no
longer required. The high input rates also mean that multiple
spikes often need to be sent in a single time step, for which
support was added.

As SpiNNaker has limited SDRAM and no other backing
store, the storage of recorded data can become an issue, even
for short simulations. The improved software overcomes the
problem by calculating the maximum duration of the simulation
before the SDRAM is filled by the recorded data. The simulation
runs for this period, pauses whilst the data are extracted from the
machine, and then resumes. This repeats until the simulation has
covered the required duration.

3.3. Comparison of Single-Neuron Results
Between NEST and SpiNNaker
Figure 2 shows the results of the single-neuron tests, comparing
the simulation output of grid-based NEST and SpiNNaker with
that of NEST with precise spike timing, which provides a near-
exact reference solution (cf. section 2.1). The example membrane
potential traces in Figure 2A show that both simulators achieve
a high accuracy. SpiNNaker displays a slight lead and grid-based
NEST a slight lag with respect to the precise solution that is visible
especially at 1 ms resolution. These deviations are also apparent
in the cross-correlation histograms of the binned spike trains
(Figure 2B; for a comparison of different numerical solvers, see
Rotter and Diesmann, 1999). The histograms for time step 1 ms
contain multiple peaks due to the 1, 000 Hz rhythm imposed by
the grid-constrained input spikes. The lag of grid-based NEST
is due to the fact that spike times are always rounded up to the
nearest grid point, not down (Morrison et al., 2008; Krishnan
et al., 2017). The early spiking of SpiNNaker is likely to be due
to the use of fixed-point numerical representations and the
separation of the exponential decay of the synaptic inputs from
the integration of the membrane equation, as shown for a single
input spike in Figure 3. Since the fixed-point synaptic weights
in these simulations are slightly smaller than the floating-point
values, the increased postsynaptic response with the fixed-point
representation must be due to the limited resolution of the other
neuron parameters and variables. The separated integration leads
to consistently higher values of themembrane voltage in response
to the incoming spike, but for 0.1 ms time steps, the numeric
type appears more influential than this separation (insets of
Figure 3). The deviations for the lower-rate simulations are
slightly smaller than those for the high-rate simulations, because
the limited memory of the dynamics causes subthreshold traces
with different initial conditions to converge under identical
inputs. In terms of membrane potential correlations, both
simulators perform well at 0.1 ms resolution (Figure 2C). At
1 ms resolution and low rates, NEST outperforms SpiNNaker
in terms of membrane potential correlations, accumulated
spike lead or lag, and spike time precision (Figures 2C–E).
This may be explained by the greater contribution of
subthreshold dynamics, which NEST integrates exactly, as
compared to spiking dynamics at low rates. At 1 ms resolution

Frontiers in Neuroscience | www.frontiersin.org 9 May 2018 | Volume 12 | Article 291

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

van Albada et al. Neuromorphic Hardware for Full-Scale Networks

A

B

D E

C

FIGURE 2 | Single-neuron tests for SpiNNaker and grid-based NEST simulations. (A) Example membrane potential traces of leaky integrate-and-fire model neurons

(parameters as in Table 1) receiving Poisson input with a “low rate” of 8,000 spikes/s and a “high rate” of 10,000 spikes/s (rows) for computation time steps 0.1 ms

and 1 ms (columns). Red, NEST with spikes constrained to the grid; blue, SpiNNaker; black dashed curves, NEST with precise spike timing. Spike times are indicated

by vertical lines. For time step 0.1 ms, all subthreshold traces overlap nearly precisely. (B) Average cross-correlation histograms over 10 simulations between binned

spike trains from grid-based NEST (red) and SpiNNaker (blue) and those from NEST with precise spike timing. (C) Pearson correlation coefficients between membrane

potential traces. (D) Accumulated fractional lead or lag in spike times. (E) Root mean square error of spike timing after correcting for accumulated lead or lag. All

comparisons are with NEST with precise spike timing. (C–E) Thick black lines, median across 10 repeat simulations; boxes, interquartile range (IQR); whiskers extend

to the most extreme observations within 1.5×IQR beyond the IQR.

and high rates, SpiNNaker outperforms NEST on all three
measures (Figures 2C–E).

3.4. Comparison of Network Results
Between NEST and SpiNNaker
Different slowdown factors were tested on SpiNNaker to
determine the minimal slowdown factor at which no spike loss
occurs in the simulation of the cortical microcircuit model.
Based on the biological time step of 0.1 ms compared to the
1 ms design specification, this slowdown has to be at least a
factor of 10. As explained in section 3.1, additional slowdown
is necessary to enable processing the high input rates to the
neurons. At a slowdown factor of 20 with respect to real
time SpiNNaker simulates this model without any spike loss.
Also, the chosen precision for the synaptic weights prevents
any overflows of the synaptic ring buffers from occurring in
the SpiNNaker simulations. Therefore, differences between the
NEST and SpiNNaker simulation results are only caused by

floating-point vs. fixed-point numerical representations, exact
subthreshold integration vs. separate integration of membrane
voltage and synaptic inputs, and different random number
generator seeds. Grid-based NEST, NEST with precise spike
timing, and SpiNNaker produce closely similar spiking statistics,
both for DC input (Figure 4) and for Poisson input (Figure 5).
The raster plots of the spiking activity (Figures 4A–C, 5A–C),
a standard tool for the visual inspection of multi-channel spike
data (Grün and Rotter, 2010), bring out the similarity. Despite
the different initial conditions and different realizations of the
connectivity, and also different input realizations in the case
of Poisson input, distributions of average single-neuron firing
rates (Figures 4D, 5D), spiking irregularity (Figures 4E, 5E), and
correlation coefficients between binned spike trains (Figures 4F,
5F) match closely between the three simulation methods and for
all neural populations.

To assess how meaningful the differences between the
simulation methods are, we compare these differences with

Frontiers in Neuroscience | www.frontiersin.org 10 May 2018 | Volume 12 | Article 291

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

van Albada et al. Neuromorphic Hardware for Full-Scale Networks

A

B

FIGURE 3 | Membrane potential excursion for different computation step

sizes and numerical representations. Panels show the peak region of the

response of the model neuron on the SpiNNaker system to a single input spike

(neuron parameters as in Table 1) for computation time steps 0.1 ms (A) and

1.0 ms (B). The ISO specification s16.15 fixed represents signed fixed-point

numbers with 16 bits for the integer part and 15 bits for the fractional part;

32-bit float uses a single-precision ISO standard floating-point representation.

Both s16.15 fixed and 32-bit float separate out the integration of the

exponential decay of the synapses and the LIF neuron model (exponential

integration), though each component uses a closed-form solution. Exact

32-bit float uses a single closed-form solution that encompasses both the

exponential decay of the synapses and the LIF neuron model. This exact

integration corresponds precisely to the analytical solution sampled at the

integration time step. The s16.15 format leads to the same synaptic weights

as with the 16-bit format in Figure 2. Double-precision (64-bit) floating-point

numbers give membrane potential excursions that are visually indistinguishable

from the single-precision results. Insets enlarge the membrane potential traces

delineated by the black boxes.

those caused by the random number generator seeds alone.
We perform three simulations of the microcircuit model with
Poisson input for 10 s with NEST with precise spike timing with
different random seeds for the connectivity, initial membrane
potential distributions, and Poisson generators (Figure 6). In
each case, we compare the distributions of rates, CV ISIs, and
correlations, discarding a 1 s transient as before, in terms of the
Kullback-Leibler divergence between the smoothed histograms.
Since the simulations with the three methods (grid-based NEST,
NEST with precise spike timing, and SpiNNaker) each use
different random seeds, differences between the simulation
results for these methods include the influence of the seeds,
particularly in view of the finite length of the data. The results
shown in Figures 6D–F indicate that the influence of the
random seeds is comparable in size to the combined influence
of the simulation method and the seeds. Thus, the simulation
method itself contributes little to the variation in the dynamical
properties of the microcircuit model, indicating in particular
that SpiNNaker’s fixed-point numerics and approximations in
the subthreshold integration do not compromise accuracy for
networks of the given type.

3.5. Performance
Figure 7 shows results from measurements of the power
consumption during benchmark simulations with NEST on one
and two compute nodes of an HPC cluster. The simulations
use an increasing number of threads on the single node,
and all threads supported by the hardware on the two nodes
(Figure 7A). The measured power consumption rises during
script execution and we observe that it increases with the number
of vps whereas the required time decreases. In Figures 7B,C,
we enlarge the traces for vp = 48 and vp = 96, respectively,
and indicate the execution phases of the script. Prior to the
execution of the script, the system exhibits a fluctuating baseline
power consumption of the switched-on nodes; the baseline
is higher for two nodes compared to one node. The phases
“network construction” (red) and “state propagation” (blue) are
the main phases as they refer to the setup of neurons and
connections and the propagation of the dynamical state of the
neural network, respectively. The color-coded areas for these
phases have approximately the same size, indicating a similar
energy consumption. The “writing output” phase transfers spike
times from the simulation engine to file buffers after the
dynamics has reached its final state. The corresponding PyNN
function gathers data from all processes and uses only one
thread per node for writing. Time spent otherwise during
script execution is denoted in dark gray. These intervals
correspond for instance to loading Python modules and setting
simulation parameters before the network construction starts,
and plotting the spiking activity after writing output. When
the script has terminated, the timestamps are written to file,
and after that, the power consumption returns to the baseline
level.

We further spread the NEST simulations across up to all 32
compute nodes of the HPC cluster with 48 threads on each
node (vp = 1, 536), shown in Figure 8. Figure 8A demonstrates
the parallel scalability of network construction and propagation
of the dynamics by showing the measured times together with
the ideal linear expectations. The propagation time saturates at
about three times the biological time. The jump in propagation
time after vp = 24 coincides with the onset of hyperthreading.
Network construction time continues to decrease over the full
range of compute nodes but exhibits an intermediate increase
starting at vp = 15 (see Ippen et al., 2017 for a general
discussion of network construction time). Figure 8B shows the
power consumption averaged over the propagation phase as a
total across all nodes used in the particular simulation. The
change in slope at vp = 48 is due to the successive switching on
of additional nodes. Integrating the power consumption traces
over the propagation interval yields the energy consumption
as depicted in Figure 8C. Due to the decrease in propagation
time and the concomitant growth in power consumption with
increasing vp, the energy consumption reaches a minimum at
vp = 96, i.e., at two nodes. Thus, the hardware configuration
requiring the minimal energy-to-solution is neither the one
with the smallest number of hardware components involved
nor the one with the shortest time-to-solution, but a system of
intermediate size. The energy per synaptic event for the optimal
configuration is 4.4 µJ.

Frontiers in Neuroscience | www.frontiersin.org 11 May 2018 | Volume 12 | Article 291

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

van Albada et al. Neuromorphic Hardware for Full-Scale Networks

A B C

D E F

FIGURE 4 | Spiking output of the cortical microcircuit model with DC input. (A–C) Raster plots showing spike times (dots) of excitatory neurons in blue and of

inhibitory neurons in red. The spikes of 5% of all neurons (vertical) are displayed. (D–F) Distributions of spiking activity for each of the eight populations of the model.

(D) Single-neuron firing rates of all neurons averaged over the last 9 s of the simulation. (E) CV ISI, a measure of irregularity of all neurons. (F) Correlation coefficients

between binned spike trains for 200 neurons in each population. Histogram bin widths are determined by the Freedman-Diaconis rule.

Apart from the compute nodes, however, we also have to take
other components of the cluster into account to estimate the total
energy-to-solution. The HPC cluster requires two service nodes,
with an estimated combined contribution of approximately
300 W, comparable to the base level of two compute nodes. Two
Ethernet switches and one InfiniBand (IB) switch consume, based
on their data sheets, a maximum 64 and 226 W, respectively.
During the propagation phase, only the compute nodes and the
IB switch are required. Figures 8B,C assess how an additional
power offset accounting for the IB switch affects the power and
the energy consumption as functions of vp. The increase in power
consumption is crucial for small vp, but it is almost irrelevant
for simulations across multiple compute nodes (large vp). We
also observe that the minimum energy to solution shifts to a
larger vp, and conclude that simulations become more efficient if
distributed across more hardware. Including the contribution of
the IB switch, the minimal energy per synaptic event is obtained
at vp = 144 and equals 5.8µJ. At this number of virtual
processes, the simulation takes about 4.6 times real time.

Figure 9 illustrates the power consumption of the SpiNNaker
system, derived from the measurements of the energy

consumption for each execution phase (see section 2.5).
The background power usage caused by the network switch, the
active cooling systems, and the power supply itself explains half
of the total power consumption. As in the case of the HPC cluster
we do not include any cooling of the room into the measure.
The mapping phase is where the software of the host computer
reads the machine configuration and then uses this description
to work out which parts of the neural network are to be executed
on which chip, and the routes taken by network traffic that is
to traverse the machine during simulation. Power consumption
is mostly the same as in the idle phase, since the machine is
only briefly contacted during this phase, with the rest of the
work being done on the host computer. The data generation
phase creates the data for each core; this includes the neuron
parameters and synaptic matrices, as well as other SpiNNaker-
specific data. Again, the machine is not in use during this phase,
and hence could be turned off. The loading phase transfers the
data generated on the host computer to the SpiNNaker machine.
Although this requires communication with the machine, power
consumption is still low, because only two cores on the machine
are active at any time during this phase. These are the monitor

Frontiers in Neuroscience | www.frontiersin.org 12 May 2018 | Volume 12 | Article 291

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

van Albada et al. Neuromorphic Hardware for Full-Scale Networks

A B C

D E F

FIGURE 5 | Spiking output of the cortical microcircuit model with Poisson input. Same display and parameters as in Figure 4.

core on an Ethernet-connected chip and the monitor core on
the chip storing the data in memory. During the phase of state
propagation, the power consumption increases significantly
above the level of the idle state, reflecting the work done by
the cores. The energy per synaptic event consumed during the
propagation phase is 5.9 µJ.

Duration, power, and energy consumption of the propagation
phase are included as horizontal lines in Figure 8 to facilitate a
comparison with NEST. The energy consumed by the SpiNNaker
simulation is close to the minimum energy of the NEST
simulation for compute nodes and the IB switch, leading to a
similar result for the energy per synaptic event on both systems.

Previous measurements of the SpiNNaker system indicated
the approximate power usage of each chip to be 1 W when fully
loaded, and the overhead for each board itself, excluding the
chips, to be approximately 12 W. The 6 boards and 217 chips
used in the present study thus predict a power consumption of
(6× 12+ 217) W = 289 W. This is close to the 277Wmeasured
during the state propagation phase, indicating that a calculation
based on the number of chips and boards in use delivers a
good estimate of the power consumption during this phase. With
48 chips per board, there are 48 × 6 − 217 = 71 unused
chips, of which the power consumption is measured along with
that of the active chips, but not taken into account in the
back-of-the-envelope calculation. The fact that this calculation

already gives a higher value than the measurement suggests that
the power consumption of the unused chips is negligible.

4. DISCUSSION

On the example of a full-scale cortical microcircuit model
(Potjans and Diesmann, 2014), the present work demonstrates
the usability of SpiNNaker for large-scale neural network
simulations with short neurobiological time scales and compares
its performance in terms of accuracy, runtime, and power
consumption with that of the simulation software NEST. With
∼0.3 billion synapses, the model is the largest simulated on
SpiNNaker to date, as enabled by the parallel use of multiple
boards. The result constitutes a breakthrough: as the model
already represents about half of the synapses impinging on the
neurons, any larger cortical model will have only a limited
increase in the number of synapses per neuron and can therefore
be simulated by adding hardware resources. The synaptic
time constants and delays of the model necessitate a shorter
integration time step (here, 0.1 ms) than the original 1 ms design
specification of SpiNNaker. The higher resolution is achieved
by a conceptual separation of biological time and wall-clock
time. For the microcircuit model the current software stack of
SpiNNaker requires the number of neurons per core to be set

Frontiers in Neuroscience | www.frontiersin.org 13 May 2018 | Volume 12 | Article 291

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

van Albada et al. Neuromorphic Hardware for Full-Scale Networks

A B C

D E F

FIGURE 6 | Comparison of influence of random number generator seeds and simulation method. (A–C) Distributions of dynamical properties of the microcircuit

model for each of the 8 neural populations obtained using NEST with precise spike timing. Results for three simulations, each of 10 s duration discarding a 1 s

transient, with different random seeds. (D–F) Kullback-Leibler (KL) divergences from NEST with precise spike timing as a reference, using results from NEST with

precise spike timing and different random seeds (mean of KL divergences for two simulations with different seeds), and results from grid-based NEST and SpiNNaker.

(A,D) Time-averaged single-neuron firing rates. (B,E) Coefficient of variation of interspike intervals. (C,F) Pairwise correlations between binned spike trains.

to exactly 80. This restriction is the result of the number of
routing entries available on each router in themachine, combined
with the current algorithm for assigning keys to the neurons.
As a consequence of the combination of required computation
step size and large numbers of inputs, the simulation has
to be slowed down compared to real time. In future, we
will investigate the possibility of adding support for real-time
performance with 0.1 ms time steps. Reducing the number of
neurons to be processed on each core, which we presently
cannot set to fewer than 80, may contribute to faster simulation.
More advanced software concepts using a synapse-centric
approach (see Knight and Furber, 2016) open a new route for
future work.

We assess accuracy by comparing grid-based NEST and
SpiNNaker simulations with NEST simulations with precise
spike timing, which provide a highly accurate reference solution.
For the cortical microcircuit model, we consider firing rates,
coefficients of variation of interspike interval distributions, and
cross-correlations between binned spike trains. Which measures
to use to quantify accuracy and which level of accuracy is
considered to be acceptable has to be determined on an
individual model basis from the acceptable range of desired
model behaviors. For instance, for the microcircuit model, it
is important that the simulations preserve asynchrony and
irregularity of spiking, and differences in firing rates between
the neural populations. Although models and their desired

Frontiers in Neuroscience | www.frontiersin.org 14 May 2018 | Volume 12 | Article 291

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

van Albada et al. Neuromorphic Hardware for Full-Scale Networks

A

B

C

FIGURE 7 | Temporally resolved power consumption during microcircuit simulation with NEST on HPC cluster. (A) Total power consumption as a function of time of a

single compute node using 1–48 threads (gray code) and of two compute nodes with 48 threads per node (vp = 96, black). The curves terminate with the end of the

simulations (for 10 s of biological time in all cases). (B) Power consumption in labeled execution phases of a simulation (legend) on a single compute node with 48

threads. (C) Execution phases for two compute nodes with 48 threads per node.

outcomes are diverse, these measures are also chosen because
they characterize several fundamental aspects of single-neuron
and population activity, and are therefore relevant to a wide
range of models. Despite its fixed-point arithmetic, SpiNNaker is
able to achieve comparable accuracy on these measures to that
of NEST. Conversely, NEST executed on a high-performance
cluster achieves speed and power efficiency comparable to the
performance of SpiNNaker for some settings and in addition
enabling a flexible trade-off between runtime and energy-to-
solution. These results take into account that runtime and energy
consumption should be assessed while controlling for simulation
accuracy. For networks even larger than the cortical circuit
considered, where runtime becomes strongly communication-
dominated on traditional architectures, the asynchronous update
of SpiNNaker may yet give it an advantage in terms of efficiency
outside the scope of the present study due to an ability to
simply expand the number of cores used by the simulation with
minimal communication overhead. Thus, larger networks can
be simulated in a weak scaling scenario where network size
increases without increasing the rates of neuron state updates and

synaptic events per neuron. For networks of any size, SpiNNaker
is expected to yield accurate results as long as the simulation
speed is chosen such that no spikes are lost and the resolution of
the synaptic weights is sufficiently high. Further work is required
to assess its scaling of runtime, memory, and energy consumption
with network size.

The cortical microcircuit model consists of leaky integrate-
and-fire (LIF) model neurons. To assess accuracy in a more
controlled setting, we also consider single-neuron simulations.
This reveals that grid-based NEST and SpiNNaker have similarly
high accuracy at 0.1 ms time steps, with NEST slightly lagging
behind and SpiNNaker slightly leading the precise solutions. This
respective lag and lead can be attributed to details of the neuron
and synapse implementation, with NEST using exact integration
(Rotter and Diesmann, 1999) for the subthreshold dynamics,
whereas SpiNNaker uses fixed-point representations and a
separation of the integration of the synaptic exponential decay
and the neuron model. In terms of single-neuron dynamics,
NEST performs relatively better at low spike rates, whereas
SpiNNaker performs relatively better at high spike rates. The

Frontiers in Neuroscience | www.frontiersin.org 15 May 2018 | Volume 12 | Article 291

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

van Albada et al. Neuromorphic Hardware for Full-Scale Networks

A

B

C

FIGURE 8 | Time to solution and energy consumption of NEST and SpiNNaker simulations. (A) Duration of network construction (red square markers) and

propagation of the dynamics (blue circular markers) vs. number of virtual processes for NEST simulations. Dashed lines represent ideal scaling. Black horizontal line

indicates stretch of biological time simulated (10 s). (B) Mean power consumption during propagation for NEST simulations measured at involved compute nodes

(filled markers) and with an additional power offset for the InfiniBand (IB) switch (open markers). (C) Energy consumption during propagation for NEST simulations

measured at involved compute nodes (filled markers) and with an additional power offset for the IB switch (open markers). On a single node, vps bind initially to cores

on one processor (up to vp = 12), then to cores on the second processor (up to vp = 24, left vertical dashed line), and finally to the second hardware thread on each

core (up to vp = 48, right vertical dashed line). Blue horizontal lines in each panel indicate duration, power and energy of state propagation, respectively, for a

SpiNNaker simulation. All panels in double-logarithmic representation.

high accuracy of NEST for low rates may be due to the greater
contribution of subthreshold dynamics in this condition.

Previous work has provided estimates of the power
consumption of SpiNNaker executing spiking neural network
models. Stromatias et al. (2013) instrument a 48-chip SpiNNaker
circuit board to measure power consumption directly. They
model locally and randomly connected networks of up to 200,000
Izhikevich model neurons and up to 250,000 LIF model neurons
with a 1 ms time step and over a billion synaptic events per
second, with a total board power consumption in the region of
30 W, arriving at a total energy per synaptic event of around
20 nJ. Subtracting baseline power, the incremental energy per
synaptic event is found to be 8 nJ. Sharp et al. (2012) describe
a small but detailed cortical model running with a 1 ms time
step on a 4-chip SpiNNaker board instrumented to measure
power. The model has 10,000 neurons and 4 million synapses,

consuming just under 2 W, and the energy breakdown yields
an incremental cost of 100 nJ per neuron per ms and 43 nJ per
synaptic event, with a total energy per synaptic event of 110 nJ.

The present work measures the power consumption of the
microcircuit model simulations on SpiNNaker and uses strong
scaling with NEST on a high-performance compute cluster. At
the optimal setting for NEST, with 144 virtual processes, the
energy consumption of the compute nodes per synaptic event is
5.8 µJ, and for SpiNNaker the equivalent measurement is 5.9 µJ.
There are several factors that contribute to the lower efficiency
of SpiNNaker when running this model compared to the earlier
studies, which mostly relate to the model being distributed
sparsely over the SpiNNaker hardware, thereby causing baseline
power to be amortized across many fewer synaptic events. The
principal factors are: the use of a 0.1 ms time step, rather
than the standard 1 ms; the biologically realistic number of

Frontiers in Neuroscience | www.frontiersin.org 16 May 2018 | Volume 12 | Article 291

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

van Albada et al. Neuromorphic Hardware for Full-Scale Networks

FIGURE 9 | Power consumption during microcircuit simulation with the SpiNNaker system. The vertical axis shows the average power consumption during the

color-coded execution phases. The power (black solid horizontal line segments) is computed from measurements of the energy consumption (colored areas) of the

execution phases. The dashed horizontal line indicates the baseline measurement with the rack powered on but all 6 boards switched off. Numbers above black lines

state the error in power estimation. Before and after the execution of the simulation script (light gray segments) boards are switched on and booted but idle. Power

consumption during mapping (salmon) is set identical to consumption in data generation phase (raspberry). Propagation of the dynamical state by 10 s of biological

time takes 200 s (blue segment). The respective power estimate results from the propagation by a longer stretch of biological time (1, 000 s) for increased accuracy.

∼10,000 synapses per neuron compared with the ∼1,000 typical
in neuromorphic models; and the highly distributed sparse
connectivity of the biological model. With further software
optimizations we expect such a network, with 80,000 neurons
and 0.3 billion synapses, to map onto around 320 SpiNNaker
cores—about half of a 48-chip board instead of the 6 boards used
here—and to run in real time.With a 30Wpower budget for half a
board and 10 billion synaptic events over 10 s this yields 30nJ per
synaptic event, in line with the earlier total energy figures and two
orders ofmagnitude below the present value. This ratio highlights
the potential and the importance of further improvements of the
software stack of the SpiNNaker system; this could include the
use of the synapse-centric approach (Knight and Furber, 2016),
which has been shown to accommodate the 0.1 ms time step and
high synapse count better than the current mapping, but this
is not yet available within the SpiNNaker tool flow. This would
hopefully enable real-time operation of SpiNNaker during the
network propagation phase, as well as reduce the number of cores
and thus boards required for this simulation, and so result in a
reduction in the power per synaptic event.

Mammalian brains consume about 6 kCal/day = 0.3 W per
1 billion neurons, of which roughly half is consumed by the
cerebral cortex (Herculano-Houzel, 2011), and a substantial
fraction is due to action potential signaling (Attwell and
Laughlin, 2001; Lennie, 2003). In the human brain, with its 1011

neurons (Herculano-Houzel, 2012), cortexmakes up close to 20%
in terms of the number of neurons (Pakkenberg and Gundersen,
1997), so that we obtain 0.15 W per 2 × 108 cortical neurons.
Assuming 104 synapses per neuron and an average spike rate of
4 spikes/s (Attwell and Laughlin, 2001), we arrive at an energy
consumption of 0.15 W/

(

2× 108 × 104 × 4 spikes/s
)

= 19 fJ
per synaptic event. Since commonly used extracellular recording
methods may miss a large fraction of neurons that are silent or

nearly so, the average spike rate of cortex may actually be lower
(Shoham et al., 2006). Taking an estimate of 0.1 spikes/s based on
whole-cell recordings (Margrie et al., 2002; Brecht et al., 2003),
we obtain 0.15 W/

(

2× 108 × 104 × 0.1 spikes/s
)

= 760 fJ per
synaptic event. These estimates indicate that with our computing
systems and for the given model we are between about 7 and 9
orders of magnitude removed from the efficiency of mammalian
cortex.

It is important that all contributing components are taken
into account when comparing computing systems (noted by
Hasler and Marr, 2013). In the present study, we have excluded
the energy required for controlling the room temperature. In
addition, we have ignored the contributions of the host computer
and the Ethernet network to the energy consumption of the
SpiNNaker simulations, and for the NEST simulations we have
excluded the energy consumed by storage units, service nodes,
and Ethernet switches in the derivation of the energy per synaptic
event. The reason for ignoring these components is that they
are in principle not needed during the phase in which the
dynamics is propagated, except for data output, of which the
contribution depends on the goal of the study. Similarly, it
is in principle possible to power off the unused cores on the
SpiNNaker boards, so the power usage of these cores could also
be discounted. However, comparison of our measured power
consumption, which includes both active and unused cores,
with estimates based on active cores only, suggests that the
contribution of the unused cores is negligible. Since we measured
the power consumption of entire nodes on the HPC cluster, the
measurements include cores not used for the NEST simulation
up to the point where full nodes are assigned. This contribution
is limited by the cores controlling their clock speed in steps
depending on computational load, but could be discounted
altogether.

Frontiers in Neuroscience | www.frontiersin.org 17 May 2018 | Volume 12 | Article 291

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

van Albada et al. Neuromorphic Hardware for Full-Scale Networks

Currently, both simulation engines require initial simulations
to find the optimal setup in the first place, and these should
be taken into account when evaluating their total energy
consumption. In future, runtime models may be developed to
estimate the optimal setup for a given network. This way, no
additional simulations would be needed in order to determine at
least a reasonable parallelization.

While the power consumption measurements described
here only concern the phase in which the dynamics is
propagated, on SpiNNaker the time taken to generate and
load the network architecture is much longer, and needs to
be addressed by future work. The present implementation
already substantially reduces the time it takes to generate the
connectivity. Work in progress includes developing the ability
to generate the connectivity, which makes up the bulk of
the data used by the simulation, on the cores of SpiNNaker.
This, as in the case of NEST (Morrison et al., 2005), has the
potential to further reduce the network generation time through
parallelization, as well as speeding up the loading of data by
only transferring the parameters for the statistical generation of
the synapses rather than the instantiated connections as is done
now.

The current work considers networks of point neurons with
static current-based synapses. In general, neural network models
can contain more complex features, such as multi-compartment
neuron models, conductance-based effects, and plasticity. Since
such features increase the time required for neuron and synapse
processing, they reduce the maximal rate at which the neurons
on the SpiNNaker hardware can receive inputs and the number
of neurons that can be mapped to a core while maintaining
simulation speed. For instance, depending on the exact model
and parameters chosen, simple pairwise spike-timing-dependent
plasticity with additive weight dependence reduces both these
quantities by a factor of 7 on SpiNNaker with the current software
stack, and a factor of 2.5 with synapse-centric mapping of the
network to the cores (Knight and Furber, 2016). More complex
synaptic plasticity models with multiple dynamical variables
like those described by Benna and Fusi (2016) can also be
implemented but would further lower the number of neurons
per core and their maximal input rates for a given simulation
speed. One trend in computational neuroscience is toward ever
larger-scale complex models (e.g., Traub et al., 2000; Lundqvist
et al., 2006; Yu et al., 2013; Markram et al., 2015; Schmidt
et al., 2016). Also such models can in principle be implemented
on SpiNNaker; however, the scaling of the required resources
and the corresponding simulation performance remain to be
investigated.

Our comparison of SpiNNaker and NEST highlights concepts
like accuracy, the influence of randomness, concreteness of use
cases, and a common formal model specification that need to be
considered when comparing systems of this sort. The concepts
herein discussed facilitate the evaluation of other low-power
platforms such as TrueNorth (Akopyan et al., 2015) and ROLLS
(Qiao et al., 2015), and those that are similar to SpiNNaker but
with other architectural features, such as described by Moradi
et al. (2018).

Porting network models to dedicated hardware is a useful
exercise to help identify requirements (the right product is built)
and benchmark the results against existing simulation software
(the product is built right). This gives us confidence that the
co-design process in which we are engaged in the framework
of a sequence of large-scale European consortia will continue to
successfully guide us in the future. Close collaboration between
hardware developers and computational neuroscientists ensures
that the product can be used for realistic applications by its
intended user community.

AUTHOR CONTRIBUTIONS

SvA, AR, and JS wrote the simulation code. SvA, JS, AR, and MH
wrote the analysis and plotting scripts. SvA and JS performed the
NEST simulations. JS did the HPC performance measurements.
AR and AS developed the SpiNNaker support software. AR
performed the SpiNNaker simulations. SvA, AR, JS,MH,MS, and
MD analyzed the data. AR and MH were supervised by DL and
SF. JS and MS were supervised by MD. All authors jointly did the
conceptual work and wrote the paper.

ACKNOWLEDGMENTS

This work was supported by the European Union (BrainScaleS,
grant 269921) and the European Union Seventh Framework
Program (FP7/2007-2013) under grant agreement n◦ 604102
(Human Brain Project, Ramp up phase). The design and
construction of the SpiNNaker machine was supported by
EPSRC (the UK Engineering and Physical Sciences Research
Council) under grants EP/D07908X/1 and EP/G015740/1.
Ongoing support comes from the European Union’s Horizon
2020 research and innovation program under grant agreement
n◦ 720270 (Human Brain Project, SGA1) and the European
Research Council under the European Union’s Seventh
Framework Program (FP7/2007-2013)/ERC grant agreement n◦

320689. We thank Michael Bontenackels for technical support
with the NEST performance measurements.

REFERENCES

Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., Arthur, J., Merolla, P.,

et al. (2015). TrueNorth: design and tool flow of a 65 mW 1 million neuron

programmable neurosynaptic chip. IEEE Trans. Comput. Aided Design Integr.

Circ. Syst. 34, 1537–1557. doi: 10.1109/TCAD.2015.2474396

Attwell, D., and Laughlin, S. B. (2001). An energy budget for signaling in

the grey matter of the brain. J. Cereb. Blood Flow Metab. 21, 1133–1145.

doi: 10.1097/00004647-200110000-00001

Benna, M. K., and Fusi, S. (2016). Computational principles of synaptic memory

consolidation. Nat. Neurosci. 19, 1697–1706. doi: 10.1038/nn.4401

Brecht, M., Roth, A., and Sakmann, B. (2003). Dynamic receptive fields of

reconstructed pyramidal cells in layers 3 and 2 of rat somatosensory

barrel cortex. J. Physiol. 553, 243–265. doi: 10.1113/jphysiol.2003.

044222

Cain, N., Iyer, R., Koch, C., and Mihalas, S. (2016). The computational properties

of a simplified cortical column model. PLoS Comput. Biol. 12:e1005045.

doi: 10.1371/journal.pcbi.1005045

Frontiers in Neuroscience | www.frontiersin.org 18 May 2018 | Volume 12 | Article 291

https://doi.org/10.1109/TCAD.2015.2474396
https://doi.org/10.1097/00004647-200110000-00001
https://doi.org/10.1038/nn.4401
https://doi.org/10.1113/jphysiol.2003.044222
https://doi.org/10.1371/journal.pcbi.1005045
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

van Albada et al. Neuromorphic Hardware for Full-Scale Networks

Crook, S., Bednar, J., Berger, S., Cannon, R., Davison, A., Djurfeldt, M., et al. (2012).

Creating, documenting and sharing network models. Network 23, 131–149.

doi: 10.3109/0954898X.2012.722743

Davison, A., Brüderle, D., Eppler, J., Kremkow, J., Muller, E., Pecevski, D., et al.

(2008). PyNN: a common interface for neuronal network simulators. Front.

Neuroinformatics 2:11. doi: 10.3389/neuro.11.011.2008

Eppler, J. M., Pauli, R., Peyser, A., Ippen, T., Morrison, A., Senk, J., et al. (2015).

NEST 2.8.0. doi: 10.5281/zenodo.32969

Forschungszentrum Jülich (2018). Ready for Exascale: Researchers Find Algorithm

for Large-Scale Brain Simulations on Next-Generation Supercomputers. Jülich:

Press release.

Freedman, D., and Diaconis, P. (1981). On the histogram as a density estimator:

L2 theory. ZeitschriftWahrscheinlichkeitstheorie verwandte Gebiete 57, 453–476.

doi: 10.1007/BF01025868

Furber, S. B., Lester, D. R., Plana, L. A., Garside, J. D., Painkras, E., Temple, S., et al.

(2013). Overview of the SpiNNaker system architecture. IEEE Trans. Comput.

62, 2454–2467. doi: 10.1109/TC.2012.142

Gewaltig, M.-O., and Diesmann, M. (2007). NEST (NEural Simulation Tool).

Scholarpedia 2:1430.

Grün, S., and Rotter, S. (2010). Analysis of Parallel Spike Trains. Berlin: Springer.

Hagen, E., Dahmen, D., Stavrinou, M. L., Lindén, H., Tetzlaff, T., van Albada, S. J.,

et al. (2016). Hybrid scheme for modeling local field potentials from point-

neuron networks. Cereb. Cortex 26, 4461–4496. doi: 10.1093/cercor/bhw237

Hanuschkin, A., Kunkel, S., Helias, M., Morrison, A., and Diesmann, M.

(2010). A general and efficient method for incorporating precise spike

times in globally time-driven simulations. Front. Neuroinformatics 4:113.

doi: 10.3389/fninf.2010.00113

Hasler, J., and Marr, H. B. (2013). Finding a roadmap to achieve

large neuromorphic hardware systems. Front. Neurosci. 7:118.

doi: 10.3389/fnins.2013.00118

Henker, S., Partzsch, J., and Schüffny, R. (2012). Accuracy evaluation of numerical

methods used in state-of-the-art simulators for spiking neural networks. J.

Comput. Neurosci. 32, 309–326. doi: 10.1007/s10827-011-0353-9

Herculano-Houzel, S. (2011). Scaling of brain metabolism with a fixed energy

budget per neuron: implications for neuronal activity, plasticity and evolution.

PLoS ONE 6:e17514. doi: 10.1371/journal.pone.0017514

Herculano-Houzel, S. (2012). The remarkable, yet not extraordinary, human brain

as a scaled-up primate brain and its associated cost. Proc. Natl. Acad. Sci. U.S.A.

109, 10661–10668. doi: 10.1073/pnas.1201895109

Ippen, T., Eppler, J. M., Plesser, H. E., and Diesmann, M. (2017). Constructing

neuronal network models in massively parallel environments. Front.

Neuroinformatics 11:30. doi: 10.3389/fninf.2017.00030

Jordan, J., Ippen, T., Helias, M., Kitayama, I., Mitsuhisa, S., Igarashi,

J., et al. (2018). Extremely scalable spiking neural network simulation

code: from laptops to exascale computers. Front. Neuroinformatics 12:2.

doi: 10.3389/fninf.2018.00002

Knight, J. C., and Furber, S. B. (2016). Synapse-centric mapping of cortical

models to the SpiNNaker neuromorphic architecture. Front. Neurosci. 10:420.

doi: 10.3389/fnins.2016.00420

Knight, J. C., Tully, P. J., Kaplan, B. A., Lansner, A., and Furber, S. B. (2016). Large-

scale simulations of plastic neural networks on neuromorphic hardware. Front.

Neuroanat. 10:37. doi: 10.3389/fnana.2016.00037

Krishnan, J., Porta Mana, P. G. L., Helias, M., Diesmann, M., and Di Napoli, E. A.

(2017). Perfect detection of spikes in the linear sub-threshold dynamics of point

neurons. Front. Neuroinformatics 11:75. doi: 10.3389/fninf.2017.00075

Kunkel, S., Schmidt, M., Eppler, J. M., Plesser, H. E., Masumoto, G., Igarashi, J.,

et al. (2014). Spiking network simulation code for petascale computers. Front.

Neuroinformatics 8:78. doi: 10.3389/fninf.2014.00078

Lansner, A., and Diesmann, M. (2012). “Virtues, pitfalls, and methodology

of neuronal network modeling and simulations on supercomputers,” in

Computational Systems Neurobiology, Ch. 10, ed N. Le Novère (Dordrecht:

Springer), 283–315.

Lennie, P. (2003). The cost of cortical computation. Curr. Biol. 13, 493–497.

doi: 10.1016/S0960-9822(03)00135-0

Lundqvist, M., Rehn, M., Djurfeldt, M., and Lansner, A. (2006). Attractor

dynamics in a modular network model of neocortex. Network 17, 253–276.

doi: 10.1080/09548980600774619

MacGregor, R. J. (1987). Neural and Brain Modeling. San Diego, CA: Academic

Press.

Margrie, T.W., Brecht, M., and Sakmann, B. (2002). In vivo, low-resistance, whole-

cell recordings from neurons in the anaesthetized and awakemammalian brain.

Pflüg. Arch. Eur. J. Physiol. 444, 491–498. doi: 10.1007/s00424-002-0831-z

Markram, H., Muller, E., Ramaswamy, S., Reimann, M. W., Abdellah, M.,

Sanchez, C. A., et al. (2015). Reconstruction and simulation of neocortical

microcircuitry. Cell 163, 456–492. doi: 10.1016/j.cell.2015.09.029

Moradi, S., Qiao, N., Stefanini, F., and Indiveri, G. (2018). A scalable

multicore architecture with heterogeneous memory structures for Dynamic

Neuromorphic Asynchronous Processors (DYNAPs). IEEE Trans. Biomed.

Circ. Syst. 12, 106–122. doi: 10.1109/TBCAS.2017.2759700

Morrison, A., Aertsen, A., and Diesmann, M. (2007a). Spike-timing dependent

plasticity in balanced random networks. Neural Comput. 19, 1437–1467.

doi: 10.1162/neco.2007.19.6.1437

Morrison, A. and Diesmann, M. (2008). “Maintaining causality in discrete

time neuronal network simulations,” in Lectures in Supercomputational

Neurosciences: Dynamics in Complex Brain Networks, eds P. B. Graben,

C. Zhou, M. Thiel, and J. Kurths (Berlin, Heidelberg: Springer), 267–278.

Morrison, A., Mehring, C., Geisel, T., Aertsen, A., and Diesmann,

M. (2005). Advancing the boundaries of high-connectivity network

simulation with distributed computing. Neural Comput. 17, 1776–1801.

doi: 10.1162/0899766054026648

Morrison, A., Straube, S., Plesser, H. E., and Diesmann, M. (2007b).

Exact subthreshold integration with continuous spike times in discrete

time neural network simulations. Neural Comput. 19, 47–79.

doi: 10.1162/neco.2007.19.1.47

Pakkenberg, B., and Gundersen, H. J. G. (1997). Neocortical neuron number in

humans: effect of sex and age. J. Comp. Neurol. 384, 312–320.

Plesser, H. E., Eppler, J. M., Morrison, A., Diesmann, M., and Gewaltig, M.-

O. (2007). “Efficient parallel simulation of large-scale neuronal networks on

clusters of multiprocessor computers,” in Euro-Par 2007 Parallel Processing.

Lecture Notes in Computer Science, Vol. 4641, eds L. Bougé, A. M. Kermarrec,

and T. Priol (Berlin; Heidelberg: Springer), 672–681.

Potjans, T. C., and Diesmann, M. (2014). The cell-type specific cortical

microcircuit: relating structure and activity in a full-scale spiking

network model. Cereb. Cortex 24, 785–806. doi: 10.1093/cercor/

bhs358

RIKEN BSI (2013). Largest Neuronal Network Simulation Achieved Using K

Computer.Wako: Press release.

Qiao, N., Mostafa, H., Corradi, F., Osswald, M., Stefanini, F., Sumislawska,

D., et al. (2015). A reconfigurable on-line learning spiking neuromorphic

processor comprising 256 neurons and 128K synapses. Front. Neurosci. 9:141.

doi: 10.3389/fnins.2015.00141

Rotter, S., and Diesmann, M. (1999). Exact digital simulation of time-invariant

linear systems with applications to neuronal modeling. Biol. Cybern. 81, 381–

402. doi: 10.1007/s004220050570

Rowley, A. G. D., Stokes, A. B., Knight, J., Lester, D. R., Hopkins,

M., Davies, S., et al. (2015). PyNN on SpiNNaker Software 2015.004.

doi: 10.5281/zenodo.19230

Schmidt, M., Bakker, R., Shen, K., Bezgin, G., Hilgetag, C.-C., Diesmann, M., et al.

(2016). Full-density multi-scale account of structure and dynamics of macaque

visual cortex. arXiv 1511.09364v4.

Schwalger, T., Deger, M., and Gerstner, W. (2017). Towards a theory of

cortical columns: from spiking neurons to interacting neural populations

of finite size. PLoS Comput. Biol. 13:e1005507. doi: 10.1371/journal.pcbi.

1005507

Senk, J., Yegenoglu, A., Amblet, O., Brukau, Y., Davison, A., Lester, D. R.,

et al. (2017). “A collaborative simulation-analysis workflow for computational

neuroscience using HPC,” in High-Performance Scientific Computing. JHPCS

2016. Lecture Notes in Computer Science, Vol. 10164, eds E. Di Napoli, M. A.

Hermanns, H. Iliev, A. Lintermann, and A. Peyser (Cham: Springer), 243–256.

Sharp, T., Galluppi, F., Rast, A., and Furber, S. (2012). Power-efficient simulation

of detailed cortical microcircuits on SpiNNaker. J. Neurosci. Methods 210,

110–118. doi: 10.1016/j.jneumeth.2012.03.001

Sharp, T., Petersen, R., and Furber, S. (2014). Real-timemillion-synapse simulation

of rat barrel cortex. Front. Neurosci. 8:131. doi: 10.3389/fnins.2014.00131

Frontiers in Neuroscience | www.frontiersin.org 19 May 2018 | Volume 12 | Article 291

https://doi.org/10.3109/0954898X.2012.722743
https://doi.org/10.3389/neuro.11.011.2008
https://doi.org/10.5281/zenodo.32969
https://doi.org/10.1007/BF01025868
https://doi.org/10.1109/TC.2012.142
https://doi.org/10.1093/cercor/bhw237
https://doi.org/10.3389/fninf.2010.00113
https://doi.org/10.3389/fnins.2013.00118
https://doi.org/10.1007/s10827-011-0353-9
https://doi.org/10.1371/journal.pone.0017514
https://doi.org/10.1073/pnas.1201895109
https://doi.org/10.3389/fninf.2017.00030
https://doi.org/10.3389/fninf.2018.00002
https://doi.org/10.3389/fnins.2016.00420
https://doi.org/10.3389/fnana.2016.00037
https://doi.org/10.3389/fninf.2017.00075
https://doi.org/10.3389/fninf.2014.00078
https://doi.org/10.1016/S0960-9822(03)00135-0
https://doi.org/10.1080/09548980600774619
https://doi.org/10.1007/s00424-002-0831-z
https://doi.org/10.1016/j.cell.2015.09.029
https://doi.org/10.1109/TBCAS.2017.2759700
https://doi.org/10.1162/neco.2007.19.6.1437
https://doi.org/10.1162/0899766054026648
https://doi.org/10.1162/neco.2007.19.1.47
https://doi.org/10.1093/cercor/bhs358
https://doi.org/10.3389/fnins.2015.00141
https://doi.org/10.1007/s004220050570
https://doi.org/10.5281/zenodo.19230
https://doi.org/10.1371/journal.pcbi.1005507
https://doi.org/10.1016/j.jneumeth.2012.03.001
https://doi.org/10.3389/fnins.2014.00131
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

van Albada et al. Neuromorphic Hardware for Full-Scale Networks

Shoham, S., O’Connor, D. H., and Segev, R. (2006). How silent is the brain: is there

a “dark matter” problem in neuroscience? J. Comp. Physiol. A 192, 777–784.

doi: 10.1007/s00359-006-0117-6

Stromatias, E., Galluppi, F., Patterson, C., and Furber, S. (2013). “Power

analysis of large-scale, real-time neural networks on SpiNNaker,” in The 2013

International Joint Conference on Neural Networks (IJCNN) (Dallas, TX),

1–8.

Traub, R. D., Bibbig, A., Fisahn, A., LeBeau, F. E., Whittington, M. A.,

and Buhl, E. H. (2000). A model of gamma-frequency network

oscillations induced in the rat CA3 region by carbachol in vitro.

Eur. J. Neurosci. 12, 4093–4106. doi: 10.1046/j.1460-9568.2000.

00300.x

van Albada, S. J., Rowley, A. G., Hopkins, M., Schmidt, M., Senk, J., Stokes, A. B.,

et al. (2016). “Full-scale simulation of a cortical microcircuit on SpiNNaker,” in

Frontiers in Neuroinformatics Conference Abstract: Neuroinformatics.

van Albada, S. J., Rowley, A. G., Senk, J., Hopkins, M., Schmidt, M., Stokes,

A. B., et al. (2017). “NEST-SpiNNaker comparison of large-scale network

simulations,” in CNS 2017—26th Annual Computational Neuroscience Meeting

(Antwerp).

Van Vreeswijk, C., and Sompolinsky, H. (1998). Chaotic balanced state

in a model of cortical circuits. Neural Comput. 10, 1321–1371.

doi: 10.1162/089976698300017214

Wagatsuma, N., Potjans, T. C., Diesmann, M., and Fukai, T. (2011).

Layer-dependent attentional processing by top-down signals in a

visual cortical microcircuit model. Front. Comput. Neurosci. 5:31.

doi: 10.3389/fncom.2011.00031

Yegenoglu, A., Davison, A., Holstein, D., Muller, E., Torre, E., Sprenger, J., et al.

(2016). Elephant 0.2.1. Available online at: https://github.com/neuralensemble/

elephant/releases/tag/0.2.1

Yu, Y., McTavish, T. S., Hines, M. L., Shepherd, G. M., Valenti, C., and Migliore,

M. (2013). Sparse distributed representation of odors in a large-scale olfactory

bulb circuit. PLoS Comput. Biol. 9:e1003014. doi: 10.1371/journal.pcbi.1003014

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 van Albada, Rowley, Senk, Hopkins, Schmidt, Stokes, Lester,

Diesmann and Furber. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner are credited and that the original publication in this journal is cited,

in accordance with accepted academic practice. No use, distribution or reproduction

is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 20 May 2018 | Volume 12 | Article 291

https://doi.org/10.1007/s00359-006-0117-6
https://doi.org/10.1046/j.1460-9568.2000.00300.x
https://doi.org/10.1162/089976698300017214
https://doi.org/10.3389/fncom.2011.00031
https://github.com/neuralensemble/elephant/releases/tag/0.2.1
https://github.com/neuralensemble/elephant/releases/tag/0.2.1
https://doi.org/10.1371/journal.pcbi.1003014
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	Performance Comparison of the Digital Neuromorphic Hardware SpiNNaker and the Neural Network Simulation Software NEST for a Full-Scale Cortical Microcircuit Model
	1. Introduction
	2. Methods
	2.1. The Leaky Integrate-and-Fire Neuron Model
	2.2. Single-Neuron Tests
	2.3. Cortical Microcircuit Model
	2.4. Implementation
	2.5. Performance Benchmarks

	3. Results
	3.1. Conceptual Separation of Biological Time and Wall-Clock Time
	3.2. Steps Toward Implementation on SpiNNaker
	3.3. Comparison of Single-Neuron Results Between NEST and SpiNNaker
	3.4. Comparison of Network Results Between NEST and SpiNNaker
	3.5. Performance

	4. Discussion
	Author Contributions
	Acknowledgments
	References

