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Coronary computed tomographic (CT) angiography is a 
robust noninvasive imaging modality that can visualize 

the coronary lumen and the atherosclerotic changes of the ves-
sel wall.1 Four distinct plaque characteristics have been linked 
to major adverse cardiovascular events using coronary CT 
angiography.2 Out of these 4 characteristics, positive remod-
eling, low attenuation, and spotty calcification are quantita-
tive high-risk plaque features. The napkin-ring sign (NRS) is 
defined as a plaque cross-section with a central area of low 
CT attenuation apparently in contact with the lumen, which is 
surrounded by a ring-shaped higher attenuation plaque tissue.3 
Because of its qualitative nature, identification of the NRS is 
affected by clinical experience and inter-reader variability.4
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Radiological images are multidimensional data sets, where 
each voxel value represents a specific measurement based on 
some physical characteristic.5 Radiomics is the process of 
obtaining quantitative parameters from these spatial data sets, 
to create big-data data sets, where each lesion is characterized 
by hundreds of different parameters.6 These features aim to 
quantify morphological characteristics difficult or impossible 
to comprehend by visual assessment.7

Radiomics has proven to be a valuable tool in oncology.8 
Several studies have shown radiomics to improve the diag-
nostic accuracy,9,10 staging and grading of cancer,11 response 
assessment to treatment,12–14 and also to predict clinical out-
comes.15,16 However, up until today, there is no data available on 
radiomics-based analysis of coronary plaques. Coronary ath-
erosclerotic lesions are smaller than tumors and have complex 
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geometric shapes, which might pose a challenge for radiomic 
feature analysis. Therefore, we sought to assess whether cal-
culation of radiomic features is feasible on coronary lesions. 
Furthermore, we aimed to evaluate whether radiomic param-
eters can differentiate between plaques with or without NRS.

Methods
Institutional review board approved the study (SE TUKEB 1/2017) 
and because of the retrospective study design informed consent was 
waived. The data and study materials will not be made available to 
other researchers for purposes of reproducing the results or replicat-
ing the procedure because of intellectual property rights and patient 
confidentiality. However, we made our analysis software open source 
and freely accessible for other researchers.17

Study Design and Population
From 2674 consecutive coronary CT angiography examinations be-
cause of stable chest pain, we retrospectively identified 39 patients who 
had NRS plaques. Two expert readers reevaluated the scans with NRS 
plaques. To minimize potential variations because of inter-reader vari-
ability, the presence of NRS was assessed using consensus read. Readers 
excluded 7 patients because of insufficient image quality and 2 patients 
because of the lack of the NRS; therefore, 30 coronary plaques of 30 
patients (NRS group; mean age: 63.07 years; interquartile range [IQR], 
56.54–68.36; 20% female) were included in our analysis. As a con-
trol group, we retrospectively matched 30 plaques of 30 patients (non-
NRS group; mean age: 63.96 years; IQR, 54.73–72.13; 33% female) 
from our clinical database with excellent image quality. To maximize 
similarity between the NRS and the non-NRS plaques and minimize 
parameters potentially influencing radiomic features, we matched the 
non-NRS group based on degree of calcification and stenosis, plaque 
localization, tube voltage, and image reconstruction. Detailed patient 
and scan characteristics are summarized in Table 1, whereas detailed 
description of scan characteristics and image quality measurements are 
described in Methods 1 section of the Data Supplement.

Traditional Plaque Characteristics
All plaques were graded for luminal stenosis (minimal 1% to 24%; 
mild 25% to 49%; moderate 50% to 69%; severe 70% to 99%) and 
degree of calcification (calcified; partially calcified; noncalcified). 
Furthermore, plaques were classified as having low attenuation if the 
plaque cross-section contained any voxel with <30 Hounsfield unit and 
having spotty calcification if a <3-mm calcified plaque component was 
visible. Detailed plaque and imaging information is shown in Table 2.

Image Segmentation, Conventional Quantitative 
Metrics, and Data Extraction
Image segmentation and data extraction was performed using a dedi-
cated software tool for automated plaque assessment (QAngioCT 
Research Edition; Medis Medical Imaging Systems B.V., Leiden, The 
Netherlands). After automated segmentation of the coronary tree, the 
proximal and distal ends of each plaque were set manually. Automatic 
lumen and vessel contours were manually edited by an expert if needed.18 
From the segmented data sets, 8 conventional quantitative metrics (lesion 
length, area stenosis, mean plaque burden, lesion volume, remodeling in-
dex, mean plaque attenuation, and minimal and maximal plaque attenu-
ation) were calculated by the software. The voxels containing the plaque 
tissue were exported as a DICOM data set using a dedicated software 
tool (QAngioCT 3D Workbench; Medis Medical Imaging Systems B.V.). 
Smoothing or interpolation of the original Hounsfield unit values was 
not performed. Representative examples of volume-rendered and cross-
sectional images of NRS and non-NRS plaques are shown in Figure 1.

Calculation of Radiomic Features
We developed an open-source software package in the R program-
ming environment (Radiomics Image Analysis), which is capable of 

calculating hundreds of different radiomic parameters on 2- and 3-di-
mensional data sets.17 We calculated 4440 radiomic features for each 
coronary plaque using the Radiomics Image Analysis software tool. 
Detailed description on how radiomic features were calculated can 
be found in the Methods 1 section of the Data Supplement, whereas 
a detailed description of the calculated statistical parameters can be 
found in the Methods 2 section of the Data Supplement.

Statistical Analysis
Binary variables are presented as frequencies and percentages, 
whereas ordinal and continuous variables are presented as medians 
and IQRs because of possible violations of the normality assump-
tion. For robust statistical estimates, parameters between the NRS 
and the non-NRS groups were compared using the permutation test 
of symmetry for matched samples using conditional Monte Carlo 
simulations with 10 000 replicas.19 For diagnostic performance es-
timates, we conducted receiver-operating characteristics analysis 
and calculated area under the curve (AUC) with bootstrapped con-
fidence interval values using 10 000 samples with replacement and 
calculated sensitivity, specificity, and positive and negative predic-
tive values by maximizing the Youden index.20 To assess potential 
clusters among radiomic parameters, we conducted linear regres-
sion analysis between all pairs of the calculated 4440 radiomic 
metrics. The 1−R2 value between each radiomic feature was used as 
a distance measure for hierarchical clustering. The average silhou-
ette method was used to evaluate the optimal number of different 
clusters in our data set.21 Furthermore, to validate our results, we 
conducted a stratified 5-fold cross-validation using 10 000 repeats 
of the 3 best radiomic and conventional quantitative parameters. 
The model was trained on a training set and was evaluated on a sep-
arate test set at each fold using receiver-operating characteristics 
analysis. The derived curves were averaged and plotted to assess 
the discriminatory power of the parameters. The number of addi-
tional cases classified correctly was calculated compared with le-
sion volume. The McNemar test was used to compare classification 
accuracy of the given parameters compared with lesion volume.22

Because of the large number of comparisons, we used the 
Bonferroni correction to account for the family-wise error rate. 

Table 1.  Patient Characteristics and Scan Parameters

 NRS Group (n=30)
Non-NRS Group 

(n=30) P Value

Demographics

 � Age, y 63.07  
(56.54–68.36)

63.96  
(54.73–72.13)

0.86

 � Male sex, n (%) 24 (80) 20 (67) 0.16

 � BMI, kg/m2 28.06  
(25.06–29.91)

26.93  
(23.91–29.32)

0.34

Cardiovascular risk factors

 � Hypertension, n (%) 19 (63) 18 (60) 0.78

Diabetes mellitus, n (%) 25 (83) 26 (87) 0.65

Dyslipidemia, n (%) 16 (53) 18 (60) 0.62

Current smoker, n (%) 20 (67) 21 (70) 0.80

Scan parameters

 � Total DLP, mGy×cm 362.00  
(356.00–367.00)

358.20  
(253.20–367.00)

0.42

 � Pixel spacing, mm
0.41 (0.39–0.43)

0.43  
(0.39–0.45)

0.30

Data are presented as median with interquartile ranges or frequency and 
percentage as appropriate. BMI indicates body mass index; DLP, dose length 
product; and NRS, napkin-ring sign.
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Bonferroni correction assumes that the examined parameters are 
independent of each other; thus, the question is not how many 
parameters are being tested but how many independent statistical 
comparisons will be made. Therefore, based on methods used in 
genome-wide association studies, we calculated the number of in-
formative parameters accounting for 99.5% of the variance using 
principal component analysis.23,24 Overall, 42 principal components 
were identified; therefore, P values <0.0012 (0.05/42) were consid-
ered significant. All calculations were done in the R environment.25

Results
Descriptive Results
There was no significant difference between the NRS and non-
NRS groups regarding patient characteristics and scan parame-
ters (Table 1). Furthermore, we did not observe any significant 

difference in qualitative plaque characteristics and image qual-
ity parameters (Table 2) implying successful matching of the 
2 groups. Median number of voxels contributing to the NRS 
coronary plaques (1928; IQR, 1413–2560) did not show sta-
tistical difference compared with the number of voxels in the 
non-NRS group (1286; IQR, 1001–1768; P=0.0041).

Statistical Significance and Diagnostic Accuracy 
of Conventional Quantitative Parameters
Among conventional quantitative imaging parameters, there 
was no significant difference between NRS and non-NRS 
plaques (Table 2). Furthermore, none of the conventional 
parameters had an AUC value >0.8 (Table 3).

Table 2.  Plaque and Image Quality Characteristics

 NRS Group (n=30) Non-NRS Group (n=30) P Value

Plaque composition, n (%)   1.00

 � Noncalcified 19 (63) 19 (63)  

 � Partially calcified 11 (37) 11 (37)  

 � Calcified 0 (0) 0 (0)  

Luminal stenosis   1.00

 � Minimal (1% to 24%) 11 (37) 11 (37)  

 � Mild (25% to 49%) 11 (37) 11 (37)  

 � Moderate (50% to 69%) 6 (20) 6 (20)  

 � Severe (70% to 99%) 2 (7) 2 (7)  

Stenosis localization, n (%)   1.00

 � Left main 2 (7) 2 (7)  

 � Left anterior descending 20 (66) 20 (66)  

 � Left circumflex 2 (7) 2 (7)  

 � Right coronary 6 (20) 6 (20)  

Image quality    

 � Contrast-to-noise ratio 21.94 (18.61 to 28.80) 23.42 (18.64 to 26.57) 0.70

 � Signal-to-noise ratio 18.69 (15.84 to 24.13) 20.52 (16.33 to 22.53) 0.59

High-risk plaque features    

 � Napkin-ring sign, n (%) 30 (100) 0 (0) <0.0001

 � Low attenuation, n (%) 26 (87) 19 (63) 0.06

 � Spotty calcification, n (%) 10 (33) 9 (30) 0.99

Conventional quantitative metrics    

 � Lesion length, mm 13.62 (10.42 to 17.02) 13.48 (10.99 to 17.71) 0.70

 � Lesion volume, mm3 134.88 (105.68 to 190.76) 88.88 (70.02 to 143.98) 0.02

Mean plaque burden 0.59 (0.52 to 0.66) 0.51 (0.44 to 0.59) 0.003

Lumen area stenosis 0.41 (0.15 to 0.53) 0.28 (0.19 to 0.49) 0.38

Vessel wall remodeling index 1.03 (0.92 to 1.46) 1.09 (0.97 to 1.20) 0.55

Mean plaque attenuation, HU 114.67 (85.54 to 148.99) 156.75 (138.46 to 208.37) 0.002

Minimal plaque attenuation, HU −83.00 (−101.75 to −58.00) −60.00 (−84.75 to −47.00) 0.10

Maximal plaque attenuation, HU 523.00 (451.00 to 794.50) 634.50 (454.00 to 898.00) 0.63

Data are presented as median with interquartile ranges or frequency and percentage as appropriate. HU indicates Hounsfield unit; 
and NRS, napkin-ring sign.
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Statistical Significance and Diagnostic Accuracy of 
Radiomic Parameters
Overall, 4440 radiomic parameters were calculated for each 
atherosclerotic lesion. Of all calculated radiomic parameters, 
20.6% (916/4440) showed a significant difference between 
plaques with or without NRS (all P<0.0012). Of the 44 cal-
culated first-order statistics, 25.0% (11/44) was significant. Of 
the 3585 calculated gray-level co-occurrence matrix (GLCM) 
statistics, 20.7% (742/3585) showed a significant difference 
between the 2 groups. Among the 55 gray-level run-length 
matrix (GLRLM) parameters, 54.5% (30/55) were significant, 
whereas 17.6% (133/756) of the calculated 756 geometry-
based parameters had a P<0.0012. A Manhattan plot of the P 
values of the calculated radiomic parameters is shown in Fig-
ure 2. Detailed statistics of the assessed radiomic parameters 
can be found in Table I in the Data Supplement.

Among all 4440 radiomic parameters, 9.9% (440/4440) had 
an AUC value >0.80. Of the 44 calculated first-order statistics, 
18.2% (8/44) had an AUC value >0.80. Of the 3585 calculated 
GLCM parameters, 9.7% (348/3585) of the AUC values was 
>0.80. Among the 55 GLRLM parameters, 54.5% (30/55) had 
an AUC value >0.80, whereas of the calculated 756 geometry-
based parameters, 7.1% (54/756) had an AUC value >0.80. Of 
all radiomic parameters, short-run low-gray-level emphasis, 
long-run low-gray-level emphasis, surface ratio of component 
2 to total surface, long-run emphasis, and surface ratio of com-
ponent 7 to total surface had the 5 highest AUC values (0.918; 
0.894; 0.890; 0.888, and 0.888, respectively). Detailed diagnos-
tic accuracy statistics of conventional quantitative features and 
of the 5 best radiomic features for each group are shown in Table 
3, whereas detailed diagnostic accuracy results of radiomic 
parameters can be found in Table I in the Data Supplement.

Cluster Analysis of Radiomic Parameters
Results of the linear regression analysis conducted between 
all pairs of the calculated 4440 radiomic metrics are sum-
marized using a heatmap (Figure 3). Hierarchical clustering 
showed several different clusters where parameters are highly 
correlated with each other (represented by the red areas in Fig-
ure 3) but only have minimal relationship with other radiomic 

features (represented by the black areas in Figure 3). Cluster 
analysis revealed that the optimal number of clusters among 
radiomic features in our data set is 44.

Cross-Validation Results
Five-fold cross-validation using 10 000 repeats was used to 
simulate the discriminatory power of the 3 best radiomic and 
conventional parameter. Average receiver-operating charac-
teristics curves of the cross-validated results are shown in 
Figure 4. Radiomic parameters had higher AUC values and 
identified lesions showing the NRS significantly better com-
pared to conventional metrics. Detailed results are shown in 
Table 4.

Discussion
We demonstrated that coronary plaques consist of sufficient 
number of voxels to conduct radiomic analysis, and 20.6% 
of radiomic parameters showed a significant difference 
between plaques with or without NRS, whereas conventional 
parameters did not show any difference. Furthermore, several 
radiomic parameters had a higher diagnostic accuracy in iden-
tifying NRS plaques than conventional quantitative measures. 
Cluster analysis revealed that many of these parameters are 
correlated with each other; however, there are several distinct 
clusters, which imply the presence of various features that 
hold unique information on plaque morphology. Cross-vali-
dation simulations indicate that our results are robust when 
assessing the discriminatory value of radiomic parameters, 
implying the generalizability of our results.

Radiomics uses voxel values and their relationship to 
each other to quantify image characteristics. On the basis of 
our results, it seems not only do radiomic features outperform 
conventional quantitative imaging markers but also param-
eters incorporating the spatial distribution of voxels (GLCM, 
GLRLM, and geometry-based parameters) have a better 
predictive value than first-order statistics, which describe 
the statistical distribution of the intensity values. Among 
GCLM parameters, the interquartile range, the lower notch, 
the median absolute deviation from the mean of the GLCM 
probability distribution, Gauss right focus, and sum energy 

Figure 1. Representative images of 
plaques with or without the napkin-ring 
sign (NRS). Volume-rendered and cross-
sectional images of plaques with NRS 
in the top (A, C, and E) and their corre-
sponding matched plaques in the bottom 
(B, D, and E) are shown. Green dashed 
lines indicate the location of cross-
sectional planes. Colors indicate different 
computed tomographic attenuation val-
ues. NCP indicates noncalcified plaque.
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had the 5 highest AUC values. NRS plaques have many 
low-value voxels next to each other in a group surrounded 
by higher density voxels. This heterogeneous morphology 
results in an unbalanced GLCM and therefore higher inter-
quartile rank values, which also means smaller lower notch 

values and bigger deviations from the mean. Gauss right 
focus and sum energy both give higher weights to elements 
in the lower right of the GLCM, which represents the prob-
ability of high-density voxels occurring next to each other. 
Because NRS plaques do not have many high-value voxels 

Table 3.  Diagnostic Performance of Conventional Quantitative Parameters and Novel Radiomic Parameters 
to Identify Plaques With the Napkin-Ring Sign

 AUC CI Sensitivity Specificity PPV NPV

Conventional quantitative metrics

 � Mean plaque attenuation 0.770 (0.643–0.880) 0.533 0.933 0.889 0.667

 � Mean plaque burden 0.702 (0.563–0.826) 0.700 0.667 0.677 0.690

 � Lesion volume 0.683 (0.543–0.817) 0.700 0.700 0.700 0.700

 � Minimal plaque attenuation 0.647 (0.498–0.788) 0.700 0.700 0.700 0.700

 � Maximal plaque attenuation 0.553 (0.408–0.696) 0.700 0.500 0.583 0.625

 � Remodeling index 0.547 (0.398–0.700) 0.633 0.633 0.633 0.633

 � Lumen area stenosis 0.539 (0.389–0.687) 0.567 0.667 0.630 0.606

 � Lesion length 0.508 (0.359–0.654) 0.933 0.133 0.519 0.667

First-order statistics

 � 30th decile 0.827 (0.716–0.921) 0.833 0.733 0.758 0.815

 � First quartile 0.826 (0.712–0.922) 0.767 0.800 0.793 0.774

 � Harmonic mean 0.823 (0.708–0.922) 0.767 0.800 0.793 0.774

 � Trimean 0.812 (0.696–0.910) 0.867 0.667 0.722 0.833

 � Geometric mean 0.803 (0.684–0.902) 0.633 0.900 0.864 0.711

GLCM

 � Interquartile range* 0.867 (0.769–0.948) 0.700 0.900 0.875 0.750

 � Lower notch* 0.866 (0.763–0.948) 0.967 0.633 0.725 0.950

 � Gauss right focus† 0.859 (0.759–0.940) 0.767 0.867 0.852 0.788

 � Median absolute deviation from the mean* 0.856 (0.744–0.946) 0.867 0.767 0.788 0.852

 � Sum energy‡ 0.848 (0.740–0.937) 0.967 0.633 0.725 0.950

GLRLM

 � Short-run low gray-level emphasis* 0.918 (0.822–0.996) 1.000 0.867 0.882 1.000

 � Long-run low gray-level emphasis§ 0.894 (0.799–0.970) 1.000 0.733 0.789 1.000

 � Long-run emphasis§ 0.888 (0.791–0.962) 0.933 0.767 0.800 0.920

 � Run percentage§ 0.871 (0.771–0.951) 1.000 0.667 0.750 1.000

 � Short-run emphasis‡ 0.853 (0.747–0.942) 1.000 0.633 0.732 1.000

Geometry-based parameters

 � Surface ratio of component 2 to total surface§ 0.890 (0.801–0.960) 0.833 0.833 0.833 0.833

 � Surface ratio of component 7 to total surface‖ 0.888 (0.796–0.958) 0.933 0.733 0.778 0.917

 � Surface ratio of component 22 to total surface‡ 0.883 (0.787–0.959) 0.767 0.900 0.885 0.794

 � Surface ratio of component 14 to total surface† 0.882 (0.790–0.954) 0.833 0.833 0.833 0.833

 � Surface ratio of component 3 to total surface* 0.864 (0.767–0.943) 0.867 0.767 0.788 0.852

Component numbers of the geometric-based parameters refer to the specific attenuation bins created by discretizing the attenuation 
values to a given number of bins. AUC indicates area under the curve; CI, confidence interval; GLCM, gray-level co-occurrence matrix; 
GLRLM, gray-level run-length matrix; NPV, negative predictive value; and PPV, positive predictive value.

*Based on discretizing to 4 equally probable bins.
†Based on discretizing to 16 equally probable bins.
‡Based on discretizing to 32 equally probable bins.
§Based on discretizing to 2 equally probable bins.
‖Based on discretizing to 8 equally probable bins
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next to each other, they received smaller values, whereas non-
NRS plaques have higher values, which resulted in excellent 
diagnostic accuracy.

Among GLRLM statistics, long- and short-run low-gray-level 
emphasis, long- and short-run emphasis, and run percentage had 
the best predictive value. Run percentage and long-run emphasis 
give high values to lesions, where there are many similar value 
voxels in 1 direction, whereas long-run low-gray-level emphasis 
adds a weight to the previous parameter by giving higher weights 
when these voxel runs contain low Hounsfield unit values. NRS 
plaques’ low-density core has many low CT number voxels next 
to each other in 1 direction; therefore, NRS plaques have higher 
values compared with non-NRS plaques, which results in excel-
lent diagnostic accuracy. In case of short-run emphasis and short-
run low-gray-level emphasis, the contrary is true, which results 
in NRS plaques receiving low values, whereas non-NRS plaque 
have higher values also leading to high AUC values.

Among geometry-based parameters, the first 5 with the 
best diagnostic accuracy all represent the surface ratio of a 
specific subcomponent to the whole surface of the plaque. In 
all cases, the ratio of high-density subcomponents (eg, sub-
component 2 when the plaque was divided into 2 compo-
nents) to the whole surface had excellent diagnostic accuracy. 
Because each subcomponent is composed of equal number of 
voxels because of the equally probable binning, the difference 
in surfaces is a result of how the high-intensity voxels are situ-
ated to each other. In case of NRS plaques, extraction of low 
attenuation voxels leaves a hollow cylindrical shape of high 
CT number voxels, which has a relatively large surface. Non-
NRS plaques on the contrary do not have such voxel com-
plexes; therefore, the surface of the high attenuation voxels 

is smaller, and, therefore, the ratio compared with the whole 
surface is also smaller.

This kind of transition from qualitative to quantitative 
image assessment was initiated by oncoradiology. Because 
studies showed that morphological descriptors correlate with 
later outcomes,26 reporting guidelines such as the Breast 
Imaging Reporting and Data System started implementing 
qualitative morphological characteristics into clinical prac-
tice.27 However, despite all the efforts of standardization, the 
variability of image assessment based on human interpreta-
tion is still substantial.28 Radiomics, the process of extract-
ing thousands of different morphological descriptors from 
medical images, has been shown to reach the diagnostic accu-
racy of clinical experts in identifying malignant lesions.10 
Furthermore, radiomics can not only classify abnormalities 
to proper clinical categories but also discriminate between 
responders and nonresponders to clinical therapy and predict 
long-term outcomes.12,15 However, there are major concerns on 
the generalizability of radiomics. Several studies have shown 
that imaging parameters, reconstruction settings, segmentation 
algorithms, etc, all affect the radiomic signature of lesions.29–32 
Furthermore, it has been shown that the variability caused by 
these changeable parameters is in the range or even greater than 
the variability of radiomic features of tumor lesions.33 Little is 
known about cardiovascular radiomics. Several studies will be 
needed to replicate these results in the cardiovascular domain. 
The potential of radiomics is extensive; however, the problem 
of standardized imaging protocols and radiomic analysis need 
to be solved to achieve robust and generalizable results.

Despite our encouraging results, our study has some limi-
tations that should be acknowledged. All of our examinations 

Figure 2. Manhattan plot of all 4440 calculated P values. The Manhattan plot shows all 4440 calculated P values comparing napkin-ring 
sign (NRS) vs non-NRS plaques and their distribution among the different classes of radiomic parameters. Radiomic features are lined up 
on the x axis, whereas the -log2(P) values are plotted on the y axis. The red horizontal line indicates the Bonferroni-corrected P value of 
0.0012. Radiomic parameters above the red line were considered statistically significant.
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were done using the same scanner and reconstruction set-
tings. It is yet unknown how these settings might affect 
radiomic parameters and therefore influence the applicability 
of radiomics in daily clinical care. Furthermore, our results 
are based on a case–control study design. The true prevalence 
of the NRS is considerably smaller compared with non-NRS 
plaques in a real population. Therefore, our observed posi-
tive predictive values might be higher, whereas our negative 
predictive values might be smaller than that expected in a 
real-world setting. Moreover, our limited sample sizes might 
not allow the accurate assessment of the diagnostic accuracy 
of the different parameters. However, we performed Monte 
Carlo simulations and cross-validated our results to achieve 
robust estimates.

Radiomics is a promising new tool to identify qualita-
tive plaque features such as the NRS. Because the number of 
CT examinations increases, we are in dire need of new tech-
niques that increase the accuracy of our examinations without 
increasing the workload of imaging specialists. We demon-
strated that radiomics has the potential to identify a qualita-
tive high-risk plaque feature that currently only experts are 
capable of. Furthermore, our findings indicate that radiomics 
can quantitatively describe qualitative plaque morphologies 

and therefore have the potential to decrease intra- and interob-
server variability by objectifying plaque assessment. In addi-
tion, we observed several different clusters of information 
present in our data set, implying that radiomics might be able 
to identify new image markers that are currentlyt unknown. 
These new radiomic characteristics might provide a more 
accurate plaque risk stratification than the currently used high-
risk plaque features. Radiomics could easily be implemented 
into currently used standard clinical workstations and become 
a computer-aided diagnostic tool, which seamlessly integrates 
into the clinical workflow and could increase the reproduc-
ibility and the accuracy of diagnostic image interpretation in 
the future. Further studies are needed to explore the potential 
of cardiovascular radiomics.
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Figure 3. Heatmap and clustering dendrogram of all 4440 calculated radiomic parameters. Each parameter was compared with all other 
parameters using linear regression analysis. Features were clustered based on R2 values of the corresponding regression models and 
plotted along both axes. R2 values <0.5 are black, whereas greater values are shown in red with increasing intensity. The 1−R2 values was 
used as a distance measure between parameters and used for hierarchical clustering. The resulting clustering dendrogram can be seen 
on the right of the image. Cluster analysis indicated that the optimal number of clusters is 44 based on our radiomics data set.
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CLINICAL PERSPECTIVE
Napkin-ring sign is an independent prognostic imaging marker of major adverse cardiac events. However, being a solely 
qualitative marker, identification of such coronary plaques mainly depends on the readers’ experience. Therefore, a more 
quantitative approach would be desirable. Radiomics is the process of obtaining quantitative parameters from radiological 
examinations, to create big-data data sets, where each abnormality is characterized by hundreds of thousands of different 
parameters. Radiomics is an emerging field in oncoradiology; however, to date, there is limited information on the clinical 
applicability of radiomics to cardiovascular imaging. We compared napkin-ring sign plaques with matched non–napkin-ring 
sign plaques. Although none of the conventional metrics differed between the 2 groups, >20% of radiomic features were sig-
nificantly different, of which almost half had an area under the curve value >0.80, suggesting good discriminatory potential 
in clinical practice. We demonstrated that radiomics has the potential to identify a qualitative high-risk plaque feature that 
currently only experts are capable of. With the transformation of visual characteristics into distinct quantitative information, 
radiological examinations could become more standardized and less dependent on reader’s experience. Radiomics could 
easily be implemented into current clinical software packages and, therefore, become a computer-aided diagnostic tool for 
clinicians in assessing coronary plaque morphology. Furthermore, cardiovascular radiomics has the potential to identify new 
imaging biomarkers, which might be more specific to rupture-prone plaques and, therefore, could guide clinical treatment of 
patients with nonobstructive coronary artery disease.




