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Abstract

There has been increasing interest in examining physician well-being and its predictive fac-

tors. However, few studies have revealed the characteristics associated with physician well-

being and work-life integration using a machine learning approach. To investigate predictive

factors of well-being and obtain insights into work-life integration, the survey was conducted

by letter mail in a sample of Japanese physicians. A total of 422 responses were collected

from 846 physicians. The mean age was 47.9 years, males constituted 83.3% of the physi-

cians, and 88.6% were considered to be well. The most accurate machine learning model

showed a mean area under the curve of 0.72. The mean permutation importance of career

satisfaction, work hours per week, existence of family support, gender, and existence of

power harassment were 0.057, 0.022, 0.009, 0.01, and 0.006, respectively. Using a

machine learning model, physician well-being could be predicted. It seems to be influenced

by multiple factors, such as career satisfaction, work hours per week, family support, gen-

der, and power harassment. Career satisfaction has the highest impact, while long work

hours have a negative effect on well-being. These findings support the need for organiza-

tional interventions to promote physician well-being and improve the quality of medical care.

Introduction

Physician well-being extends beyond individual issues and has a significant impact on health-

care systems and patient care. Unwell physicians could contribute to low quality of care, lapses

in professionalism, and jeopardizing patient safety [1–6]. Demographic characteristics such as

gender, age, and relationship status are reported to be associated with physician well-being [7].

Physician well-being is not merely the absence of distress, but also comprises being challenged,

thriving, and achieving success in various kinds of personal and social aspects [8]. It is a com-

plex and multifactorial issue.

Problems with work-life integration and burnout are common among physicians [9–11]

and physician assistants [12]. As current medical practice demands more time, physicians are

more likely to be fatigued, stressed, or burned out [13–15]. Physicians specializing in
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emergency medicine and primary care have a higher risk of burnout [16–20]. Among Japanese

physicians working in stroke care units, heavy workload, short sleep duration, little experience,

and low mental quality of life were determined to be the risk factors for burnout [21]. A sys-

tematic review shows that burnout or stress in physicians is predominantly associated with

workplace-related factors, such as work demands and poor work environment, rather than

non-modifiable and non-workplace-related factors [22].

Limited research has been conducted to identify the factors determining well-being and

work-life integration among physicians, despite the abundant reports about physician burn-

out. To our knowledge, there are no reports using a machine learning approach to study physi-

cian well-being. To bridge this gap in the literature, a survey was conducted among 846

physicians who belonged to a union of the Department of Second Internal Medicine at Kyoto

Prefectural University of Medicine in Japan. In this study, we reveal that the machine learning

approach is feasible for predicting physician well-being, and variables such as career satisfac-

tion and work hours per week are important predictive factors for physician well-being.

Methods

A letter mail survey was conducted among 846 physicians, including cardiologists, nephrolo-

gists, pulmonologists, hematologists, gastroenterologists, and family doctors (S1 Fig) in a

union of the Department of Second Internal Medicine at Kyoto Prefectural University of Med-

icine in Japan, which was established in 1921. The participants responded to the survey by

mail. They volunteered to participate, informed consent was obtained by written form before

filling out the survey, and all responses remained anonymous. The survey was conducted

between March 1 and 31, 2019. The data analysis took place from November 1, 2019, to March

30, 2020. A total of 422 responses were collected, yielding a participation rate of 49.9%. The

characteristics of total survey subjects and survey respondents were shown in S2 Fig. Of the

respondents, 63 with no work hours were excluded because they were considered to have

retired. The protocol for the present study was approved by the committee of the graduates’

association of Kyoto Prefectural University of Medicine. The entire protocol of the present

study was designed in accordance with the Declaration of Helsinki.

Study measures

The primary independent variable in the present study was well-being, which was assessed on

a scale of 1 to 10. Physicians were considered to be well when they reported a high score of 6 to

10 and unwell when they reported a low score of 1 to 5. Age, gender, relationship status, work,

work style, work hours per week, career satisfaction, family support, sexual harassment, power

harassment, equality at home, and equality at the workplace were the 12 variables considered

(S1 Appendix). The variables were used as categorical values (well-being, gender, relationship

status, work, work style, career satisfaction, family support, sexual harassment, power harass-

ment, equality at home, and equality at the workplace) or numeric values (age and work hours

per week).

Primary analysis

An unwell state of well-being was set as the target of prediction modeling. An ensemble model

of machine learning, comprising elastic net (ENET), average (AVG), median (MED), and gen-

eralized linear model (GLM) blender, was used for the dual classification of well-being (S2

Appendix). To avoid overfitting, 10-fold cross validation and 10 seeds randomization were

performed. The performance of each model was evaluated and compared using the validation

data set (10% of sample). AUC was used as an indicator of the model accuracy. Permutation
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importance was calculated for variable impact on target, according to previous studies [23,24].

Mutual information was calculated for each variable. Low-impact variables were excluded at

each round when the minimum permutation importance was lower than 0; consequently, a

total of 5 rounds were conducted. Partial dependence was calculated to evaluate the effect of

each variable on the target. Analysis and modeling were performed using Python 3.7.4, with

DataRobot 2.21.3 being deployed.

Results

Sample characteristics

Data on participant characteristics associated with well-being and work-life integrity were

available for 359 physicians (S3 Appendix), of whom 88.6% [318 of 359] were found to be well;

their mean [SD] age was 47.9 [14.8] years; 83.3% [299 of 359] of them were male; 64.9% [233

of 359] were hospital workers and 91.9% [330 of 359] were full time workers. Their mean [SD]

work hours per week were 45.5 [17.6]. A majority of them, 90.8% [326 of 359], were married;

37.6% [135 of 359] had family support; 48.7% [175 of 359] enjoyed equality at work; and 41.8%

[150 of 359] enjoyed equality at home. However, 74.4% [267 of 359] of the physicians had suf-

fered power harassment and 52.9% [190 of 359] had experienced sexual harassment. Despite

this, the majority, 72.1% [259 of 359], enjoyed career satisfaction (Table 1). Work hours per

week and career satisfaction were significantly different between unwell and well state (S4

Appendix).

Machine-learning models and variable importance

The mean [SD] area under the curve (AUC) was 0.70 [0.02] in round 1, where all 12 variables

were used for prediction modeling. In round 2, excluding work and work style, the mean [SD]

AUC was 0.70 [0.02]. In round 3, excluding equality at work and relationship status, the mean

[SD] AUC was 0.70 [0.02]. In round 4, excluding the existence of sexual harassment and equal-

ity at home, the mean [SD] AUC was 0.69 [0.02]. Excluding age, the model in round 5 with the

remaining five covariates showed the highest accuracy: mean [SD] AUC 0.72 [0.02] (Table 2).

Therefore, the remaining five variables were further examined. Several regression models were

also evaluated to predict well-being index (1–10); however, those accuracy were not sufficient

compared to binary classification models (S5 Appendix). The mean [SD] permutation impor-

tance of career satisfaction, work hours per week, family support, gender, and power harass-

ment were 0.057 [0.012], 0.022 [0.009], 0.009 [0.003], 0.01 [0.005], and 0.006 [0.006],

respectively. Among them, career satisfaction had the highest impact, with work hours per

week also showing a high impact on well-being (Fig 1A). The network between factors associ-

ated with well-being was depicted according to the mutual information and the permutation

importance of each variable using Cytoscape 3.6.1 (Fig 1B) [25]. The partial dependence of

each variable is shown in Fig 2. The difference in the mean unwell rate was 16% between par-

ticipants with or without career satisfaction. Long work hours per week were correlated with

the unwell rate. The difference in the mean unwell rate was 3.5% between participants with or

without family support. The difference in the mean unwell rate was 5.6% between males and

females. Consistent with low permutation importance, the partial dependence of power

harassment seemed indistinct due to its large error. To exclude the influence of work style as a

possible cofounder, the data excluding part-time worker was also analyzed, then permutation

importance for each variable was calculated (S3 Fig). The work hours per week showed similar

importance on well-being to all data analysis.
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Discussion

Among Japanese physicians in this study, well-being was predicted by ensemble models of

machine learning, and the determinants of work-life integration were evaluated. Model accu-

racy using AUC was sufficient to predict well-being by selecting five important covariates:

career satisfaction, work hours per week, family support, gender, and power harassment. In

particular, career satisfaction and work hours per week were high-impact predictive factors for

well-being.

Table 1. Participant characteristics associated with well-being and work–life integration.

Variable Data type No. (%)

Well-being Categorical

Well 318 (88.6)

Unwell 41 (11.4)

Age Numeric

Mean (SD) 47.9 (14.8)

Gender Categorical

Male 299 (83.3)

Female 60 (16.7)

Work Categorical

Hospital worker 233 (64.9)

Practitioner 126 (35.1)

Work style Categorical

Full-time 330 (91.9)

Part-time 29 (8.1)

Work hours per week Numeric

Mean (SD) 45.5 (17.6)

Relationship status Categorical

Married 326 (90.8)

Single 33 (9.2)

Family support Categorical

Yes 135 (37.6)

No 224 (62.4)

Equality at work Categorical

Yes 175 (48.7)

No 184 (51.3)

Equality at home Categorical

Yes 150 (41.8)

No 209 (58.2)

Power harassment Categorical

Yes 267 (74.4)

No 92 (25.6)

Sexual harassment Categorical

Yes 190 (52.9)

No 169 (47.1)

Career satisfaction Categorical

Yes 259 (72.1)

No 100 (27.9)

https://doi.org/10.1371/journal.pone.0254795.t001
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This study provided insights into the association between physician well-being and work-

life integration. Career satisfaction was the highest-impact predictive factor for well-being.

Physicians with burnout are more likely to experience not only career dissatisfaction [7,14,26]

but also career choice regret among resident physicians [27]. Long work hours per week had a

significant impact on well-being. Those who frequently work long shifts suffer negative conse-

quences in terms of healthcare performance [28,29]. In addition, they have an increased risk of

percutaneous injuries and motor vehicle accidents [30,31]. Moreover, physicians without fam-

ily support had a higher partial dependence on the unwell rate despite its low permutation

importance. Various kinds of harassment prevail in medical training [32]. Sexual harassment

was excluded as a covariate because the permutation impact was low. Power harassment is a

form of workplace harassment in which the someone in a greater position uses the power to

harass or bully a victim who is lower on the office hierarchy. Power harassment was a low-

impact predictive factor for well-being, with unexpected results of partial dependence.

Although this survey included an array of doctors with varying specializations, specialty was

not evaluated. There are also different types of hospital workers from the business manage-

ment to work shift staff. This study showed no impact of such work differences between health

practitioners and hospital workers in terms of well-being.

Demographic characteristics such as age, gender, and relationship status were evaluated in

association with physician well-being. This survey was conducted only among Japanese physi-

cians, although race/ethnicity is an independent predictive factor of physician burnout [33–

35]. Age and relationship status were excluded as covariates because the permutation impor-

tance was low. Young trainee physicians are at high-risk for burnout and stress compared to

older physicians [36–38]. Gender was a predictive factor, but it had a relatively low impact on

well-being. Male physicians showed a higher partial dependence on the unwell rate than did

female physicians. Another report revealed that female residents have a higher risk of burnout

than do male residents [27]. In addition, female physicians are more likely to experience

work–home conflicts than their male counterparts [9]. Moreover, many female physicians are

subject to various hurdles such as male-dominant structures of medical society, unconscious

discrimination, or unfair evaluation by medical directors [39,40]. Thus, consistent with a pre-

vious report [22], demographic and non-work place factors such as gender, age, and relation-

ship status had a relatively lower impact on physician well-being in this study.

Table 2. Model accuracy of each round and random seed.

Round 1 Round 2 Round 3 Round 4 Round 5

Seed No. Model AUC Model AUC Model AUC Model AUC Model AUC

Seed 1 MED blender 0.69 MED blender 0.70 ENET blender 0.70 MED blender 0.692 MED blender 0.70

Seed 2 AVG blender 0.69 AVG blender 0.69 AVG blender 0.69 MED blender 0.695 MED blender 0.71

Seed 3 MED blender 0.70 MED blender 0.71 AVG blender 0.70 ENET blender 0.699 ENET blender 0.69

Seed 4 ENET blender 0.75 ENET blender 0.72 MED blender 0.72 ENET blender 0.684 MED blender 0.74

Seed 5 ENET blender 0.69 GLM blender 0.71 GLM blender 0.76 MED blender 0.703 MED blender 0.72

Seed 6 AVG blender 0.70 AVG blender 0.72 AVG blender 0.71 AVG blender 0.702 AVG blender 0.71

Seed 7 GLM blender 0.70 AVG blender 0.70 MED blender 0.68 ENET blender 0.712 MED blender 0.75

Seed 8 AVG blender 0.68 AVG blender 0.68 MED blender 0.69 AVG blender 0.658 AVG blender 0.71

Seed 9 MED blender 0.70 MED blender 0.69 AVG blender 0.70 AVG blender 0.666 AVG blender 0.71

Seed 10 MED blender 0.69 GLM blender 0.73 ENET blender 0.69 ENET blender 0.686 GLM blender 0.75

Mean (SD) 0.70 (0.02) 0.70 (0.02) 0.70 (0.02) 0.69 (0.02) 0.72 (0.02)

AUC indicates area under the curve; ENET, elastic net; AVG, average; MED, median; GLM, generalized linear model.

https://doi.org/10.1371/journal.pone.0254795.t002
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Fig 1. Variable impact on physician well-being. (A) Permutation importance on physician well-being was calculated for selected

covariates: career satisfaction, work hours per week, family support, gender, and power harassment. Boxplots represents median,

interquartile range, and extreme values. + indicates mean value. (B) Network between factors associated with well-being. The network

between well-being and each variable is depicted in blue; the edge width and node size is determined according to the permutation

importance of each variable. The network between variables is depicted in gray; the edge width is determined based on the mutual

information between the two variables.

https://doi.org/10.1371/journal.pone.0254795.g001
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This study has several limitations. First, this survey was conducted in a single center for Jap-

anese physicians. Second, the limited number of participants might have caused the study to

be underpowered. The observational findings will need to be evaluated in nationwide survey.

Third, some important factors associated with well-being, such as specialty, race, and income

of physicians, were not assessed in this survey. Fourth, the evaluation measurement for subjec-

tive indicators might be difficult to reproduce in future studies. Fifth, the participation rate of

49.9% was not high. Sixth, the previous emotional state or medical history of participants, such

as depression or posttraumatic stress disorder, was not investigated. A comparative study

before and after COVID19 pandemic will be interesting.

Fig 2. Effect of variable on physician well-being. Partial dependence on physician unwell state was shown for selected covariates: career satisfaction, work

hours per week, family support, gender, and power harassment. Boxplots represents median, interquartile range, and extreme values. + indicates mean value.

Unwell rate indicates predicted probability of unwell state.

https://doi.org/10.1371/journal.pone.0254795.g002
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In conclusion, physician well-being was predicted using a machine learning model. Career

satisfaction, work hours per week, family support, gender, and power harassment were predic-

tive factors for well-being. Career satisfaction had a significant impact, and long work hours

per week had a negative effect on well-being. Further studies are needed to better understand

these results and ensure improvements in physician well-being, work–life integration, and

medical care quality.
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