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ABSTRACT: A Ni/photoredox dual catalytic cross-coupling
is disclosed in which a diverse range of (hetero)aryl bromides
are used as electrophiles, with 1,4-dihydropyridines serving as
precursors to Csp

3-centered alkyl radical coupling partners. The
reported method is characterized by its extremely mild
reaction conditions, enabling access to underexplored cores.
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In the last decades, cross-coupling reactions have become
among the most highly used means to construct new C−C

bonds.1 However, despite their numerous advantages, cross-
coupling reactions, especially in the context of Csp

2−Csp
3 bond

formation, suffer from some limitations that hinder their more
widespread utilization. In particular, the high activation energy
barrier associated with the transmetalation step in the coupling
of many Csp

3-hybridized nucleophiles results in a need to use
unstable and functional group-intolerant organometallic
reagents, negatively impacting the generality and operational
simplicity of these methods.2 In this regard, the recently
developed nickel/photoredox dual catalytic process has proved
to be an excellent alternative and complementary approach to
overcome such limitations.3 In such protocols, a facile
transmetalation-like event is triggered, being initiated by
single-electron oxidation of an organometallic reagent. The
odd-electron nature of this reactivity paradigm proceeds most
rapidly with Csp

3 coupling partners, effectively inverting the
reactivity hierarchy observed in more conventional cross-
coupling processes. As a result, reactive organometallic
nucleophiles can be replaced by a variety of functional group-
tolerant radical precursors.
Among alkyl radical precursors, different partners have been

previously reported such as alkyltrifluoroborates,4 alkylsilicates,5

carboxylic acids,6 halides,7 and activated C−H bonds.8

However, it remains of utmost importance to introduce new
feedstock functional groups amenable to oxidative fragmenta-
tion, forming suitable alkyl radicals.9 Within this context,
aldehydes represent an attractive option because aliphatic
aldehydes are abundant in nature and readily available from
commercial sources. Although nature has long ago developed
very effective means to promote oxidative deformylation
reactions,10 such transformations still pose significant chal-
lenges for the scientific community, which rely on two distinct
approaches (Scheme 1). First, an acyl radical can be formed
through a hydrogen-atom transfer (HAT) process, usually
involving thiyl radicals. Subsequently, decarbonylation delivers

the targeted alkyl radical (route a).11 This latter step is usually
slow, and acylated byproducts are often observed. Alternatively,
superoxometal complexes have been employed (route b);12

however, strong, stoichiometric oxidants are required, thus
hampering the applicability and breadth of substrates
employed.
Being aware of the inherent difficulties associated with the

formation of alkyl radicals directly from aldehydes,13 we
explored different aldehyde derivatives able to undergo
photochemical homolysis. 1,4-Dihydropyridines (DHPs) can
be easily prepared from aldehydes in one step, even with high
functionalization levels,14 and their photochemical oxidation
delivers hydrogen (H2) with concomitant pyridine formation.
However, in the presence of alkyl substituents in position 4, the
oxidation has been shown to generate carbon-centered alkyl
radicals.15 Importantly, the Nishibayashi group16 has success-
fully applied such an approach in aromatic substitution
reactions. More recently, Ma and Cheng coupled a variety of
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Scheme 1. Different Approaches toward the Oxidative
Deformylation of Aldehydes
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DHPs with activated tertiary alkyl bromides under photo-
catalytic conditions.17

To ensure effective oxidative cleavage of the 1,4-DHP (Eox =
+1.05 V vs SCE),18−20 the organic dye 4CzIPN (excited state
Ered = +1.35 V vs SCE) was employed as a photocatalyst,21 and
different nickel(II) sources were tested (Table 1, entries 1−

5).22 As shown, dtbbpy outperformed other ligands tested, with
dMeObpy and bpy showing lower yields (entries 2−4 in Table
1). Interestingly, the preformed [Ni(dtbbpy)(H2O)4]Cl2
afforded higher yields with no deleterious effects observed
from the water. Other photocatalysts were also explored
(entries 6−8 in Table 1). Not surprisingly, [Ru(bpy)3](PF6)2
only delivered traces of product, likely because of its low
reduction potential (*Ered = +0.77 V vs SCE) whereas an Ir-
photocatalyst (entry 6 in Table 1) delivered the product in
moderate yields (*Ered = +1.32 V vs SCE). The highly oxidizing
organic photocatalyst mesityl acridinium (*Ered = +2.06 V vs
SCE)23 was next explored, but afforded no product, likely
because of its inability to reduce the putative Ni(I)
intermediate.4i Consequently, 4CzIPN was chosen because of
its lower cost ($6.01/g), more straightforward preparation, and
higher activity.21 Finally, although other common solvents for
photoredox cross-coupling reactions were examined (entries 9
and 10 in Table 1), acetone outperformed both CH3CN and
DMF. As anticipated, control experiments showed that all
parameters were essential for the reaction to proceed.18

Importantly, we observed complete consumption of 1a in the
presence of the photocatalyst, delivering the pyridine by-
product. Therefore, in some cases, we decided to boost the
reactivity by increasing the amount of Ni-catalyst and DHP,

thus obtaining higher yields. It should be noted that the
disclosed reaction conditions are particularly user-friendly,
allowing the construction of complex structural motifs in a
“dump and stir” fashion.
Encouraged by these results, we turned our attention to

study the influence of several (hetero)aryl bromides in the
reaction. As illustrated in Table 2, different (hetero)aryl

bromides were well accommodated with aromatic substrates
(3bb and 3bc) and heteroaromatic entities such as pyridine
(3bd), thiazole (3be), and thiophene (3bf−3bh). Notably, we
observed that 2-bromoheteroarenes were more reactive than
other heteroaryl bromides.24 Similarly, bifunctional heteroaryl
bromides bearing carbonyl moieties (2g, 2h) proved to be
useful coupling partners, and the products of these reactions
thus contain reactive groups that can be used for further
elaboration.
Once the versatility of the protocol was demonstrated against

different (hetero)aryl bromides, we decided to focus our
attention on both the DHP radical precursors and the aryl
bromide partners simultaneously in an effort to showcase the
“real-world” utility of this method in cases where both the
nucleophilic and electrophilic partner present structural and/or
electronic challenges (Table 3). The developed reaction
conditions were highly general, and various substitution
patterns were well accommodated. A diverse range of alkylated
arenes and heteroarenes were isolated in modest to high yields.
Unactivated secondary alkyl DHPs could be coupled
independently of the cyclic or acyclic nature of the radical.
More interestingly, alkyl radicals bearing distal alkenes (3da−
3dh) were well tolerated. No evidence of radical cyclization was
observed for the melonal-derived DHP (1h). A pyran-derived
DHP could likewise be used, and the resulting product was
isolated in good yield (3gh). Importantly, even at almost 10-
fold higher scale, the reaction went to 60% yield without further
optimization. Similar results were achieved for a benzylic DHP
when coupled with a challenging pyridine (3hi). In addition to
unactivated alkyl radicals, α-heteroalkyl substrates could be
employed. Pyrrollidine (1i), as well as protected amino alcohol
(1j) and amino acid-derived (1k) DHPs all succeeded in

Table 1. Optimization of the Reaction Conditionsa

a2a (0.1 mmol), 1a (0.12 mmol), 4CzIPN (3 mol %), [Ni(dtbbpy)-
(H2O)4]Cl2 (5 mol %) in dry, degassed solvent (2.0 mL, 0.05 M)
under blue LED irradiation for 24 h. bHPLC yield using 4,4′-di-tert-
butylbiphenyl as an internal standard. cIsolated yield.

Table 2. Scope of (Hetero)Aryl Bromidesa,b

aAs in Table 1 (entry 1), 0.50 mmol scale. bIsolated yield, average of at
least two independent runs. cUsing [Ni(dtbbpy)(H2O)4]Cl2 (10 mol
%) and 1b (1.5 equiv).
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delivering the cross-coupled product, although in modest yields
(Table 3).
To demonstrate further the applicability of the developed

method, the protocol was tested for the synthesis of two
saccharide derivatives. Previous literature reports for the
synthesis of C-aryl glycosides via cross-coupling relied on the
employment of alkenyl stannane25 or alkenyl boronate26

derivatives, presumably because the alkyllithium intermediates
required for the synthesis of the requisite alkyl glycosidic
stannanes and alkyl boronates would suffer β-elimination of the
adjacent alkoxy group. Thus, current approaches require a
cumbersome synthesis of the dihydropyranylmetallics, followed
by coupling and hydrogenation. By contrast, for the present
transformation, 1,4-dihydropyridines from saccharides are
readily available,14a and the particularly mild reaction
conditions allow the formation of saccharide-containing
product (3lf) in good yield and excellent diastereoselectivity.
Access to 3fk demonstrates that a fully deprotected

carbohydrate core can be coupled, albeit in modest yield.
(See Figure 1.)

The developed method does present a few limitations,27

because of the intrinsic stability of the radical intermediate
formed. Consequently, primary alkyl or cyclopropyl DHPs did
not succeed in delivering the cross-coupling product, because
oxidation of the DHP delivers only the 4-alkylated pyridine
byproduct.15 Nonetheless, this is arguably a minor limitation,
considering complementary cross-coupling protocols available
for primary or cyclopropyl motifs.2a

Based on our previous studies with alkyltrifluoroborates28 as
well as previous studies detailing the photochemical oxidative
cleavage of DHPs,15,16 we propose the mechanistic scenario
depicted in Scheme 2. First, photoexcitation of the organic
photocatalyst to its excited state generates a species that is a
sufficient SET oxidant.21 At this point, the photocatalyst is
oxidatively quenched by the DHP derivative (1), thus forming a
radical cation (not pictured), which undergoes homolysis,
delivering the carbon-centered alkyl radical III. This radical

Table 3. Scope of (Hetero)Aryl Bromides and
Dihydropyridinesa,b

aAs in Table 1 (entry 1), 0.50 mmol scale. bIsolated yield, average of at
least two independent runs. cUsing [Ni(dtbbpy)(H2O)4]Cl2 (10 mol
%) and 1- (1.5 equiv). dRun at 1.0 g scale for 2h. eUsing 1g (1.5
equiv). fUsing [Ni(dme)(dtbbpy)]Br2 (5 mol %) as precatalyst.

Figure 1. Synthesis of aryl-containing saccharides, as in Table 1 (entry
1), 0.50 mmol scale. Isolated yield, average of at least two independent
runs. Using [Ni(dtbbpy)(H2O)4]Cl2 (10 mol %) and 1- (1.5 equiv).
For 3lf and 3fk, diastereomeric ratio > 20:1.

Scheme 2. Nickel/Photoredox Dual Catalysis: Mechanistic
Rational
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reacts with active Ni(0) catalyst (IV), forming the alkyl
nickel(I) intermediate V, which undergoes further oxidative
addition with the aryl bromide (2), forming the Ni(III)
complex VI.29,30 Subsequently, reductive elimination delivers
the cross-coupled product (3), along with Ni(I) complex VII,
which can be reduced to Ni(0) by the reduced photocatalyst,
thus regenerating both active catalysts. We believe that the
homolysis of the DHP unit occurs via formation of a radical
cation, followed by a deprotonation step, forming an aminyl
radical that will then undergo homolysis.15,16 Notably, we
observed that 1c-N-Me (the N-methylated analogue of 1c)
failed to deliver the cross-coupling product under reaction
conditions, thus supporting the deprotonation prior to the C−
C cleavage event hypothesis.15a

In summary, the use of DHPs as radical precursors has
allowed the successful and general introduction of an
interesting feedstock into the dual Ni/photoredox cross-
coupling toolbox. Because DHPs are derived from their
corresponding, commercially available aldehydes, previously
unrepresented radicals can be accessed, thereby expanding the
chemical space of Csp

2−Csp
3 cross-couplings. Importantly, the

reaction is characterized by its sustainability, as the only metal
introduced in the entire process is the base metal cross-
coupling catalyst. The transformation furthermore proceeds
under extremely mild reaction conditions using visible light,
allowing the inclusion of diverse and unexplored coupling
partners, such as carbohydrate cores.31
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