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Factors linked to modern lifestyles, such as physical inactivity, Western diet, and poor

sleep quality have been identified as key contributors to the positive energy balance

(PEB). PEB rises adipose tissue hypertrophy and dysfunction over the years, affecting

cells and tissues that are metabolically critical for energy homeostasis regulation,

especially skeletal muscle, hypothalamic-pituitary-adrenal axis, and gut microbiota. It

is known that the interaction among lifestyle factors and tissue metabolic dysfunction

increases low-grade chronic systemic inflammation, leading to insulin resistance and

other adverse metabolic disorders. Although immunometabolic mechanisms are widely

discussed in obesity, neuroimmunoendocrine pathways have gained notoriety, as

a link to neuroinflammation and central nervous system disorders. Hypothalamic

inflammation has been associated with food intake dysregulation, which comprises

homeostatic and non-homeostatic mechanisms, promoting eating behavior changes

related to the obesity prevalence. The purpose of this review is to provide an updated

and integrated perspective on the effects of Western diet, sleep debt, and physical

exercise on the regulation of energy homeostasis and low-grade chronic systemic

inflammation. Subsequently, we discuss the intersection between systemic inflammation

and neuroinflammation and how it can contribute to energy imbalance, favoring

obesity. Finally, we propose a model of interactions between systemic inflammation

and neuroinflammation, providing new insights into preventive and therapeutic targets

for obesity.

Keywords: obesity, lifestyle, neuroendocrine-control, hypothalamic inflammation, food intake

INTRODUCTION

Obesity is defined as an excessive accumulation of adipose tissue, commonly related to low-grade
chronic systemic inflammation (LGCSI) (1, 2). Both obesity and LGCSI are considered crucial
independent risk factors for several chronic non-communicable diseases, including cardiovascular
diseases, type 2 diabetes mellitus, some types of cancer, musculoskeletal disorders, and other
clinical conditions (1, 3), reducing life expectancy (3, 4). Moreover, mid-life obesity is a significant
risk factor for developing Alzheimer’s disease and vascular dementia in later life (5, 6). Early to
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mid-adulthood obesity may have a detrimental impact on
cognitive functioning, due to decreased brain volume (7), gray
matter atrophy in the temporal, frontal and occipital cortices,
hippocampus, thalamus and midbrain (8, 9), and reduced
integrity of white matter throughout the brain (10).

Obesity incidence and prevalence increased rapidly in the
last 50 years, currently reaching pandemic proportions (1, 3).
According to the latest data published by the World Health
Organization (WHO), in 2016, more than 650 million adults
were obese, representing 13% of the world population (11). The
epidemiological perspectives are even more alarming (1, 12).
According to the projections made by Kelly and collaborators, in
2008, 1.12 billion people will be obese in 2030 (13).

The nature of obesity is attributed to the chronic positive
energy balance (PEB: caloric intake greater than daily energy
expenditure) (3, 14). However, weight gain is a complex and
multifactorial phenomenon. Obesity is determined by a matrix
of genetic, epigenetic, psychological, and lifestyle factors, which
interact with the physical sociocultural environment and suffer
its interference, influencing several physiological mediators
responsible for food intake and energy expenditure (1, 14).

Swinburn et al. (15) suggest that the high prevalence of obesity
is the result of human response to the obesogenic the obesogenic
environment, evidenced in most regions of the world in the last
five decades by nutritional, demographic, and socioeconomic
changes associated with the processes of urbanization and
globalization (16).

In recent years, rapid changes occurred in the global food
system and in the frequency of physical activity practice, factors
that interact with human behavior and lifestyle, leading to PEB
(3, 15, 16). Besides food intake, one of the main changes observed
was the increase in supply and accessibility to high energy-rich
foods, which are more palatable, processed, and ultra-processed
(15). These foods contain high amounts of sugars, trans and
saturated fats, dietary salt, food additives, while present low
contents of fiber, carbohydrates accessible to the gut microbiota
(CAM), polyunsaturated fats, vitamins, minerals, and bioactive
compounds (16, 17).

Simultaneously, sedentary behavior is highly prevalent,
especially in high-income countries, due to urbanization and
technological advancement (15, 18). Currently, three key
domains favor sedentary lifestyle among adults: work, transport,
and leisure (19). The term sedentary behavior includes time spent
sitting with low energy expenditure levels (19). For example,
watching television, reading, driving, and most of the work done
at an office desk (20). In addition to the increasing levels of
sedentary behavior, there is a concern about the low prevalence
of regular physical exercise (PE), mainly moderate to vigorous,
among several populations in the world (20). According to the
WHO, 1 in 4 adults does not reach recommended levels of PE
in the world (21). Health benefits of physical activity are well-
established, including its contribution to a healthy body mass
maintenance (22).

Although less debated and neglected by society in recent
years, sleep duration and quality have also been negatively
affected (23). Short sleep duration is associated with metabolic,
immunological, and behavioral changes that compromise health

status and predispose to weight gain (24–27). Systematic reviews
andmeta-analyses have shown an association between short sleep
duration and obesity (25, 28, 29).

However, there is a segmented discussion about the
influence of these three factors on body mass gain and
obesity. We believe that common mechanisms are shared
and overlapped, especially involving systemic inflammation
and neuroinflammation, which may explain why isolated
interventions against obesity are ineffective.

The purpose of this review is to provide an updated
and integrated perspective on the effects of the Western
diet (WD), sleep debt, and PE on the regulation of energy
homeostasis and low-grade chronic systemic inflammation.
Subsequently, we discuss the intersection between systemic
inflammation and neuroinflammation and how it can contribute
to energy imbalance, favoring obesity. Finally, we propose
a model of interactions between systemic inflammation and
neuroinflammation, providing new insights into preventive and
therapeutic targets for obesity.

ENERGY BALANCE

Individually and combined, WD, sleep debt, and sedentary
behavior can promote a favorable environment for fat mass
increase and metabolic dysregulation. Several mechanisms
have been proposed in attempt to explain why this triad
can increase body mass. Beyond physiological, biochemical,
and inflammatory aspects, the main factor involved is the
chronic PEB.

Energy balance (EB) is based on energy intake, expenditure,
and storage (30, 31). The balance between energy intake and
expenditure promotes the energy homeostasis maintenance and
both overnutrition and malnutrition result from positive and
negative EB, respectively (30). However, the simplistic and linear
conception between energy intake and expenditure is not enough
to explain weight gain (32). The concept of “energy in” and
“energy out” has been refuted, since numerous factors canmodify
substrate availability, utilization, and storage (33, 34). However,
the new models proposed still lack robust evidence (35).

Furthermore, the static view of EB (“eat less” vs. “exercise
more”) can be challenged once weight gain, per se, increases
resting energy expenditure (REE), total energy expenditure
(TEE), as well as energy cost due to the need to move a
larger body (36). In contrast, weight loss is accompanied by
a reduction in REE, non-resting energy expenditure (nREE),
and TEE. Weight loss-related low energy expenditure is known
as metabolic adaptation or adaptive thermogenesis, described
as a barrier to successful weight loss maintenance (37).
However, recent evidence suggests that metabolic adaptation
is irrelevant, and it is possibly not associated with weight
regain (38, 39). For this reason, EB is considered to be
highly complex, influenced by several factors, some of which
are poorly understood. Chronic PEB, resulting from high
energy intake and low energy expenditure, increases fat storage
(triglycerides) in the white adipose tissue (WAT). WAT
hypertrophy and lower adipogenesis promote an inflammatory
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state triggered by activation of several immunological pathways
(40–42). Gregor and Hotamisligil (43) proposed the term
“metainflammation” for the inflammatory state mediated by
the excess of nutrients in obesity. Metainflammation is mainly
mediated by macrophages and occurs in several tissues, such
as large intestine (gut microbiota), liver, skeletal muscle, and
adipose tissue. Macrophages adopt different activation states (i.e.,
M1 and M2 polarization) depending on the energy environment
(44, 45). High energy levels promote M1 polarization and
inflammatory cytokines production (44, 45). It is worth noting
that, especially in microglia, the concept of M1 and M2
polarization, by IFN- γ (interferon-gama) and interleukin (IL)-4
secretion, respectively, is questionable because this phenomenon
has not been established by research findings, bringing up
more complex insight about mechanisms related to microglial
activation (46).

Nutrition contribution to metainflammation depends on
macronutrient type, its quantity and effect on different immune
cells, and its interaction with the gut microbiota, a vital place for
inflammatory changes (47).

INFLAMMATION

Inflammation is characterized by a sophisticated process of
pathogens elimination added to tissue repair and recovery,
involving immune and other types of cells. According to the
degree and extent of the inflammatory process (local or systemic),
several metabolic and neuroendocrine changes can occur (48,
49). The inflammatory response is traditionally initiated by
infections, resulting from the interaction between pattern-
recognizing receptors expressed in cells of the innate immune
system and pathogen-associated molecular patterns (PAMPs);
likewise, damage-associated molecular patterns (DAMPs) trigger
inflammatory response during conditions of physical stress,
chemical stress, or through harmful metabolites such as biglycan,
fibrinogen, uric acid, mtDNA, among others (50). The shift
from a transient to a chronic inflammatory state affects immune
tolerance, leading to modifications in the functions of tissues
and organs, increasing chronic non-communicable risk for
diseases (50). This chronic effect is known as LGCSI. In
the absence of PAMPs, DAMPs play a role in triggering the
inflammatory process. LGCSI is increased with aging, obesity,
chronic infections (i.e., HIV), presence of metabolic diseases
such as type 2 diabetes mellitus, non-alcoholic fatty liver, and
pollutants (50). Moreover, LGCSI is directly regulated by factors
such as diet, sleep, and sedentary lifestyle, in such a manner
that this interaction is crucial for the development of several
tissue modifications.

NEUROINFLAMMATION

In recent years, the relationship between inflammation and the
brain, mainly the hypothalamus region, has gained attention,
being recognized as neuroinflammation. Interestingly, LGCSI,
neuroinflammation, and obesity share similar factors and
mechanisms (Figure 1).

The immune system and brain are linked by nerve fibers,
soluble mediators (i.e., cytokines), and leukocyte traffic (26).
Cytokines are proteins that regulate the inflammatory and
immune response, produced in response to several pathogens
and other antigens. Cytokines act in autocrine, paracrine, and
endocrine fashion. Several functions are related to cytokines,
such as class switching in B cells, T helper cells differentiation
into Th-1 or Th-2, among other subsets, and phagocytes
activation (51).

Likewise, immune cells can recognize neurotransmitters and
neuropeptides, such as catecholamines and neuropeptide Y.
Still, leukocytes can synthesize and release several neuronal
messengers. Other cells such as microglia and astrocytes could
act as immune cells, mediating the inflammatory process in
the brain. Both are defined as non-neuronal cells, recognized
as determinants of energy homeostasis. Microglia-related effects
appear to be influenced by microglia location on different
anatomical regions (i.e., basal ganglia, substantia nigra, etc.).
Furthermore, microglia profile is primarily dependent on their
interaction with several cell types (i.e., neurons and astrocytes,
etc.) by membrane-bound pattern recognition receptors (PRRs),
such as PAMPs, or by cellular damage (DAMPs) (52).

Astrocytes are defined as a subtype of glial cells, which
comprise most cells in the central nervous system (CNS).
Several functions are related to astrocytes (i.e., neuronal survival,
Blood-Brain Barrier (BBB) regulation, synapses formation,
neuroprotective effect by excessive neurotransmitters removal,
secretion of trophic factors, etc.). However, they do not
conduct electrical signals, but play important roles in numerous
brain-related functions, being the target of treatment of CNS
diseases (53). Additionally, astrocytes interact with numerous
brain cells during neuroinflammation. It is believed that a
bidirectional communication between astrocytes and microglia
modulates CNS-related inflammation by multiple cytokines and
inflammatorymediators (53, 54). Interestingly, microglia appears
to play a dual role in sustaining BBB integrity during systemic
inflammation. However, more studies are needed, in order to
fully elucidate these mechanisms (55).

This crosstalk between the immune system and the brain
is influenced by factors commonly discussed for health
maintenance, such as diet, exercise, and sleep (26). For instance,
in recent years, high energy intake has gained attention as a
mediator of meta-inflammation and this pathway seems to play a
crucial role in LGCSI and neuroinflammation. Therefore, EB has
a prominent role in neuroimmunoendocrine regulation.

The EB regulation occurs through a complex and improved
bidirectional communication between peripheral organs and
hypothalamus (56, 57). Hypothalamus is composed of different
nuclei with specific functions, but the arcuate nucleus of
the mediobasal hypothalamus is recognized for playing a
pivotal role in regulating energy homeostasis (58). Interestingly,
hypothalamus inflammation appears to precede LGCSI in obesity
(56, 59–62). Several studies showed that diet could affect
inflammatory biomarkers related to neuroinflammation.

Thaler et al. (63) showed an increase in the inflammatory
response in rodents’s hypothalamus after 1–3 days of a high-
fat diet (HFD; 60% kcal of fat; 5.24 kcal/g) differently from
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FIGURE 1 | Interconnections among sleep, diet, sedentarism, inflammation, and obesity. Created with BioRender.com.

the inflammatory response observed in peripheral tissues.
Besides, inflammatory biomarkers suggestive of neuronal injury,
microglial accumulation, and reactive gliosis in the hypothalamic
arcuate nucleus were observed in the 1st week of HFD.
These authors also identified that hypothalamic inflammatory
responses temporarily decreased to baseline values, between the
7th and 14th days, with a subsequent increase in inflammatory
markers on the 28th day. These data suggest that sustained
HFD could promote neuroinflammation, despite the attempt
of the brain, through neuroprotective mechanisms, to mitigate
inflammation. The relevance of these findings is also attributed
to the increase in inflammation regardless of the change in the
animals’ body weight in the 1st days of the protocol. Other studies
have observed that the increase in energy intake has determinant
effects on hypothalamic inflammation (58) and, added to the
energy supply, it is believed that saturated fatty acids (SFA)
play a vital role as inflammatory triggers (60). SFAs seem to
be the primary inflammatory trigger on the hypothalamus by
interacting with toll-like receptor 4 (TLR-4) (56).

In 2005, De Souza et al. (59) published the first study
that demonstrated positive association between HFD, obesity,
and hypothalamic inflammation. The authors observed high
expression of c-Jun N-terminal kinase (JNK) and NF-kB (factor
nuclear kappa B), leading to an increase of TNF-alpha (tumor
necrosis factor alpha), IL-6, and IL-1beta levels, impairing insulin
and leptin signaling after 16 weeks of HFD.

Later, other studies demonstrated similar results (60, 61).
Other than triggering inflammatory pathways through TLR-4,
SFAs could promote hypothalamic inflammation by stressing

the endoplasmic reticulum and protein kinase CQ (PKCQ),
which may negatively affect the neurons involved in satiety
response (64). Moreover, leptin also affects microglial activation,
increasing the inflammatory state (56).

Activated glial cells (microglia and astrocytes) produce
inflammatory chemokines and cytokines, affecting neuropeptides
involved in EB regulation (56). Inflammatory cytokines secreted
by microglia induce the expression of CX3C-1 (fractalcin)
by neurons, which potentiates and maintains hypothalamic
inflammation (65). Although little investigated, the increased
expression of CCL5 [Chemokine (C-C motif) ligand 5] seems
to promote the exacerbated activation of hypothalamic MCH
(melanin-concentrating hormone) neurons (56).

DIET, SLEEP, AND PHYSICAL EXERCISE
INFLUENCE ON INFLAMMATION

Western Diet
The termWD derives from one of the changes in lifestyle that has
occurred in the last decades in Westernized societies: an increase
in the consumption of processed foods, “fast food,” convenience
products, snacks, and sugary soft drinks, while fibers, vitamins,
andminerals are lacking. It is important to notice thatWD differs
from HFD, specially concerning the content and profile of fat.
The majority of preclinical reports use HFD composed of rodent
chow plus 45–65% of calories as saturated fat, whereas modern
WDs contain about 33% of calories as fat, and only about one-
third of that is saturated (66, 67). In fact, fat type and amount
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were shown to differentially affect the development of adiposity
in different obese rodent strains (68) and unevenly affect fatty
acid metabolism and contractile function in the heart of Wistar
rats (69). At the same time, both WD and HFD may contribute
to increase inflammation.

WD promotes weight gain due to (i) chronic PEB and (ii)
nutrients that act as antigens, triggering immune activation. The
high amount of sugar and SFA significantly increases energy
intake, leading to increased fat mass. Moreover, the composition
ofWD can increase the odds ofmetabolic disorders development,
such as insulin resistance and poor lipid profile, promoting an
unregulated metabolic environment that will maximize adipose
tissue-related disorders (70, 71).

Shively et al. (66, 72), in a randomized, pre-clinical study,
submitted non-human primates to WD or Mediterranean diet
(MD). After 2.5 years, the authors found that WD, added to
increased fat mass, promoted insulin resistance and hepatic
steatosis, while MD improved lipid profile. This data is essential
to nutrition science, since intervention studies in humans
are methodologically complex. More recently, WD has also
been described as a dietary pattern capable of modifying
the inflammatory environment (73). The relationship between
LGCSI, dietary pattern, and worsened health status are widely
discussed nowadays, especially because several nutrients and
dietetic compounds trigger an immune response (73).

Specific components of WD (i.e., fat, sugar, and dietary
salt) stimulated inflammatory process in studies conducted in
animal models (74) and humans (75, 76). For instance, high
intake of monosaccharides (i.e., glucose and fructose) leads
to hyperglycemia and advanced glycation products (AGEs)
synthesis, recognized by their receptors (rAGE), activating the
NF-kB pathway, kinases, and reactive oxygen species (ROS)
(77). SFAs stimulate TLR-2 and TLR-4, producing inflammatory
cytokines (77). Other mechanisms, mediated by fatty acids,
are also proposed to explain the increase in the inflammatory
process, such as ceramide biosynthesis and NLRP3 (NOD-,
LRR- and pyrin domain-containing protein 3) inflammasome
activation (77). Although recent studies suggest that SFAs do not
physically interact with TLR-4, it is believed that this type of
fat may act on the stability of this receptor, also contributing to
increase the inflammatory process (78).

The impact of WD on the inflammatory process is not
limited to sugar and SFA. This dietary pattern lacks CAM,
fruits, and vegetables (79). Moreover, it is common to verify
high consumption of dietary salt, alcoholic beverages, and
ultra-processed foods (79). This combination maximizes
the inflammatory process through several pathways. Poor
CAM diet can impair the composition of gut microbiota
and its activity, increasing intestinal permeability and the
leaky gut process (80). Poor CAM diet also decreases
the amount of mucus, lowering the intestinal physical
barrier against opportunistic antigens (81–83). The
leaky gut leads to increased bacterial fragments (i.e.,
lipopolysaccharide; LPS) in the bloodstream. LPS, through
specific receptors interacts with several cell types, including
immune cells, increasing the production of inflammatory
cytokines (84).

Moreover, dietary salt, found in large quantities in WD, can
influence the differentiation of CD4+ naive T lymphocytes into T
helper (Th)−17, which is capable of increasing inflammation, as
well as reducing the expression and activity of anti-inflammatory
cells such as regulatory T lymphocytes (85). High dietary salt
intake has been associated with several adverse outcomes that
run through inflammation (86). Other evidences indicate that
zinc deficiency (87), magnesium (88), and omega-3 essential
lipids (precursor of resolvins, maresins, and protectins) (89,
90) also contribute to the imbalance between pro- and anti-
inflammatory mediators.

Western Diet, Adipose Tissue, and Inflammation

In addition to the factors mentioned above, it is crucial to
consider that the effect of WD on inflammation leads to body
composition changes. Per se, fat mass gain promotes LGCSI.
Adipose tissue, recognized as an endocrine organ, plays a vital
role in the inflammatory balance, producing and releasing
several inflammatory and anti-inflammatory cytokines, known as
adipokines (91).

Both adipocyte hypertrophy and dysregulation increase pro-
inflammatory mediators (i.e., IL-6, IL-1β, and TNF-alpha) and
decrease anti-inflammatory mediators (i.e., adiponectin and
omethine-1) (92). WAT hypertrophy mediated by chronic PEB
may promote macrophage phenotypic changes (polarization of
M1 macrophages), increasing the production of inflammatory
cytokines, such as TNF-alpha, IL-6, and chemokines such as
monocyte chemoattractant protein-1 (MCP-1), whose function
is to increase the recruitment of monocytes to adipose tissue.
In contrast, by reducing levels of adiponectin, mitigation
mechanisms of inflammation are minimized (93). Adiponectin
may reduce the inflammatory process mediated by LPS in
macrophages by inhibiting the NF-kB pathway, reducing M1
and increasing M2 polarization (93). Moreover, large adipocytes
lose its ability to store triacylglycerol and display impaired
energy expenditure. WAT dysregulation creates a vicious and
inflammatory cycle. TNF-α increases lipolysis of triacylglycerol
into fat-free acids (FFA), which have affinity for TLR-4 on the
surface of both adipocytes and macrophages, increasing the
inflammatory process via NF-kB (91). Despite the attempt of
the adipose tissue to accommodate excessive consumed energy,
its capacity is limited, resulting in activation of apoptosis
mechanisms. For example, the switch from lipogenesis to
lipolysis, mediated by insulin resistance and lower glucose
uptake, promotes adipocyte death (94). Thus, high FFA
circulation leads to fat accumulation in other organs (i.e.,
muscle, liver, pancreas, heart, and kidney), known as ectopic fat
accumulation, causing peripheral metabolic tissue dysregulation
along with increased LGCSI (95).

Finally, recent evidence suggests that WD effects, which
modulate inflammatory mediator’s gene expression in adipose
tissue, are dependent on the gut microbiota (96). Therefore,
even though mechanisms have not been completely elucidated
so far, the relationship between nutrients, adipose tissue, and
inflammation has been identified as an essential element for
creating interventions capable of mitigating inflammatory-
related diseases.
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Short Sleep Duration
Sleep consists of a natural state necessary for life, being
characterized by high neurophysiological activity (97). In studies
with humans and rodents, the sleep debt (deprivation, restriction,
or fragmentation) caused broad physiological changes that, in
this review, will be directed to immune activation, inflammation,
body composition, and obesity.

Van Leeuwen et al. (98) found that sleep restriction (4 h
of sleep per night) for five nights promoted lymphocytes
immune activation and inflammatory cytokines (i.e., IL-6, IL-
1B, IL-17) synthesis. The authors also noted that inflammatory
mediators remained elevated 2 days after the whole period
of sleep restriction (98). Other published studies corroborate
these findings, reinforcing the effect of sleep debt on the
inflammatory process (99, 100). Short sleep duration and poor
sleep quality increase the activity of the stress response system:
the sympathetic nervous system (SNS) and the Hypothalamus-
Pituitary-Adrenal (HPA) axis. The SNS is responsible for the
release of norepinephrine by nerve fibers and adrenaline by
the adrenal gland, both of which can activate beta-2 adrenergic
receptors in leukocytes, increasing inflammatory cytokines’
expression. Regarding cortisol, despite being a natural anti-
inflammatory hormone, sleep restriction persistently maintains
the activation of HPA axis, promoting cortisol resistance,
reducing its effect in suppressing inflammatory cytokines. The
relationship between sleep and inflammation appears to be
bidirectional, creating a vicious cycle (101).

Global sleep loss, as a result of a 24/7 society, suggests that
people who are chronically sleep-deprived experience LGCSI,
leading to increased fatmass andmetabolic disorders (102). Some
studies suggest that sleep debt is associated with an increase in
inflammatory mediators (103, 104) and obesity (105). Zhou et
al. (106) studied Obstructive Sleep Apnea Syndrome (OSAS), a
pathological sleep disruption model, and verified the negative
effect of patients sleep debt on inflammatory mediators and,
consequently, on health outcomes.

From the bidirectional relationship between obesity and
inflammation, sleep seems to have a crucial role as its mediator
(102). In the last two decades, studies with rodents and
humans have shown that sleep debt promotes several metabolic
dysregulations (107, 108), mediated, at least in part, by an
increase in the inflammatory process (104), insulin resistance
(109), worsening of lipid profile (110), physical inactivity (111),
and increased food intake (112). Therefore, it is understood
that sleep debt is inserted in a matrix of factors that interact
with each other. Nevertheless, it is not simple to define cause
and consequence.

The relationship between sleep debt, inflammatory pathways,
and EB has been identified as an essential obesity mediator
(113). The most consolidated theoretical assumption is
based on the effect of sleep debt on the imbalance between
leptin and ghrelin (homeostatic regulation of food control)
(114, 115) and the deregulation of the hedonic system
(non-homeostatic food control) (116). This deregulation
promotes eating behavior changes (i.e., skipping meals,
snacking, and mealtimes irregularity) (113), supporting
weight gain.

Previous studies identified that sleep debt could increase
ghrelin levels and reduce leptin levels, modifying the activity of
the satiety center in the ventromedial and arcuate nucleus of the
hypothalamus (117, 118). Nedeltcheva et al. (119) identified that
sleep debt (5.5 vs. 8.5 h) for 14 days increased carbohydrate intake
after 7 p.m., mainly due to increased snack intake. St-Onge et
al. (120) found that the short sleep time (4 h per night) for five
nights increased energy and total fat intake, especially saturated
fat. Sleep debt studies have also shown an increase in food
craving, suggesting that EB changes can occur by eating behavior-
related aspects (121, 122). These findings were confirmed in
epidemiological studies (123, 124) and recent systematic reviews,
which have shown that sleep debt promotes worse food choices
(i.e., snacks, sugar, fat) (125, 126). Moreover, indirect pathways
mediated by sleep debt can also affect food intake. Sleep debt
elevates anxiety and depression symptoms, which modify food
intake (127). Deregulation of these systems can lead to weight
gain by high-energy intake. Besides, stress response systems (i.e.,
SNS and HPA axis) are activated in response to sleep debt,
which can modify emotional aspects and the way of dealing with
the stressful environment, leading to changes in eating behavior
(128). Likewise, Choi et al. (129) found that sleep debt increases
stress perception, a critical factor for high energy food intake,
especially more palatable foods (i.e., sweet and fat-rich foods)
promoting comfort and pleasure, known as “comfort food” (130).

Added to weight gain and overnutrition, which promote
LGCSI, sleep debt increases processed food and WD nutrients
(sugar and SFA) intake, maximizing the inflammatory process.
Finally, sleep debt can promote a more sedentary lifestyle,
decreasing TEE, PEB, and LGCSI state (131).

Physical Exercise
Regular PE is a crucial factor for human health. Several
mechanisms are proposed to explain PE-related health benefits.
PE increases REE and TEE (132). Still, PE (especially endurance
exercise) can promote muscle-related metabolic adaptations
increasing FFA uptake and oxidation (133). Additionally, both
acute and regular strength training affect energy expenditure. It is
suggested that strength training acute increases in REE last 24-h
after exercise and that chronic raises in REE occur due to skeletal
muscle hypertrophy (134, 135). Muscle mass is one of the most
variable components of fat-free mass (FFM), which represents
∼22.5% of REE (136), reinforcing its importance for EB.

PE-related effects in mitochondrial biogenesis and gene
expression of several proteins of lipid metabolism (i.e.,
lypolisis, FFA transportation, its musculoskeletal uptake,
mitochondrial internalization, and beta-oxidation) are
extensively well-described in the literature (133).

High muscle FFA oxidation capacity prevents accumulation
of ceramides and other compounds related to insulin resistance
and inflammatory state, especially in overnutrition situations
(137). PE-related benefits are not limited to the factorsmentioned
above. More recently, researchers verified that PE can modify
shape and activity of gut microbiota. Products of energy
metabolism originating from the skeletal muscle (i.e., lactate) can
reach the gastrointestinal tract and trigger positive gutmicrobiota
changes (138).

Frontiers in Nutrition | www.frontiersin.org 6 September 2021 | Volume 8 | Article 705545

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Marques et al. Modern Lifestyle Consequences for Obesity

Moderate-intensity PE improves immune function, increases
antioxidant defense mechanisms, and decreases ROS production
(139). PE is temporarily able to promote immune cells (i.e.,
lymphocytes) redistribution to peripheral tissues (i.e., lungs and
intestines), increasing immunocompetence (140). Regular PE
also promotes an anti-inflammatory environment, decreasing the
odds of developing inflammatory-related diseases (139).

When stimulated by PE, skeletal muscle is recognized as an
endocrine organ, synthesizing and releasing several cytokines,
named myokines (i.e., irisin, IGF-1, FGF2, IL-3, IL-6, IL-8, IL-10,
IL-15, IL-1ra) (141). Although the mechanisms are not entirely
elucidated, these myokines play a pivotal role in inflammatory
balance (142). For example, IL-6, a pleotropic hormone-like
cytokine, influences fat and glucose metabolism during exercise,
especially in glycogen-depleted conditions. Previous studies
showed that IL-6 mediates glucose uptake through adenosine
monophosphate kinase (AMPK). AMPK is an energy cell sensor
that recognizes intracellular low-energy levels (143), improving
lipolysis, glycogenolysis, gluconeogenesis, and fat and glucose
oxidation (144, 145). IL-6 energy-regulated effect is essential to
improve glycemia and lipid profile during exercise (146).

The main IL-6 anti-inflammatory effect is related to IL-
10 increases. IL-6 triggers IL-10 production by immune cells,
supporting an anti-inflammatory state (147, 148). Recently,
Alizaei et al. (149) conducted a systematic review and meta-
analysis and found that both aerobic and strength exercise can
reduce inflammatory biomarkers (i.e., TNF-α and C-reactive
protein) and increase IL-10. The increase in IL-10 occurs mainly
in response to endurance exercises.

Moreover, IL-6 positive anti-inflammatory effects also appear
to be related to WAT decrease. Recently, Wedell-Neergaard et al.
(150) verified that IL-6 is indispensable to PE-related effect on
visceral adipose tissue (VAT). These authors offered the subjects
tocilizumab (IL-6 inhibitor) and placebo in a 12-week cycling
exercise protocol. Exercise plus tocilizumab group did not reduce
VAT, suggesting that VAT-lipolysis is IL-6 dependent.

Moreover, irisin, a hormone-like myokine, product of
fibronectin type III domain-containing protein 5 (FNDC5) from
skeletal muscle in response to PE, acts on WAT, mediating the
browning process (151). Brown adipose tissue (BAT) increases
energy expenditure, improves metabolic efficiency, and reduces
insulin resistance (152, 153). Several studies reinforce the
BAT role in health maintenance, improving several metabolic
biomarkers. For example, BAT contributes to glucose and dietary
fatty acids uptake; moreover, BAT activity appears to be protected
against conditions linked to WAT excess (154).

Other mechanisms are described in attempt to explain the
broad PE anti-inflammatory pathways, including (i) containment
of the inflammatory process by reducing VAT, increasing
circulating levels of adiponectin, reducing monocytes infiltration
into adipose tissue, and diminishing macrophage polarization to
M1 phenotype in WAT (155, 156); (ii) reduced expression of
TLRs in immune cells and other tissues (i.e., adipose tissue); (iii)
increased adrenaline, cortisol, growth hormone, and prolactin
levels, which have an immunomodulatory role due to the ability
to influence leukocyte functioning and traffic; (iv) elevation
of catecholamines circulating level, inhibiting LPS-induced

inflammatory effect (156). It is worth mentioning that Hill et al.
(157) observed that different intensities of PE may elicit different
cortisol responses (the threshold phenomenon). Moderate to
high intensity exercise provoked increases in circulating cortisol
levels (specially glycogen depletion and IL-6 rise), while low
intensity exercise (40% maximal oxygen uptake) did not result
in significant increases in cortisol levels. Moreover, regular PE
could decrease inflammatory trigger molecules release in the
resting state and in response to exercise (i.e., IL-6). This training
adaptation effect could explain, at least in part, the lowest levels of
anti-inflammatory agents (i.e., cortisol) in the resting state (158).

Finally, although the mechanism is not fully elucidated,
several studies have identified that skeletal muscle is one
of the main organs responsible for resolving inflammation.
Furthermore, several cross-sectional and longitudinal studies
verified negative association between muscle mass, morbidity,
and mortality (159–162).

INFLAMMATION, NEUROINFLAMMATION,
AND OBESITY: RELATIONSHIP, BETWEEN
DIET, SLEEP, AND PHYSICAL EXERCISE

WD and sleep debt promote an inflammatory state, as
described above. In contrast, PE can counterbalance LGCSI.
Despite mechanistic similarities, the interaction between these
factors is little explored, especially in neuroinflammation.
Thus, we explored WD, sleep debt, and PE-related effect
on neuroinflammation and how they affect obesity. LGCSI,
neuroinflammation, and obesity share several similar pathways,
but they are usually discussed separately. It reinforces our idea of
discussing these factors jointly.

Considering the pivotal role of inflammatory mediators
on hypothalamus EB deregulation, we discussed that obesity
and neuroinflammation appear to share a bidirectional
relationship. Beyond hormones, the hypothalamus is also
sensitive to nutrients. Leptin and insulin, which play essential
metabolic roles, reach the hypothalamus, activating sacietogenic
neuropeptides. However, in obesity, the hypothalamus is
resistant to these hormones, justifying the increase in energy
intake (163, 164). Neuroinflammation leads to insulin and leptin
resistance in the hypothalamus (165, 166). Additionally, high
leptin levels also contribute to maintaining the inflammatory
process (167). Recent studies conducted with rodents suggest
that reduced neuroinflammation increases the sensitivity to
leptin in the hypothalamus, reducing food intake and weight
gain (168). In the last years, several studies verified the effect
of neuroinflammation on food intake regulation pathways and
how HFD can increase inflammatory mediators in the brain.
Zhang et al. (58) found that high expression of inhibitor of
nuclear factor kappa-β (IKK-β) in the hypothalamus affects
food intake. The authors also verified that IKK-β suppression
mitigates weight gain and leptin/insulin resistance in rats
submitted to HFD. Likewise, Posey et al. (61) found that, after
administering an IKK-β inhibitor in rats, insulin sensitivity in
the hypothalamus increased, reducing food intake and body
weight during HFD.
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Kim et al. (169) found that HFD-fed mice and their
offspring showed increased BBB disruption, probably
caused by changes in the tanycyte population (a specialized
ependymal cell in the brain) and expression of transporters.
Additionally, astrocytes and microglia, which are important for
maintaining BBB integrity, supporting neuronal metabolism,
and preventing/responding to local tissue injury, have increased
activation in the hypothalamus of rodents and humans with
HFD consumption (170). Another previous study also reported
the increase in BBB permeability in response to HFD (171).
Since BBB is a critical regulatory interface in the communication
between the peripheral tissues and the CNS (172), disruptions
could increase inflammatory mediators access to the CNS.
Still, Jin et al. (173) verified that astrocyte-specific Myeloid
differentiation primary response 88 (MyD88) knockout mice
were resistant to HFD-induced obesity and to leptin action,
suggesting that the deletion of hypothalamic inflammatory
pathways (i.e., MyD88) can mitigate the adverse changes caused
by HFD (174).

These classic studies reinforce the role of inflammation in
increasing body weight and metabolic perturbations. Beyond
SFAs-related effects on neuroinflammation, stress and anxiety
responsiveness appear to be mediated by SFA. Both stress and
anxiety trigger high-energy-density foods intake (175, 176).
This relationship contributes to a better understanding of this
bidirectional mechanism between inflammation and energy
intake (177).

Negative effects of WD on gut microbiota, intestinal
permeability, LPS-mediated immune activation, and systemic
inflammation have been considered as critical pathways for
microglia activation and induction of neuroinflammation (178).
Microglia, responsible for cytokines release in the brain
(similar to macrophages), is responsive to LPS by expressing
receptors for PAMPs, increasing the M1 phenotype, and
producing inflammatory cytokines (179, 180). Observational
studies that associate dietary patterns and brain outcomes have
increased in recent years (181, 182). Dietary patterns with
higher amounts of nutrients obtained from animal sources
(animal protein, cobalamin, cholesterol, and omega-6) increase
circulating inflammatory biomarkers. In contrast, plant-based
dietary patterns decrease inflammatory markers, mainly in
people with a less healthy lifestyle and sleep disorders (183).
These data suggest, at least in part, the WD pivotal food role
on inflammation, especially in individuals who are more prone
to systemic inflammation, usually with a sedentary lifestyle and
poor sleep quality.

Previous studies verified high levels of inflammatory
biomarkers after sleep debt protocols (184). Interestingly, it
is suggested that the increased inflammatory state induced
by poor sleep also occurs by changes in gut microbiota and
adipose tissue (185). The synergy between the immunological
system and sleep is complex and it has several mechanisms to
explain this bidirectional relationship (26). Sleep debt effects
on neuroinflammation have been described previously (186).
More recently, Ho et al. (187) verified that sleep fragmentation
protocol (18 h of sleep fragmentation per every 24-h period)
plus HFD promote microglial activation. Three days of exposure

to sleep fragmentation or HFD increased Iba-1-ir (Ionized
calcium binding adaptor molecule 1 immunoreactivity) in the
arcuate nucleus and the ventromedial hypothalamus. Still, after 9
days, Iba-1-ir remained elevated in the arcuate nucleus in sleep
fragmentation plus HFD group, suggesting an interactive effect
of both factors.

CNS permissiveness also increases in response to sleep
debt. Studies have shown that sleep disturbances increase BBB
permeability (188, 189). Its high permeability, also favored
by LGCSI, may increase immune-activating substances (i.e.,
PAMPs and DAMPs) passage and inflammatory cytokines
release in the CNS (190). Moreover, sleep debt (18 h of
fragmentation for 21 days) triggered neuroinflammation,
promoting anxiogenic response, such as high-energy low-
quality food intake (191). HFD and sleep debt share similar
neuroinflammatory mediating mechanisms, leading to
insulin/leptin resistance and anxiety, crucial for weight gain
and obesity (192). Amiri and Behnezhad (193) conducted a
systematic review and meta-analysis and identified 10 and 30%
increased anxiety symptoms odds in overweight and obese
subjects, respectively. High anxiety levels also occur in sleep debt
(194). This relationship is even more interesting when obesity
and sleep loss increase emotional eating (dimension of eating
behavior stimulated by anxiety), an essential obesity-related
factor (195).

Chronic cortisol exposure as a result of sleep debt could
increase the mesolimbic reward system, increasing palatable food
intake (196). Cortisol also plays a pivotal role in leptin and ghrelin
signaling, which may affect EB (197, 198). Also, cortisol reactivity
is a crucial factor that modulates eating behavior. For instance,
Herhaus et al. (199) observed that obese subjects with high
cortisol reactivity demonstrated a significantly higher food intake
than subjects with low cortisol reactivity. Interestingly, they did
not verify this effect in lean subjects (199). Finally, cortisol
increases blood glucose and adiposity, modulating metabolic
pathways related to energy expenditure, energy intake, and body
composition (197).

Considering PE in the discussion of neuroinflammation
is essential. In response to muscular contractions, myocytes
produce and release several molecules, named myokines (200).
IL-6 myokine upregulates the expressions of anti-inflammatory
cytokine IL-10 and the levels of IL-1 receptor antagonist (IL-1Ra)
(45). It has been shown that long-term moderate-intensity PE
can increase the production and secretion of IL-10 in the skeletal
muscles (201, 202). When IL-10 interacts with its receptor
on microglia, it enhances the suppressor of cytokine signaling
(SOCS) 3, an inhibitor of cytokine-induced signaling responses,
resulting in inhibition of microglial activation, thus acting against
the inflammatory state (203).

Microglia polarization on different phenotypes is mainly
responsible for the hypothalamus inflammatory state. Lower
microglia IL-10 levels favors polarization to M1 phenotype,
increasing inflammation (180). Other studies reinforce the
pivotal IL-10-blunted inflammatory effect in microglia (180).
IL-10 could interact with astrocytes and neurons in the
CNS, decreasing inflammatory mediators (180). PE can also
stimulate the expression of IL-1Ra in the CNS, which has a
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FIGURE 2 | Consequences of Western diet, sleep debt, and physical exercise on inflammation and obesity. Created with BioRender.com. Legend: ↑, high/increase;

↓, low/decrease; SFA, saturated fatty acids; LPS, lipopolysaccharide; AGES, advanced glycation products; ROS, reactive oxygen species; NLRP3, NOD-, LRR- and

pyrin domain-containing protein 3; IKKβ, inhibitor of nuclear factor kappa-B kinase subunit beta; MyD88, Myeloid differentiation primary response 88; BBB,

Brain-Blood-Barrier; PAMPs, pathogen-associated molecular patterns; DAMPs, damage-associated molecular patterns; IL-6, Interleukin-6; TNF-α, tumor necrosis

factor-alpha; IL-10, Interleukin-10; BDNF, Brain-derived Neurotrophic Factor; KYNA, kynurenic acid; VAT, visceral adipose tissue; TDEE, total daily energy expenditure;

TLR-4, toll-like receptor 4.

higher affinity for the IL-1R than IL-1α or IL-1β. Blocking
the binding of IL-1 to its receptor interrupts the pro-
inflammatory IL-1 signaling cascade and related microglial
activity (204, 205). Therefore, exercise can upregulate the
expression of anti-inflammatory cytokines and inhibit microglial
activation.

Although less elucidated to the present day, PE can also
contribute to neuroinflammation control by the kynurenine
(KYN) pathway. The inflammatory state can modify tryptophan
metabolism, leading to the formation of KYN. KYN can
take two paths, kynurenic acid (KYNA) or quinolinic
acid (QUIN). While KYNA has positive effects, such as
inflammation counterbalance, QUIN increases the oxidative
process and neurotoxicity. The inflammatory environment
appears to be an essential mediator for conversion of
KYN to QUIN since high TNF-alpha levels increase QUIN
production (206). On the other hand, PE promotes the
conversion of KYN to KYNA, with neuroprotective-related
effects.

PE also improves BBB permeability, increasing gene
expression of tight junctions (206). Moreover, the role of Brain-
derived Neurotrophic Factor (BDNF) in inflammatory control
has been discussed (207). While WD and sleep debt can decrease
BDNF levels and increase oxidative stress (208), BDNF release by
PE contributes to inflammatory control, although more robust
evidence is needed (209). Low BDNF levels appear to be related
to hyperphagia, weight gain, and obesity. Still, some studies
verified that BDNF administration restores regular food intake
(210), reinforcing that BDNF can affect energy homeostasis and
body composition; but, for now, despite the motivating studies,
the evidences are still contradictory (211) (Figure 2).

FUTURE DIRECTIONS AND CLINICAL
PERSPECTIVE

The sleep-diet-exercise triad, therefore, should be analyzed in
conjunction in future research. Few studies have evaluated these
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three factors simultaneously and observed obesity- or CNS-
related changes in humans. One of them was conducted by
Wickham et al. (212). They named this triad “The Big Three
Health Behaviors” and investigated the differential and higher-
order associations between sleep, physical activity, and dietary
factors as predictors of mental health and well-being in young
adults. Although their findings suggest that sleep quality was
the strongest predictor of depressive symptoms and well-being,
they state that physical activity and diet are secondary, but still
significant factors. Accordingly, Martinez et al. (213). examined
the interplay between sleep, diet, and physical activity on obesity-
related parameters, with more robust methods, in a 2-year cohort
study of Mexican American children. They found that longer
sleep duration was associated with lower body weight in baseline,
1- and 2-year follow-up. Also, children with higher physical
activity levels had lower body weight. Moreover, children with
higher energy intake had higher body weight at a 2-year follow-
up. Their findings suggest that longer sleep duration plays a
consistent and protective role against childhood obesity and
that moderate-to-vigorous physical activity and health energy
intake are important independent factors for obtaining a healthy
weight. It is expected that new evidence become available soon,
due to advances in techniques for the objective analysis of
energy expenditure, sleep, dietary patterns, PE practice, body
composition, and brain-related parameters. Still, the progress of
omic sciences (i.e., genomics, transcriptomics, proteomics, or
metabolomics) has contributed to a deeper understanding of
the mechanisms involved in the chronic inflammatory process
(i.e., gut microbiota, gut-derived metabolites, cellular residues
with inflammatory trigger features, etc.), its consequences,
and its main predictors. Clinicians must understand that this
“blend factor effect” is always present in the context of obesity
and should employ this more comprehensive interpretation to
perform enhanced interventions. Clinical practices which do
not contemplate all the factors may lead to deficient preventive
actions or poor treatment outcomes.

CONCLUSION

WD, sleep debt, and PE regulate the inflammatory state. WD
and sleep debt similarly maximize the inflammatory mediators,
energy intake, weight gain, and obesity. On the other hand,
PE increases energy expenditure and metabolic efficiency
and counterbalances inflammatory mediators, promoting
weight gain and obesity resistance. Systemic inflammation
and neuroinflammation in obesity are complex responses
and share multifactorial features, hindering the establishment
of just one mechanism. Future studies should consider that
multi-interaction factors contribute to the inflammatory state,
making way for further discussions on more strategies capable of
regulating the inflammatory process.
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