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Structurally novel steroidal 
spirooxindole by241 potently 
inhibits tumor growth mainly 
through ROS-mediated 
mechanisms
Xiao-Jing Shi*, Bin Yu*, Jun-Wei Wang, Ping-Ping Qi, Kai Tang, Xin Huang & Hong-Min Liu

Cancer cells always have increased ROS levels, thus making them more vulnerable to persistent 
endogenous oxidative stress. The biochemical difference between cancer and normal cells could be 
exploited to achieve selective cancer cell killing by exogenous ROS-producing agents. Herein we described 
a structurally novel steroidal spirooxindole by241 and its anticancer efficacy. By241 exhibited potent 
inhibition against human cancer cells and less toxic to normal cells. By241 concentration-dependently 
induced apoptosis of MGC-803 and EC9706 cells, accompanied with the mitochondrial dysfunction 
and increased ROS levels. NAC can completely restore the decreased cell viability of MGC-803 cells 
caused by by241, suggesting ROS-mediated mechanisms. The expression levels of proteins involved 
in the mitochondrion-related pathways were detected, showing increased expression of proapoptotic 
proteins and decreased expression of anti-apoptotic proteins, and activation of caspases-9/-3, but 
without activating caspase-8 expression. Pretreatment with Z-VAD-FMK partially rescued by241-induced 
apoptosis of MGC-803 cells. Additionally, by241 inhibited mTOR, activated p53 and its downstream 
proteins, cleaved MDM2 and PI3K/AKT as well as NF-κB signaling pathway. In vivo experiments showed 
that by241 did not have significant acute oral toxicity and exerted good anticancer efficacy against MGC-
803 bearing mice models. Therefore, by241 may serve as a lead for further development for cancer therapy.

Reactive oxygen species (ROS) including hydrogen peroxide (H2O2), superoxide anion (O2
−), and hydroxyl rad-

ical (HO∙ ) are formed through the incomplete reduction of oxygen in normal physiological processes (e.g. the 
oxidative metabolism). Cellular ROS can be generated through multiple mechanisms, mainly from the mitochon-
drial respiratory chain and partly from potential interactions with exogenous ROS sources such as UV light, ion-
izing radiation, inflammatory cytokines, carcinogens, etc1. ROS play essential roles in maintaining vital biological 
functions through regulating many signaling pathways (e.g. MAPK, PI3K, Nrf2 and Ref1-mediated signaling 
pathways)2 and have also proven to be able to promote cell proliferation and differentiation under threshold 
levels3. ROS, however, act as a double-edged sword in living cells4. The accumulation of ROS to excessive levels 
can result in irreversible oxidative damage to lipids, proteins and DNA. Therefore, controlling ROS under critical 
threshold levels by cellular redox homeostasis is crucial for normal cells to maintain their growth and survival. 
Compared to normal cells, cancer cells have higher demand on the mitochondrial respiratory chain to generate 
more ATP for their rapid growth and differentiation, thus inevitably making cancer cells have high levels of 
endogenous oxidative stress. Increasing evidence has shown that the aggressiveness of tumors and poor prognosis 
always correlate with increased ROS levels in cancer cells5. Increased ROS levels, on the other hand, make cancer 
cells more vulnerable to persistent oxidative stress caused by ROS-generating agents6. The different redox states 
between normal and cancer cells would provide an opportunity to selectively induce cancer cell death7. To date, 
a large number of ROS-generating agents such as procarbazine have been identified, relying on ROS production 
for their anticancer efficacy8.
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Steroids, an important class of polycyclic compounds, are prevalent in nature and well known for their diverse 
and profound biological activities, as well as the abilities of maintaining normal biological functions in living 
organisms9–11. Chemical modifications on steroids have long been pursued to generate structurally novel and/
or biologically important molecules, especially the incorporation of heterocycles into the steroid core. To date, a 
large number of biologically interesting steroids have been identified and some of them are being used in clinic for 
the treatment of diseases12. Two representative examples are abiraterone13 and galeterone14 bearing the pyridine 
and benzimidazole heterocycles at the C-17 position, respectively (Fig. 1), which are currently used in clinic for 
the treatment of advanced prostate cancers as androgen synthesis inhibitors. Dehydroepiandrosterone (DHEA), 
an endogenous steroid secreted by the adrenal cortex, is able to inhibit proliferation of human cancer cells both 
in vitro and in vivo through multiple mechanisms15,16. Besides, DHEA, as the dietary supplement, has been used 
as the anti-aging hormone since 1980s. All these studies may suggest that DHEA has anticancer potential and 
is less toxic to normal cells and therefore could be used as a starting point for developing potent steroid-based 
anticancer agents. Based on these considerations, we previously designed and synthesized a large number of 
DHEA-based steroidal derivatives and tested their anticancer properties against human cancer cells of different 
origins17–23. Some of them exhibited potent anticancer activity. From our in-house steroid library, one struc-
turally novel steroidal derivative (named by241, Fig. 1) stood out with favorable anticancer efficacy, featuring a 
spiro-cyclic oxindole scaffold attached to the steroid nucleus24–26. In the present study, we would like to report the 
anticancer properties of this shortlisted compound and its possible mechanisms of action. By241 may serve as a 
template for developing more potent anticancer agents for cancer therapy.

Results and Discussion
Synthesis of by241. As shown in Fig. 1, the synthesis of by241 involved the vinylogous aldol reaction of the 
steroidal dicyanoalkyene 1 with isatin, followed by intramolecular cyclization and isomerization sequence in the 
presence of Et3N, affording by241 in 88% yield under mild conditions. One C-C single bond, one C-O bond, as 
well as one quaternary carbon center were formed in this one-pot reaction. It should be noted that we obtained 
intermediate B from compound 1 when this kind of reaction was performed in EtOH, not the EtOH/H2O mix-
ture using the sterically hindered DBU as the base. The structural characteristics of by241 lie in the spiro-fused 
oxindole and 2H-pyran scaffolds connected through a quaternary carbon center. Compound 1 was efficiently 
prepared from DHEA within two steps following our previously reported methods18.

Cytotoxicity of by241 against human cancer and normal cell lines. With by241 in hand, we next 
tested its cytotoxicity against several human cancer cell lines of different origins using the MTT assay. The 
well-known anticancer drug 5-fluorouracil (5-FU) was selected as the reference drug to compare the in vitro and 
in vivo anticancer potency. Human normal liver cell line (L-02) and human normal esophageal cell line (Het-1A) 
were chose to investigate the toxicity and selectivity of by241. The IC50 values of by241 and 5-FU against tested 
cancer cell lines and human normal cell lines are summarized in Table 1. Generally, by241 had broad-spectrum 
anticancer activity, showing favorable inhibition against the tested cancer cell lines (IC50 <  6.5 μ M). Also, by241 
was more potent than 5-FU and less toxic to human normal cells (IC50 >  20 μ M), indicating good selectivity. 
Specifically, by241 exhibited excellent inhibition against human gastric cancer cells (MGC-803 and BGC-803) 
with the IC50 values of 2.77, 1.18 μ M respectively. By241 inhibited growth of L-02 with an IC50 value of 21.80 μ M,  

Figure 1. Chemical structures of abiraterone and galeterone and synthesis of by241. Reagents and 
conditions: (a) Isatin, Et3N, EtOH/H2O (1/1), rt.
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showing around 5- and 8-fold selectivity toward SMMC-7721 (IC50 =  4.83 μ M) and ZIP77 (IC50 =  2.71 μ M), 
respectively. By241 also displayed similar selectivity to Het-1A (IC50 =  20.15 μ M) over other human esophageal 
cancer cells (EC109, EC9706, and KYSE450). For normal liver L-02 cells, by241 was about 5-fold less toxic than 
5-FU, suggesting a relatively low toxicity of by241 (IC50 =  21.80 μ M vs. 4.37 μ M). Additionally, a slight difference 
in inhibiting growth of sub-types of gastric cancer cells has also been observed (IC50 =  2.77 and 1.18 μ M, respec-
tively against MGC-803 and BGC-803).

After exposure to by241 at different concentrations for 72 h, the cell viability of cancerous cells and normal 
cells was decreased gradually with the concentration increase of by241, as demonstrated in Fig. 2A,B. For normal 
cells L-02 and Het-1A, the cell viability was almost unchanged even at high concentration (12.5 μ M). In contrast, 
the viability of cancer cells dropped significantly, especially the BGC-803 and MGC-803 cells. The difference 
between normal cells and cancerous cells in cell viability also showed low toxicity and good selectivity of by241. 
At higher concentrations (> 12.5 μ M), the cell viability of normal cells declined substantially, suggesting the tox-
icity of by241 to normal cells at high concentrations.

The clonogenic assay represents an indirect estimation of neoplastic transformation. As shown in Fig. 2C, 
smaller and fewer colonies were formed when MGC-803 cells were treated with increasing concentration of 
by241, the inhibition rate of colony formation was about 60% when treated with by241 at 1.25 μ M for 12 days 
(Fig. 2D). Besides, morphological changes of MGC-803 and EC9706 cells such as rounding up and cell debris 
were observed, especially at high concentrations, after being incubated with by241 for 24 h at different concen-
trations (0, 2.5, 5, 10 μ M) (Fig. 2E,G). After staining with Hoechst 33258, remarkable nuclear changes of MGC-
803 and EC9706 cells including the chromatin condensation, nuclear fragmentation and condensation were also 
observed (Fig. 2F,H).

Cell apoptosis induced by by241. Above studies showed that by241 potently inhibited growth of cancer 
cells and induced morphological changes of MGC-803 and EC9706 cells in a concentration-dependent manner. 
These studies suggest that by241 should be capable of inducing apoptosis of cancer cells. Therefore, we per-
formed the flow cytometric analysis of MGC-803 and EC9706 cells using the Annexin V-FITC and propidium 
iodide (PI) double staining after being incubated with by241 at different concentrations (0, 2.5, 5, 10 μ M) for 
12 or 24 h. As shown in Fig. 3A–D, by241 markedly induced apoptosis of MGC-803 cells in a concentration-/
time-dependent manner, the late apoptosis in particular. Specifically, after treatment with by241 for 12 h, the 
apoptotic cells accounted for 28.3% at 10 μ M, higher than that of the control group (Fig. 3A,C). More evidently, 
for the 24 h group, the apoptotic cells amounted to 85.8%, significantly higher than that of the control group 
(Fig. 3B,D). Besides, by241 also induced apoptosis of EC9706 cells in a concentration-/time-dependent man-
ner (Fig. 3E–H). After treatment of EC9706 cells for 12 h at 10 μ M, the percentage of apoptotic cells was 40.1%, 
significantly higher than the control group, but slightly lower than that of the group treated for 24 h at the same 
concentration (Fig. 3F,H).

By241 induced cell death through ROS-mediated mechanisms. The favorable potency of by241 
toward cancer cells promoted us to investigate the potential mechanisms of action. More recently, Banerjee et al. 
designed a novel fluorescent cancer cell detector (named Is-Bet A) by combining the bis-arylidene oxindole and 
natural betulinic acid through an amino propyl-linker, in which betulinic acid, structurally belonging to steroids, 
acted as the ROS-generator, while the bis-arylidene oxindole served as a fluorophore for detection, thus achieving 
simultaneous detection and killing of cancer cells27. Mounting evidence has showed that steroid hormones can 
increase the ROS production in mitochondria28–32. Among them, DHEA has been proved to be able to increase 
ROS formation by inhibiting segment I of the respiratory chain33. Oliveira and co-workers reported that Uncaria 
tomentosa extract containing oxindole alkaloids triggered apoptosis of HT29 cells through ROS-mediated caspase 
activation and DNA repair34. Above studies suggest that both steroids and oxindole containing compounds could 
serve as ROS-generating agents for cancer therapy. From the structural point of view, we speculate that our target 
molecule by241 incorporating oxindole and steroid nucleus potentially induced cell death through ROS-mediated 
mechanisms.

As shown in Fig. 2E–H, by241 induced remarkable morphological changes of MGC-803 and EC9706 cells, 
especially at high concentrations. Interestingly, treatment of MGC-803 cells with N-acetyl-L-cysteine (NAC, 
5 mM) rescued the by241-induced morphological changes of MGC-803 cells (Fig. 4A), suggesting that by241 
probably induced cell death through elevating cellular ROS levels. We then used the DCFH-DA assay to determine 
the ROS levels in MGC-803 cells, after treatment with by241 at different concentrations (0, 5, 10 μ M), following 
DCFH-DA treatment for 30 min, the green fluorescence was analyzed using an inverted fluorescence microscope. 
As shown in Fig. 4B, By241 concentration-dependently enhanced the green fluorescence intensity, the percent-
age of cells with green fluorescence amounted to 41.0% when treated at 10 μ M, significantly higher than that of 

IC50 (μ M)a

EC109 EC9706 KYSE450 MGC-803 BGC-803 SMMC-7721 ZIP77 MCF-7 PC-3 Het-1A L-02

by241 5.62 ±  0.75 4.68 ±  0.67 8.73 ±  0.94 2.77 ±  0.44 1.18 ±  0.71 4.83 ±  0.68 2.71 ±  0.43 6.25 ±  0.80 6.36 ±  0.80 20.15 ±  1.50 21.80 ±  1.34

5-FU 9.31 ±  0.12 8.96 ±  0.33 nd 4.02 ±  0.27 2.23 ±  0.04 2.14 ±  0.25 3.32 ±  0.04 6.93 ±  0.03 15.03 ±  0.96 nd 4.37 ±  0.23

Table 1.  In vitro cytotoxicity of by241 against several human cancer cell lines and two human normal 
cell lines. aInhibitory activity was assayed by exposure for 72 h to substances and IC50 is the concentration of 
by241 required to inhibit the cell growth by 50% compared to an untreated control. Data are presented as the 
means ±  SDs of three independent experiments; nd means not determined.
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the control group (Fig. 4C), and NAC can decrease the green fluorescence intensity in MGC-803 cells induced 
by by241, the percentage of cells with green fluorescence was only 14.0% when treated with by241 (10 μ M)  
and NAC (5 mM), slightly higher than that of the control group (8.8%). For EC9706 cells, the percentage of 
cells with green fluorescence intensity amounted to 35% (around 9-fold increase relative to the control) when 
treated with by241 at 10 μ M, which then decreased to 9.2% when treated with by241 (10 μ M) and NAC (5 mM) 
(Fig. 4E,F).

NAC has been proved to be able to attenuate ROS generator-induced cancer cell death35,36. To investigate 
whether NAC can attenuate by241-induced MGC-803 cell death, NAC alone and in combination with by241 were 
used to explore the cytoprotective effect of NAC against the by241-induced MGC-803 cell death. As shown in 
Fig. 4G, NAC alone had no effect on the cell viability of MGC-803 cells even at the concentration of 5 mM, while 
NAC was found to be able to completely restore the decreased cell viability of MGC-803 cells caused by by241 at 
6.25 μ M. Around 80% of cell viability was observed when MGC-803 cells were treated with 12.5 μ M and 5 mM of 
NAC (Fig. 4G). This result supported the hypothesis that by241 induced cell death mainly through ROS-mediated 
mechanisms.

To date, the relationship between mitochondrial damage and ROS changes is not clearly understood. It has 
been widely accepted that mitochondrial dysfunction is always associated with increased ROS production, 
accompanied with changes of mitochondrial membrane permeability, resulting in the loss of mitochondrial 
membrane potential (MMP, ΔΨm) and activation of downstream caspases35. Hence, in this study, the ΔΨm was 
measured using the JC-1 dye to evaluate the by241-induced mitochondrial dysfunction (Fig. 5). As shown in 

Figure 2. Antiproliferative effects of by241 on selected human cell lines. (A) and (B) Human cells  
were treated with different concentrations of by241 for 72 h. Cell viability determined by MTT assay;  
(C) Representative images of MGC-803 cells colonies after treatment with various concentrations (0.31, 0.62 
or 1.25 μ M) of by241 for 12 days; (D) Quantitative analysis of the colony formation inhibition rate in Fig. 1C. 
Apoptosis related morphology and nuclear condensation of MGC-803 (E,F) induced by by241. Apoptosis 
related morphology and nuclear condensation of EC9706 (G,H) induced by by241. Cells were cultured with 
different concentrations of by241 (2.5, 5 and 10 μ M) for 24 h and detected using the Hoechst 33258 assay. Data 
are presented as the mean  ±   SD of three independent experiments. * * P <  0.01 was considered statistically 
compared to control.



www.nature.com/scientificreports/

5Scientific RepoRts | 6:31607 | DOI: 10.1038/srep31607

Fig. 5A,B, by241 concentration-dependently increased the green fluorescence intensity in MGC-803 cells and 
EC9706 cells, indicating the by241-induced translocation of JC-1 dye from the mitochondria to the cytoplasm. 
The changes of the green/red fluorescence intensity in MGC-803 and EC9706 cells were then quantitatively ana-
lyzed using the flow cytometry analysis. As shown in Fig. 5C,D, a concentration-dependent decrease of MMP 
represented by the green/red fluorescence intensity was observed. At 10 μ M, the fold of green/red fluorescence 
intensity of MGC-803 cells with the green fluorescence increased 12.0 fold. Similarly, the fold of green/red fluo-
rescence intensity labeled EC9706 cells amounted increased 3.9 fold when treated with by241 at 10 μ M, showing 
a concentration-dependent increase (Fig. 5E,F). Furthermore, the decreased MMP caused by by241 in MGC-803 
could mostly reversed by NAC (Fig. 5G,H).

Next, we examined the expression levels of mitochondria related Bcl-2 family proteins including pro-apoptotic 
proteins (Bax, Bid and Bak) and anti-apoptotic proteins (Bcl-2, Mcl-1 and Bcl-XL). As shown in Fig. 6, after treat-
ment with by241, expression levels of pro-apoptotic proteins increased concentration-dependently (Fig. 6E–G), 
particularly the Bid and Bax. Activated Bid is believed to be able to interact with Bax and then promotes the 
insertion of Bax into the mitochondrial outer membrane37. Besides, Bax and Bak are also able to promote the 
release of cytochrome c and other pro-apoptotic factors from the mitochondria, ultimately leading to activation 
of caspases by inducing the opening of mitochondrial voltage-dependent anion channel (VDAC) and/or forming 
the oligomeric pore MAC. Expressions of the anti-apoptotic proteins Bcl-2, Mcl-1 and Bcl-XL decreased corre-
spondingly (Fig. 6B–D).

Three major apoptosis-associated pathways to caspase activation have been identified and ordering of caspases 
involved is currently relatively well understood38,39. Above studies have shown that by241 markedly increased 
expression of pro-apoptotic proteins Bid, Bax, and Bak, which have been proved to be able to activate expressions 
of downstream caspases. Herein, expression levels of three main caspases, namely the caspase-8, caspase-9, and 
caspase-3, were measured using the Western blot analysis. As shown in Fig. 6H, by241 concentration-dependently 
resulted in activation of pro-caspases-9 and -3, leading to increased expression of cleaved caspase-9 and caspase-3. 
Several reports described that ROS was capable of inducing cell death through activating caspase-840–42. However, 

Figure 3. By241 induced cell apoptosis. Apoptosis cells were detected using the Annexin V-FITC/PI double 
staining after exposure to by241 at different concentrations (0, 2.5, 5, 10 μ M) and analyzed by flow cytometry 
and the apoptotic cell rate was analyzed after Annexin V-FITC/PI staining. (A,B) MGC-803 were treated for 
12 h or 24 h; (E,F) EC9706 were treated for 12 h or 24 h; (C,D) Statistical analysis of apoptotic cells of (A,B); 
(G,H) Statistical analysis of apoptotic cells of (E,F); data are presented as the mean ±  SD of three independent 
experiments. * P <  0.05 and * * P <  0.01 were considered statistically compared to control.
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in this study, the expression of cleaved caspase-8, DR5 and TLR was almost unchanged. Associated with over-
expressed Bid (as shown in Fig. 6M), we reason that by241 induced apoptosis of MGC-803 cells in part through 
the mitochondria-related caspase-9/caspase-3 intrinsic pathways, not the membrane death receptor-mediated 
extrinsic pathways or the caspase-8/Bid/Bax pathway.

Furthermore, as shown in Fig. 6Q,R, pretreatment of MGC-803 cells with pan caspase inhibitor Z-VAD-FMK 
led to a decrease of FITC-positive cells (Apoptotic cells induced by by241). Specifically, the apoptotic cells for the 
by241-treated group accounted for about 22%, while the percentage of apoptotic cells after treatment with by241 
and Z-VAD-FMK decreased to around 7%, but still slightly higher than that of cells treated with Z-VAD-FMK 
alone (about 5%, Fig. 7R). These results revealed that pan caspase inhibitor Z-VAD-FMK cannot prevent 
by241-induced apoptosis completely, suggesting that apart from the mitochondria-mediated apoptotic pathways, 
simulation of other signaling pathways and/or key proteins involved in the ROS-mediated pathways by by241 also 
contributed to MGC-803 cell death.

Apart from the mitochondria-mediated apoptotic pathways, mounting evidence has shown that ROS can 
regulate many other signaling pathways such as p5343–47. Activated p53 then induces expression of downstream 
transcriptional proapoptotic proteins such as Bax and PUMA48, ultimately leading to apoptosis of cancer cells. 
We next examined expression changes of key proteins related to ROS-mediated apoptosis induced by by241. As 
shown in Fig. 7, treatment with by241 increased expression of p53, which then transcriptionally activated its 

Figure 4. The role of ROS in by241-induced cancer cells death. After pretreatment with or without 5 mM 
NAC for 2 hours, MGC-803 cells were treated with or without by241 for 24 hours, then the apoptosis related 
morphology (A) and the intracellular ROS was detected by fluorescence microscope (B); After pretreatment 
with or without 5 mM NAC for 2 hours, MGC-803 cells (C) or EC9706 cells (E) were treated with or without 
by241 for 24 hours, then the intracellular ROS was detected by flow cytometry; (D,F) Statistical analysis of ROS 
levels of (C,E); (G) After pretreatment with or without 2 mM or 5 mM NAC for 2 hours, MGC-803 cells were 
treated with or without by241(6.25, 12.5 μ M) for 24 hours, cell viability were detected by the MTT assay. Data 
are presented as the mean ±  SD of three independent experiments. * * P <  0.01 and ##P <  0.01 were considered 
statistically compared to corresponding control. * P <  0.05, * * P <  0.01 compared to control; ##P <  0.01 NAC+  
by241-5 μ M compared to by241–5 μ M or NAC+  by241–10 μ M compared to by241–10 μ M.
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downstream proapoptotic proteins such as Bax (Fig. 6A) and PUMA (Fig. 7A). p53 also induced expression of 
p21 (Fig. 7A), which, as the cyclin-dependent kinase (CDK) inhibitor, can arrest cell cycle at G1 phase49,50 and is 
also able to inhibit cancer cell growth51,52. Also, by241 concentration-dependently cleaved MDM2, generating a 

Figure 5. By241 induced mitochondrial dysfunction. Cells were treated with 5, 10 μ M of by241 for 24 hours, 
JC-1 staining image of (A) MGC-803 and (B) EC9706 cells were detected by fluorescence microscope, JC-1 
staining red and green fluorescence intensity of (C) MGC-803 and (E) EC9706 cells analyzed by flow cytometry. 
(D,F) Quantitative analysis of the ratio of green/red fluorescence in Fig. 5C,E. (G) MGC-803 Cells were 
pretreated with or without 5 mM NAC for 2 hours, and then incubated with the by241 for another 24 hours, 
JC-1 staining red and green fluorescence intensity was analyzed by flow cytometry. (H) Quantitative analysis 
of the ratio of green to red fluorescence in Fig. 5G. Data are presented as the mean ±  SD of three independent 
experiments. * * P <  0.01 were considered statistically significant compared with the controls, ##P <  0.01 NAC+ 
by241-10μ M compared to by241–10 μ M.
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Figure 6. Expression changes of apoptosis related proteins induced by by241. (A) By241 induced expression 
changes of Bcl-2 family (Bcl-2, Mcl-1, Bcl-XL, Bak, Bid, Bax) proteins; (B–G) Statistical analysis of Bcl-2 
family (Bcl-2, Mcl-1, Bcl-XL, Bak, Bid, Bax) proteins expression change induced by by241; (H) By241 induced 
caspase-3 and caspase-9 activation; (I–L) Statistical analysis of pro-caspase-3, cleaved caspase-3, pro-caspase-9 
and cleaved caspase-9 expression levels; (M–P) By241 did not change the expression of TRL, DR5, and cleaved 
caspase-8. (Q) Effect of pan caspase inhibitor Z-VAD-FMK significantly attenuated by241-induced apoptosis 
MGC-803 cells; (R) Statistically analysis of the FITC-positive cells. Data are presented as the mean ±  SD of three 
independent experiments. * P <  0.05, * * P <  0.01 compared to control; ##P <  0.01 Z-VAD-FMK+ by241-5 μ M 
compared to by241-5 μ M.
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60KD MDM2 fragment (Fig. 7A), which at least in part could be explained by the caspase-3 activation. It has been 
reported that caspase-3 can cleave the MDM2 oncoprotein during p53-mediated apoptosis53,54.

The transcription factor NF-κ B plays vital roles in regulating cell differentiation, responses to oxidative 
stress and apoptosis through controlling expression of related genes55. The crosstalk between NF-κ B and p53 
is regulated by the relative levels of each transcriptional factor. ROS-induced p53 activation therefore could 
down-regulate NF-κ B, accompanied with increased expression of phosphorylated NF-ĸB (p-NF-ĸB) (Fig. 7A). To 
date, a large number of natural and synthetic small molecules, as well as peptides have been identified as NF-κ B 
inhibitors56. However, the therapeutical effect of NF-κ B inhibitors as anticancer agents is controversial. Recently, 
Ryan et al. described that inhibition of NF-κ B in wild-type p53 retaining tumors may cause a diminished thera-
peutical response57.

Besides, ROS also activated the PI3K/AKT pathways58, leading to increased expression of key proteins such 
as PI3K and AKT (Fig. 7G). mTOR, as a conserved serine/threonine kinase, is crucial in regulating cell survival 
and proliferation. As shown in Fig. 7G, the expression of p-m-TOR was down-regulated, which could be achieved 
through the ROS-JNK-p53 pathway47 or by activating AMPKα 59.

In vivo acute oral toxicity and anti-tumor activity of by241. Due to the favorable potency in inhibit-
ing growth of cancer cells in vitro and low toxicity to normal cells, we then evaluated the in vivo acute oral toxicity 
of by241 on mice, which may provide a guideline for selecting doses for further in vivo experiments. As shown in 
Table 2, no severe side effects or mortality in test groups were observed even at the dose of 1000 mg/Kg. Animals 
did not show significant abnormal signs, behavioral changes, and water or food consumption during observation. 
As shown in Fig. 8A, body weight changes of animals treated with by241 relative to the control was not remarkable. 
Furthermore, no significant changes or lesion in the viscera of test animals were observed in autopsy experiments.

Figure 7. Expression changes of key proteins involved in ROS mediated pathways. (A) Expression analysis 
of p-NF-κ B, MDM2, p53, p21 and PUMA in by241-treated MGC-803 cells. Western blot of protein extracted 
from MGC-803 cells following 24 h treatment with by241 (5 μ M and 10 μ M), a representative result of 3 
independent experiments is shown. (B–F) Statistical analysis of p-NF-κ B, MDM2, p53, p21 and PUMA proteins 
expression change induced by by241; (G) Expression analysis of p-PI3K, p-AKT (Thr308), p-AKT (Ser473), 
AKT, p-mTOR (Ser2448) and mTOR in by241-treated EC109 cells. (H–K) Statistical analysis of p-PI3K, 
p-AKT (Thr308), p-AKT (Ser473) and p-mTOR (Ser2448) proteins expression changes induced by by241; 
Data are presented as the mean ±  SD of three independent experiments. * P <  0.05, * * P <  0.01 were considered 
statistically significant compared with the controls.

Dose (mg/Kg) Survival rate and side effects

250 100% survival rate, no serve toxic effect 

500 100% survival rate, no serve toxic effect 

1000 100% survival rate, no serve toxic effect 

Table 2. The acute oral toxicity of by241 at fixed doses.
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The favorable in vitro potency and low toxicity of by241 observed promoted us to investigate the in vivo 
anti-tumor potency. MGC-803 cells were injected in the paw subcutaneous of the mice. Three days later, by241 were 
intragastrically administered to the mice daily at different doses (40, 80 and 120 mg/Kg) using 5-FU (15 mg/Kg),  
saline as the positive and negative controls, respectively. During the 21-day treatment, the mouse body weight was 
monitored every 2 days. As shown in Fig. 8C, compared to the controls, the mice administered daily with by241 
even at 120 mg/Kg did not show any body weight loss, while the body weight of mice treated with 15 mg/Kg 5-FU 
daily declined gradually during the last 4-day treatment, showing less toxicity of by241 than 5-FU after repeated 
21-day treatment at high doses. Besides, as shown in Fig. 8B, by241 exhibited favorable anticancer efficacy at 
40 mg, 80 and 120 mg/kg, the corresponding tumor volume for the by241 (120 mg/kg) treatment group was sig-
nificantly smaller than that of the saline group. At the end of the experiment, tumor volume was 2126 mm3 in 
the control group, while tumor volume in the treatment groups was 1247 mm3, 1060 mm3 and 957 mm3 at by241 
doses of 40 mg/kg, 80 mg/kg and 120 mg/kg, respectively. The tumor volume of the 5-FU group was 822 mm3. 
Compared to the control group treated with saline (1.3 g), the average tumor weight of mice treated with by241 
at 40, 80 and 120 mg/kg decreased to around 0.87 g, 0.67 g and 0.52 g, respectively (Fig. 8E,F), accounting for a 
32.3%, 47.7% and 59.6% reduction in tumor weight. And the average tumor weight of the 5-FU group was 0.51 g, 
showing 59.8% decrease in tumor weight. The favorable in vitro and in vivo anticancer potency and the absence of 
acute oral toxicity even at high doses (Table 2 and Fig. 8A) warrant its further development for cancer therapy. As 
shown in Table 1, by241 was more potent than 5-FU against tested cancer cells, but the inferior in vivo anticancer 
activity of by241 could be attributed to the relatively poor bioavailability of by241.

Conclusions
In summary, we, for the first time, synthesized the structurally novel steroidal spirooxindole derivative by241 
from the corresponding dicyanoalkyene 1 and isatin through the base-promoted cascade reactions, in which 
one C-C single bond, one C-O bond, as well as one quaternary carbon center were formed. Structurally, by241 
shared the same steroid nucleus with anticancer drugs abiraterone and galeterone and also featured a biologically 
important spirooxindole scaffold.

Compared to 5-FU, by241 exhibited more potent inhibition against the tested cancer cells (EC109, EC9706, 
KYSE450, MGC-803, BGC-803, SMMC-7721, ZIP77, MCF-7 and PC-3) and was less toxic to human nor-
mal cells (Het-1A and L-02), indicating a good selectivity toward cancer cells and normal cells. By241 
concentration-dependently inhibited the colony formation, induced typical morphological changes and remark-
able apoptosis of MGC-803 cells. Moreover, treatment of MGC-803 and EC9706 cells with by241 resulted in the 
mitochondrial dysfunction, accompanied with increased ROS levels and decrease of MMP. Interestingly, ROS 
scavenger NAC was found to be able to completely restore the decreased cell viability, the increased ROS and the 
decrease of MMP of MGC-803 cells caused by by241, suggesting the ROS-mediated mechanisms for observed cell 

Figure 8. The acute oral toxicity of by241 on mice and antitumor efficacy in MGC-803 bearing nude model. 
(A) Body weight of mice in 15 days after oral treatment with by241 (250, 500 or 1000 mg/kg). MGC-803 cells 
were transplanted subcutaneously to the BALB-C nude mice and subjected to by241 (40, 80 and 120 mg/kg), 
5-FU (15 mg/kg) and saline were used as the negative control for 21 days. (B) Tumor size and (C) body weight 
measurements every 2 days from MGC-803 mice after by241 administration. (D) Photographs of mice in saline 
group, 5-FU group and by241 (120 mg/kg) group and (E) Photographs of tumors in each group. (F) Comparison 
of the final tumor weight in each group after 21-day treatment. Data are presented as means ±  SD. * * P <  0.01 
was considered statistically significant compared with the negative control.



www.nature.com/scientificreports/

1 1Scientific RepoRts | 6:31607 | DOI: 10.1038/srep31607

death. The expression levels of key proteins involved in the mitochondria-mediated pathways such as Bcl-2 family 
members and downstream proteins were detected using the Western blot analysis, showing increased expression 
of proapoptotic proteins such as Bid, Bax and Bak, decreased expression of anti-apoptotic proteins (Bcl-2, Mcl-1 
and Bcl-XL), and activation of caspase-9/-3, finally leading to apoptosis. However, by241 did not affect expression 
of caspase-8, DR5 and TLR. All these data suggest that by241 induced apoptosis of MGC-803 cells through the 
mitochondria-mediated caspase-9/caspase-3 intrinsic pathways, not the caspase-8 involved pathways such as the 
membrane death receptor-mediated extrinsic pathway and the caspase-8/Bid/Bax pathway. More interestingly, 
pretreatment of MGC-803 cells with pan caspase inhibitor Z-VAD-FMK decreased the percentage of apoptotic 
cells induced by by241, which implies that by241 induced apoptosis of MGC-803 cells through multiple mech-
anisms, not limited to the intrinsic apoptotic pathway. Further mechanistic studies were carried out focusing 
on other ROS-related pathways, showing that by241 also activated p53 and its downstream proteins such as 
PUMA and p21, inhibited NF-κ B and mTOR, cleaved MDM2, and activated PI3K/AKT signaling pathway. These 
ROS-mediated pathways also contributed to the cell death of MGC-803. Taken together, by241 induced cell death 
through ROS-mediated multiple mechanisms. Further in vivo experiments showed that by241 did not have sig-
nificant acute oral toxicity on mice even at high dose and exerted good in vivo anticancer efficacy. Therefore, 
by241 may serve as a lead for developing potent steroid-based anticancer drugs. Further work will be focused on 
developing more potent by241 derivatives with improved bioavailability through further SARs studies. Also, in 
combination with other drugs targeting the redox adaptation of cancer cells to the increased oxidative stress will 
be carried out to overcome the potential drug resistance.

Experimental section. Synthesis of by241. Compound 1 was efficiently prepared from DHEA in two steps 
following our previously reported protocols17–19. Therefore, the synthetic details of compound 1 and associated 
NMR data were not given here. Procedure for the synthesis of by241 from compound 1 is described herein: To 
a solution of compound 1 (1.0 mmol) and isatin (1.0 mmol) in a mixture of EtOH (5 mL) and H2O (5 mL) was 
added triethylamine (TEA, 2.0 mmol) dropwise at room temperature. Upon completion of this reaction (mon-
itored by TLC), the solvent was removed under vacuum, the resulting residue was then subjected to recrys-
tallization in EtOAc, affording the by241 as a brownish red solid. HPLC purity: > 95% (AGILENT-C18 5 μ m 
4.6 ×  250 mm, MeOH/H2O 80%/20%, 1 mL/min, UV: 210 nM, 30 °C); Yield: 88%, m. p. 222.5-223.8 °C; 1H NMR 
(400 MHz, CDCl3) δ  9.28 (s, 1H), 7.32 (d, J =  7.2 Hz, 1H), 7.07 (brs, 1H), 6.95 – 6.82 (m, 2H), 6.27 (brs, 1H), 6.20 
(d, J =  7.2 Hz, 1H), 5.43 (d, J =  4.4 Hz, 1H), 4.73 – 4.50 (m, 1H), 2.05 (s, 3H), 1.06 (s, 3H), 1.02 (s, 3H); 13C NMR 
(100 MHz, CDCl3) δ  170.54, 170.45, 167.42, 147.78, 141.17, 140.19, 130.35, 130.22, 124.45, 123.54, 121.42, 116.50, 
109.58, 105.91, 73.67, 50.64, 49.53, 47.83, 38.04, 36.74, 36.62, 35.15, 32.98, 31.94, 30.92, 27.63, 21.42, 19.33, 16.25; 
HRMS (ESI): m/z calcd for C32H36N3O4 (M+ H)+, 526.2706; found, 526.2703.

Biological evaluation. Reagents, antibodies and animals. By241 was dissolved in DMSO to make a 100 mM stock 
solution. Working concentrations were created by diluting the stock solution in RPMI-1640 media containing 10% 
Fetal Bovine Serum. RPMI-1640 and Fetal Bovine Serum were obtained from Hyclone Laboratories(Utah, USA).  
5-Fluorouracil (5-FU) was purchased from the Shanghai Xudong Haipu Pharmaceutical Co.Ltd.(Shanghai, 
China). Bax, Bcl-2 rabbit monoclonal antibodies were purchased from Abcam Biotechnology (Cambridge, UK). 
Bcl-XL, Bid, Mcl-1 and p53 mouse polyclonal antibody was purchased from Santa Cruz Biotechnology (Santa 
Cruz, CA, USA). caspase-8, Bak and PUMA antibodies were obtained from Enjing Biotechnology (Nanjing, 
China) and GAPDH rabbit polyclonal was purchased from Good HERE Biotech Inc. (Hangzhou, China). The 
MDM2, caspase-3 and caspase-9 rabbit polyclonal antibody and horseradish peroxidase-conjugated secondary 
antibodies were obtained from Zhongshan Golden Bridge Biotech Inc. (Beijing, China).

Cell lines and cell culture. Human prostate cancer cell line (PC-3), human esophageal cancer cell line (EC109, 
EC9706, KYSE450), Human liver cancer cell line (SMMC-7721), human breast cancer cell line(MCF-7), human 
gastric cancer cell line (MGC-803), human neuroblastoma cell line(SHSY5Y), human normal liver L-02 cells were 
purchased from Shanghai Institute of Cell Line Bank. Human gastric cancer cell line (BGC-803) and human liver 
cancer cell line (ZIP77) were kindly provided by Shanghai Institute of Materia Medica. Human normal esoph-
ageal cell line (Het-1A) was exchanged with the First Affiliated Hospital of Zhengzhou University. All cells were 
maintained in RPMI-1640 complete medium with 10% FBS and 100 U/mL penicillin and 100 g/mL streptomycin.

Cytotoxic activity determination. The IC50 values (concentrations required to inhibit tumor cell prolifera-
tion by 50%) for by241 against all human cancer and normal cell lines were determined using the MTT assay. 
Briefly, cells were trypsinized and incubated at 96-well plates, 24 hours later, cells were treated with 200 μ L media 
containing serial concentration of by241 and cultured for another 72 hours. To detect the NAC effect on by241 
induced cytotoxicity, MGC-803 cells were exposed to by241 alone at 6.25 μ M, 12.5 μ M or by241 pre-incubation 
with NAC(2.5 mM, 5 mM) for 2 h, followed by 24 h treatment. 20 μ L MTT were added to each well and cell were 
then incubated for 4 hours. Then, the medium was removed and 150 μ L DMSO was then added to each well. 
Absorbance values were measured at 490 nm using an enzyme-link immunosorbent assay reader after shaking 
for 10 minutes. The cell viability rate was calculated as follows: viability rate = Abs490 treated cells/Abs490 con-
trol cells ×  100%. The drug concentration required to inhibit cell growth by 50% (IC50) was determined from 
concentration-response curves created with SPSS19.0 software. The results are reported as the mean ±  standard 
deviation (SD) of three independent experiments. The cell viability curves at different concentrations of by241 
were created with Graphpad Prism 6.0 software.
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Clonogenic Assay. MGC-803 cells (500 cells/well) were placed in 6-well plates. After incubation for 24 hours, 
the media were replaced by fresh media containing different concentration of by241. After 12 days’ treatment, the 
cells were washed twice with PBS, fixed with 4% paraformaldehyde for 20 minutes, and stained for 30 minutes at 
37 °C with crystal violet staining. The clones were imaged under the microscope and the numbers were calculated 
by Image J software. A group of > 50 cells was defined as one colony. The inhibition rate was determined by the 
number of colonies. Inhibition rate = (1 − number of treatment/number of control) ×  100%. All experiments 
were performed in triplicate.

Cell morphology analysis and Hoechest 33258 staining. Cell nuclear apoptotic morphology was analyzed by 
Hoechst 33258 staining (Sigma, USA). MGC-803 cells or EC9706 cells were seeded at 4 ×  105 cells/well in 6-well 
plates and incubated overnight for adherent and treated with by241 at 2.5 μ M, 5 μ M or control for 24 hours. The 
morphological changes were observed under an inverted microscope. Next, cells were harvested and washed 
twice with PBS, fixed with immunostaining fix solution (Beyotime Institute of Biotechnology, China) for 10 min-
utes at room temperature and added with 500 μ L PBS containing 5 μ g/mL Hoechst 33258. The cells were then 
incubated for additional 30 minutes and carefully washed twice with PBS. Apoptotic cells were examined and 
identified, according to the condensation and fragmentation nucleus by Nikon inverted fluorescence microscopy.

Cellular apoptosis analysis. Cell apoptosis was also quantified by FACS with Annexin V-FITC/PI staining 
kit from KeyGEN BioTECH (Nanjing, China). According to the manufacturer’s instruction, MGC-803 cells or 
EC9706 cells were plated in 6-well plates (5.0 ×  106 cells/well) and incubated for 24 hours, then cultured with 
different concentration of by241 for another 12 or 24 hours. Cells were harvested and washed twice with cold PBS 
and then resuspended in 500 μ L binding buffer, containing 5 μ L Annexin V-FITC and 5 μ L PI, which were then 
kept in the dark at 37 °C for 30 minutes. Ten thousand cells were collected for flow cytometry analysis (Accuri C6). 
The apoptotic cells were identified by the localization of Annexin V and PI.

For inhibition increased cleave of caspases-3, 9, we used the pan caspase inhibitor Z-VAD-FMK (APEXBIO). 
MGC-803 cells were treated pretreatment with Z-VAD-FMK for 1h, followed by241 treatment. 24 hours later, all 
cells were harvested, stained with Annexin V-FITC/PI, and detected using flow cytometry.

Mitochondrial membrane potential (ΔΨm) analysis. Mitochondrial membrane potential (ΔΨm) was deter-
mined by the fluorescent dye JC-1 (Beyotime Institute of Biotechnology, China). Generally, harvested cells were 
washed twice with PBS and incubated with 10 mg/L JC-1 for 30 min at 37 °C. After incubation with the dye, the 
cells were collected and carefully washed twice with PBS and then resuspended in 500 μ L ice-cold PBS. Flow 
cytometer was used to measure the fluorescence intensity under an excitation at 488 nm and 535 nm.

Intracellular ROS assay. Intracellular ROS generation was detected using DCFH-DA (2,7-dichlorodihydrofluorescein  
diacetate, Beyotime Institute of Biotechnology, China). Briefly, harvested cells were washed twice by serum-free 
medium, loaded with 10 μ M DCFH-DA and incubated in cell incubator. 30 minutes later, flow cytometry analysis 
and fluorescence microscope detection were carried out immediately. Ten thousand cells were collected for flow 
cytometry analysis (Accuri C6). The ROS levels were assayed by the FlowJo software.

Western Blot Analysis. MGC-803 cells were cultured at different concentrations of compound by241 for 12 h, 
both adherent and floating cells were collected with trypsin/EDTA, and then Western blot analysis was per-
formed. The cells were lysed with RIPA cell lysis buffer (1% NP-40, 0.1% sodium dodecyl sulfate (SDS), 150 mM 
NaCl, 25 mM Tris-HCl, 1% deoxycholic acid sodium salt, 1% PMSF) that contained a protease inhibitor cocktail 
for 30 min on ice. Total protein were extracted and separated by 6% or 10% SDS-PAGE gel and transferred to a 
nitrocellulose membrane. The membrane was blocked in Tris-buffered saline (TBS) containing 5% non-fat milk 
for 2 hours at room temperature and then incubated with the indicated primary antibodies overnight at 4 °C. After 
that, the membrane was washed three times with TBST and incubated with horseradish-peroxidase-conjugated 
secondary at room temperature for 2 hours. Then, the membrane preparations were washed three times with 
TBST and examined by enhanced chemiluminescence. The films were subsequently scanned, and the results were 
determined using Image J software.

Assessment of acute oral toxicity of by241–fixed dose procedure. Animals were treated according to protocols 
established by the ethics committee of Zhengzhou University and the in vivo experiments were carried out in 
accordance with the approved guidelines and approved by the ethics committee of Zhengzhou University. Acute 
oral toxicity assessment of by241 was performed according to the fixed dose procedure according to Organization 
for Economic Cooperation and Development (OECD) Guidelines for the Testing of Chemicals. Groups of 10 
mice were dosed in a stepwise procedure using the fixed doses of 1000, 500 and 250 mg/Kg. Oil was used as the 
control in this experiment. Animals were observed individually at least once during the first 30 minutes after 
administration, periodically during the first 24 h (with special attention during the first 4 hours) and daily there-
after for a period of 14 days. The observation principally included changes in skin and fur, eyes and mucous 
membrane and autonomic changes. Food and water were provided throughout the experiment. The animals were 
weighed each three day and the number of death was noted if applicable.

In vivo anti-tumor activity. Animals were treated according to protocols established by the ethics committee of 
Zhengzhou University and the in vivo experiments were carried out in accordance with the approved guidelines 
and approved by the ethics committee of Zhengzhou University. Female BALB/c nude mice (18 g, aged 4-5 weeks)  
were purchased from Human SJA Laboratory Animal Co. Ltd. (Hunan, China). Mice were subcutaneously 
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implanted with MGC-803 cells (5 ×  106 cells per mouse) in the back right flank. Once the volumes reached 
approximately 100 mm3, the mice were randomly divided into corresponding saline (negative control) group, 
5-FU (15 mg/Kg, positive control) group, by241 (40 mg/Kg) treatment group, by241 (80 mg/Kg) treatment group 
and by241 (120 mg/Kg) treatment group (n =  8 mice in each group). The treatment groups received intragastric 
administration of by241 (40, 80 or 120 mg/Kg) per day for a period of 21 days. 5-FU (15 mg/Kg) was intravenous 
injection once every three day. After the period, the mice were euthanized and the tumors were isolated and 
weighed. The body weight was measured and tumor size was determined by vernier caliper measurements every 
other day to monitor drug potency.

Statistical analysis. All data are expressed as the mean ±  standard deviation (SD) of three independent biologi-
cal experiments. Statistical significance was assessed using the two tailed Student’s t-test (for comparisons of two 
treatment groups) and one-way ANOVA (for comparisons of three or more groups). *P <  0.05, #P <  0.05 and  
* *  P <  0.01, ##P <  0.01 were considered statistically significant.
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