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Conventional functional magnetic resonance imaging (fMRI) technique known as gradient-recalled echo (GRE) echo-planar
imaging (EPI) is sensitive to image distortion and degradation caused by local magnetic field inhomogeneity at high magnetic
fields. Non-EPI sequences such as spoiled gradient echo and balanced steady-state free precession (bSSFP) have been proposed
as an alternative high-resolution fMRI technique; however, the temporal resolution of these sequences is lower than the typically
used GRE-EPI fMRI. One potential approach to improve the temporal resolution is to use compressed sensing (CS). In this study,
we tested the feasibility of k-t FOCUSS—one of the high performance CS algorithms for dynamic MRI—for non-EPI fMRI at
9.4T using the model of rat somatosensory stimulation. To optimize the performance of CS reconstruction, different sampling
patterns and k-t FOCUSS variations were investigated. Experimental results show that an optimized k-t FOCUSS algorithm with
acceleration by a factor of 4 works well for non-EPI fMRI at high field under various statistical criteria, which confirms that a
combination of CS and a non-EPI sequence may be a good solution for high-resolution fMRI at high fields.

1. Introduction

Functional magnetic resonance imaging (fMRI) has had a
wide impact in both the research and clinical community
since its development. In conventional fMRI studies, positive
blood oxygen level-dependent (BOLD) response signal is
used as a measure to map neural activity in the brain [1],
and the most common MR pulse sequence for acquiring
BOLD fMRI images has been gradient-recalled echo (GRE)
echo-planar imaging (EPI) due to its fast acquisition speed
and high sensitivity to BOLD effect. However, this tech-
nique is susceptible to local magnetic field inhomogeneity
and becomes sensitive to image distortion and degradation
especially at highmagnetic fields. Non-EPI sequences such as
spoiled gradient echo or balanced steady-state free precession
(bSSFP) can be used as an alternative tool for fMRI [2–9];
however, the major drawback of using these sequences for

fMRI studies is the low temporal resolution compared to the
typically used GRE-EPI.

One solution to overcome the low temporal resolution
of non-EPI sequences is to adopt parallel imaging technique
[10–12]. Although proven useful, the usage of parallel imaging
results in reduced signal-to-noise ratio (SNR) due to the
acceleration factor, the geometric factor of the different coil
elements, and the 𝑘-space filling trajectory.Theother solution
to improve the temporal resolution of non-EPI sequences is
to use compressed sensing (CS) [13–15]. CS theory states that
it is possible to reconstruct an aliasing-free image even at
sampling rates dramatically lower than the Nyquist sampling
limit, as long as the nonzero signal is sparse and sampled
incoherently. These requirements can be well satisfied in
dynamic MRI, since arbitrary trajectories can be imple-
mented to incoherently sample data and dynamicMR images
can be sparsified due to high temporal redundancy [16, 17].
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Recently, CS theory was successfully applied to dynamicMRI
in a new algorithm called k-t FOCUSS by employing random
sampling pattern in 𝑘-t space and by using various sparsifying
temporal transforms such as Fourier transform (FT) and
Karhunen-Loéve transform (KLT) to utilize the temporal
redundancies [16, 18].

Though CS theory has gained attraction for its vast
potential for MRI application, CS had been successfully
applied to fMRI in only a few studies in the past. In most
of the studies, CS was applied to GRE-EPI fMRI: ordinary
GRE-EPI [19, 20] and spiral scan GRE-EPI [21]. Despite its
application, GRE-EPI is generally known to suffer from the
contribution of magnetic field inhomogeneity, which can
degrade the performance of CS algorithms. Recently, it has
been reported that application of CS to GRE-fMRI may
increase statistical performance of activation detection [22].
Non-EPI sequences such as bSSFP or GRE may work better
withCS algorithms thanGRE-EPI, since the sequences utilize
different RF excitations for each TR.

The signal dynamics of steady-state sequences such as
bSSFP are known to bemore complicated than other conven-
tional sequences and may need careful examination prior to
the application of CS to real data. Also, due to the large degree
of freedom in CS application, it is important to understand
the artifacts and effects related to CS reconstruction without
any confounding factors from true physical artifacts. Thus,
an extensive simulation study prior to actual CS applica-
tion is required to reconstruct data appropriately, preserve
fMRI signal details, and eventually create a general CS
framework.

In this study, we tested the feasibility of CS for non-
EPI fMRI at 9.4T using the model of rat somatosensory
stimulation. Fully sampled data with high-resolution spoiled
gradient echo and 4 independent pass-band bSSFP fMRI each
with different phase-cycling angles (0∘, 90∘, 180∘, and 270∘)
underwent retrospective downsampling and reconstruction
using k-t FOCUSS algorithm. Various sampling patterns
and sparsifying transforms such as temporal FT and KLT
were employed to systematically study the effects of different
𝑘-space sampling pattern and the effects of choosing a
different CS reconstruction algorithm in high field CS fMRI.
The baseline image quality and sensitivity and specificity
of activation maps from data with CS reconstruction were
compared to those from the original full-sampled data. The
potential for improving the temporal resolution of non-EPI
fMRI at high magnetic fields without sacrificing quality of
fMRI activation maps is demonstrated in this paper.

2. Methods

2.1. Animal Preparation and Data Acquisition. Three male
Sprague-Dawley rats weighing 250∼450 g (Charles River
Laboratories, Wilmington, MA, USA) were used with the
approval from the Institutional Animal Care and Use Com-
mittee (IACUC) at University of Pittsburgh. Animal prepa-
ration was the same as previously published [7]. Briefly, the
rats were intubated for mechanical ventilation (RSP-1002,
Kent Scientific, CT, USA). The catheters were inserted in

the femoral artery and femoral vein for blood gas sampling
and fluid administration (5% dextrose in saline infused at
0.4mL/hr), respectively. Once the surgery was finished, the
isoflurane level was maintained at 1.4%. Ventilation rate and
volumewere adjusted based on blood gas analysis results (Stat
profile pHOx; Nova Biomedical, MA, USA).

Electrical stimulation was applied to either the right or
left forepaw using two needle electrodes inserted under the
skin between digits 2 and 4 [23]. Stimulation parameters for
activation studies were as follows: current = 1.2∼1.6mA, pulse
duration = 3ms, repetition rate = 6Hz, stimulation duration
= 15 s, and interstimulation period = 3min.

All experiments were carried out on a Varian 9.4T/31 cm
MRI system (Palo Alto, CA) with an actively shielded
gradient coil of 12 cm inner diameter, which operates at a
maximum gradient strength of 40G/cm and rise time of
120 𝜇s. A homogeneous coil and a surface coil (NovaMedical,
Wilmington, MA) were used for RF excitation and reception,
respectively. Localized shimming was performed with point
resolved spectroscopy [24] over a coronal slab (∼12 × 6
× 6mm3) covering forelimb somatosensory cortex to yield
a water spectral linewidth of 20∼30Hz. Spoiled gradient
echo (which is denoted by GRE throughout this paper) and
pass-band bSSFP studies were performed with TR/TE =
20/10ms and 10/5ms, respectively. The bSSFP fMRI studies
were performed with four different phase-cycling angles (𝜃)
of 0∘, 90∘, 180∘, and 270∘ (which are denoted by PC 0,
PC 1, PC 2, and PC 3, resp., throughout this paper). The
resolution parameters were the same for all studies: matrix
size = 256 × 192, FOV = 2.4 × 2.4 cm2, number of slice =
1, and slice thickness = 2mm. Flip angles for all the bSSFP
and GRE fMRI studies were 16∘ and 8∘, respectively. Forty-
eight measurements were acquired for each bSSFP fMRI
study: 16 during prestimulus baseline, 8 during stimulation,
and 24 during the poststimulus period. These numbers of
measurements were reduced by half for GRE fMRI study, in
order tomaintain the same spatial resolution. Four bSSFP and
one GRE fMRI studies composed one full set and each full set
was repeated 15 to 25 times for averaging per subject rat.

2.2. 𝑘-Space Sampling Patterns. The initial data to undergo
CS reconstruction is important to guarantee high perfor-
mance of CS algorithms. All fMRI studies in this work were
conducted with block design paradigm; thus downsampling
was considered in the 𝑘-𝑡 (i.e., 𝑘-space-temporal) domain
to utilize CS algorithms optimized for exploiting temporal
redundancy in dynamic MRI. In order to determine the
optimal sampling pattern for CS application on fMRI data
acquired at high field, four different sampling patterns were
considered (Figures 1(b)–1(e)): sampling masks were gener-
ated using uniform random sampling (Figure 1(b)), Gaussian
random sampling (Figure 1(c)), a mixture of Gaussian and
uniform random sampling (Figure 1(d)), and a mixture of
Gaussian and uniform random sampling with full sampling
of 𝑘-space center 1 line (Figure 1(e)). The generated sampling
masks were applied to each full-sampled 𝑘-space dataset for
retrospective downsampling before the CS reconstruction
procedure.
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Figure 1: Masks of five different sampling patterns with downsampling factor of 4. Patterns of (a) full sampling of 𝑘-space center, (b) uniform
random sampling, (c) Gaussian random sampling, (d) mixture of Gaussian and uniform random sampling, and (e) mixture of Gaussian and
uniform random sampling with full sampling of center 1 line are shown. All masks are generated to sample only a quarter of the total data
(total size of the data indicated by dashed box). Notice that no 𝑘-space high frequency information is included in (a) and (c).

In this study, a fixed downsampling factor of 4was applied
to all datasets: only a quarter of the original 𝑘-space data
was used for CS reconstruction. Each 2D sampling mask was
generated for each time frame and a fixed number of 𝑁PE/4
lines were sampled along the phase-encoding (PE) direction
to maintain the downsampling factor of 4 (where 𝑁PE indi-
cates the total number of PE lines). Note that bSSFP or GRE
sequences utilize differentRF excitations for eachTR; thus the
acceleration factor depends on the total number of PE lines
sampled.The uniform random sampling mask was generated
by sampling the PE lines according to a uniform probabil-
ity distribution. The Gaussian random sampling mask was
generated by sampling the PE lines according to a Gaussian
probability distribution of 𝑃(𝑘

𝑦
) = 𝐴𝑒

−(𝑘𝑦)
2
/2𝜎

2

, with 𝜎 =
𝑁PE/9 (where 𝑘𝑦 indicates 𝑘-space PE line number index in
the range of −95 to 96, 𝜎 indicates standard deviation, and 𝐴
indicates theweighting factor whichwas adjusted tomake the
equation a valid probability density function).Themixture of
Gaussian and uniform random samplingmask was generated
by sampling𝑁PE/6 number of PE lines according to the above
Gaussian probability distribution and subsequently sampling
𝑁PE/12 number of PE lines according to a uniform random
probability distribution (𝑁PE/6 + 𝑁PE/12 = 𝑁PE/4 lines
were sampled in total).Themixture of Gaussian and uniform
random sampling with full sampling of 𝑘-space center 1 line
was generated similarly, but with continuous sampling of the
𝑘-space center 1 line (i.e., 𝑘

𝑦
= 0) for each time frame along

the temporal dimension. Pseudocodes for generation of the
sampling patterns are provided as follows.

Pseudocode for Generation of 𝑘-Space Downsampling Pattern
on 2D Time-Series MRI Data.

For downsampling factor (𝐷), one has the following.

(A) Uniform Random Sampling Mask
(1) Generate uniformprobability distribution along

the PE dimension of 𝑘-space data.
(2) Sample𝑁PE/𝐷 number of PE lines according to

the uniform probability distribution.
(3) Repeat steps (1)-(2) for each time frame.

(B) Gaussian Random Sampling Mask
(1) Define 𝜎 in relation to𝑁PE.
(2) Generate Gaussian probability distribution
𝑃(𝑘
𝑦
) = 𝐴𝑒

−(𝑘𝑦)
2
/2𝜎

2

along the PE dimension of
𝑘-space data.

(3) Sample𝑁PE/𝐷 number of PE lines according to
the Gaussian probability distribution.

(4) Repeat steps (1)–(3) for each time frame.

(C) Mixture of Gaussian and Uniform Random Sampling
Mask (Gaussian : Random = 𝑎 : 𝑏)
(1) Define 𝜎 in relation to𝑁PE.
(2) Generate Gaussian probability distribution
𝑃(𝑘
𝑦
) = 𝐴𝑒

−(𝑘𝑦)
2
/2𝜎

2

along the PE dimension of
𝑘-space data.

(3) Sample (𝑁PE/𝐷)×(𝑎/(𝑎+𝑏)) number of PE lines
according to the Gaussian probability distribu-
tion.

(4) Generate uniformprobability distribution along
the PE dimension for the remaining PE lines.

(5) Sample (𝑁PE/𝐷)×(𝑏/(𝑎+𝑏)) number of PE lines
according to the uniform probability distribu-
tion.

(6) Repeat steps (1)–(5) for each time frame.
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(1) for 𝑘 = 1, . . . , 𝑁FOC1 do
(2) Compute the weighting matrixW(𝑘)
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(3) Perform𝑁CG1 iterations of CG to obtain q(𝑛) from the following minimization problem:
q(𝑘) = argmin

q
{
󵄩󵄩󵄩󵄩󵄩
y − Ax(0) − AW(𝑘)q󵄩󵄩󵄩󵄩󵄩

2

2

+ 𝜆‖q‖2
2

} (∗∗)
(4) Set x(𝑘) = x(0) +W(𝑘)q(𝑘).
(5) end for
(6) Set X(𝑘) = unvec(x(𝑘)).
(7) Set Û = X(𝑘)Φ𝐻.

Algorithm 1: Û = ktFOCUSS(𝑝
1

, 𝜆
1

, 𝑁CG1, 𝑁FOC1,Φ, x(0)).

Inputs: 𝑝, 𝜆,𝑁CG,𝑁FOC, and x(0).
(1) SetΦ as temporal Fourier Transform.
(2) Set Û = ktFOCUSS(𝑝

1

, 𝜆
1

, 𝑁CG1, 𝑁FOC1,Φ, x(0)).
(3) for 𝑘 = 1, . . . , 𝑁KLT do
(4) SetΦ← eig(Û𝐻Û).
(5) Set Û = ktFOCUSS(𝑝

2

, 𝜆
2

, 𝑁CG2, 𝑁FOC2,Φ, x(0)).
(6) end for

Algorithm 2: 𝑘-𝑡 FOCUSS with Karhunen-Loéve transform.

(D) Mixture of Gaussian and Uniform Random Sam-
pling Mask with Full Sampling of Center 1 Line
(Gaussian : Random = 𝑎 : 𝑏)

(1) Sample 1 PE line from the 𝑘-space center (e.g.,
𝑘
𝑦
= 0).

(2) Repeat all steps from (C)with𝑁PE/𝐷−1number
of PE lines.

The Gaussian probability distribution was considered as
a derivative form of 𝑘-space center-weighted downsampling
pattern, with stronger weighting on 𝑘-space low-frequency
information. Sampling using a mixture of Gaussian and
uniform random probability distributions was considered as
a further variation preserving information at both high and
low frequencies. The inclusion of 𝑘-space center 1 line was
considered as an option to preserve the lowest frequency
information, since the center of 𝑘-space contains most of
the contrast information for an MR image. For comparison
analysis, original full-sampled data was used as the ground
truth to study the effect of CS reconstruction, and a simple
quarter downsampled mask with full sampling of 𝑘-space
center (Figure 1(a)) was used as a control. Throughout the
paper, uniform random sampling pattern, Gaussian random
sampling pattern, mixture of Gaussian and uniform random
sampling pattern, and mixture of Gaussian and uniform
random sampling pattern with full sampling of center 1

line will be denoted by PatternR, PatternG, PatternGR, and
PatternGRC1, respectively.

2.3. CS Algorithms. Two variations of k-t FOCUSS algo-
rithms, temporal FT and KLT (which will be further denoted
by Algorithms 1 and 2, resp.), were used in this study (see the
Appendix for detailed description of k-t FOCUSS algorithms)
[16].The covariancematrix for Algorithm 2was defined to be
constructed from an initial reconstruction using Algorithm 1
with preliminary parameter of𝑁FOC1 = 2 for each dataset:

C = Û𝐻Û, (1)

where Û = [û
1
, û
2
, . . . , û

𝑇
] indicates the reconstruction

from Algorithm 1 (please refer to the Appendix for detailed
definition of Û). The eigenvectors of the covariance matrix
were further used as the KL transform (Φ) and𝑁KLT = 1 was
used to updateΦ once.

2.4. k-t FOCUSS Parameters. For both algorithms, weighting
matrix power factor (𝑝) of 0.5 was used to find the sparse
solution equivalent to the 𝑙

1
solution of CS [16]. Conjugate

gradient (CG) iteration number (𝑁CG) of 30 was considered
sufficient and was used for both Algorithm 1 (𝑁CG1) and
Algorithm 2 (𝑁CG2), based on previous application with k-t
FOCUSS [25]. Regularization factor (𝜆) of 0.1 was used for
Algorithm 1 (𝜆

1
) [16] and 0.01 was used for Algorithm 2 (𝜆

2
)

[22].
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Both Algorithms 1 and 2 were optimized based on
variation in the FOCUSS iteration number (𝑁FOC) param-
eters (i.e., 𝑁FOC1 and 𝑁FOC2, resp.). The following stopping
criterion is used to determine the optimal 𝑁FOC value from
each dataset in training phase:

󵄩󵄩󵄩󵄩󵄩
Û(𝑘) − Û(𝑘−1)󵄩󵄩󵄩󵄩󵄩𝐹
󵄩󵄩󵄩󵄩󵄩
Û(𝑘)󵄩󵄩󵄩󵄩󵄩𝐹

< 0.1, (2)

where Û(𝑘) denotes the CS reconstruction of the spatiotem-
poral fMRI data at 𝑘th FOC iteration, Û(𝑘−1) denotes the CS
reconstruction of the spatiotemporal fMRI data at (𝑘 − 1)th
FOC iteration, and ‖ ⋅ ‖

𝐹
denotes the Frobenius norm. The

performance of k-t FOCUSS algorithms with the proposed
stopping criterion for 𝑁FOC parameters was evaluated via
subject-based leave-one-out cross-validation (i.e., the 𝑁FOC
value for data from each subject was determined based on a
training set consisting of data from the other subjects).

The effects of𝑁CG and 𝜆 were investigated separately for
verification with the determined optimal 𝑁FOC value (i.e.,
value found during the training phase) for each subject data.
The reconstruction of phase-cycled bSSFP and GRE data was
used for investigation with all cases of sampling patterns as
follows. Residual error = ‖y − ŷ‖2

2

was used as a measure to
observe data fitting and convergence in each k-t FOCUSS
algorithm with increase in𝑁CG, where y denotes the 𝑘-space
time-series data of the sampled 𝑘-space lines and ŷ denotes
the CS reconstruction of the 𝑘-space time-series data for
the corresponding 𝑘-space lines. Average mean square error
(MSE) of the whole time-series data was used as a measure
to observe the noise level in the reconstructed image with
variation in 𝜆, which was calculated as follows:

Average MSE =
∑
𝑇

𝑡=1

󵄩󵄩󵄩󵄩u𝑡 − û𝑡
󵄩󵄩󵄩󵄩
2

2

𝑇𝑁
, (3)

where u
𝑡
denotes the original full-sampled spatiotemporal

fMRI data at time frame 𝑡, û
𝑡
denotes the CS reconstructed

spatiotemporal fMRI data at time frame 𝑡, 𝑇 denotes the total
number of time frames, and 𝑁 denotes the total number of
image pixels at each time frame.

2.5. Region of Interest Selection. A region of interest (ROI)
was selected to help compare the effects of different sampling
patterns and CS algorithms. The regions determined to be
functionally active (i.e., rejecting the null hypothesis 𝐻

0
)

according to the 𝑡-statistics map of the original full-sampled
data were chosen as the ROI for further analysis. New ROIs
were defined for each dataset.

2.6. Quantitative Analysis. Frame-by-frame normalized
MSE, 𝑡-statistics functional map, ROI time course plot,
and receiver operating characteristics (ROC) curve were
calculated for further investigation of the applicability of CS
for fMRI data at high field. These analyses were performed
on the bSSFP data with PC2 for clear evaluation of the
effect of CS application, since the sequence corresponds to
the conventional bSSFP sequence (i.e., 180∘ phase-cycling)

displaying a fairly uniform signal contrast without any
significant banding artifacts and showed clear activation foci
in the full-sampled data.

The frame-by-frame normalized MSE calculation at time
𝑡 was performed using the following equation:

Frame-by-frame normalized MSE (𝑡) =
󵄩󵄩󵄩󵄩u𝑡 − û𝑡

󵄩󵄩󵄩󵄩
2

2

󵄩󵄩󵄩󵄩u𝑡
󵄩󵄩󵄩󵄩
2

2

. (4)

Student’s 𝑡-test was performed for each dataset to statistically
analyze fMRI data and generate the 𝑡-statistics functional
map. The 𝑇-score is calculated on a pixel by pixel basis over
time as follows:

𝑇-score =
𝑥 − 𝑦

√𝑠
2

𝑥

/𝑛
𝑥
+ 𝑠2
𝑦

/𝑛
𝑦

, (5)

where ⋅ denote the mean, 𝑠
⋅
denote the standard deviation,

and 𝑛
⋅
denote the length of the baseline time-series𝑥 and acti-

vation time-series 𝑦, respectively. The 𝑡-statistics functional
mapwas generated for a significance level of 0.05, and clusters
less than 6 pixels were rejected. ROI time course was plotted
as the mean ROI value.

The ROC curve was generated to provide standardized
and statistically meaningful means for comparing fMRI
signal-detection accuracy [26]. For each dataset, the 𝑡-
statistics map generated from the original full-sampled data
with significance level of 0.05 was used as the ground truth.
True positive fraction (TPF) and false positive fraction (FPF)
were calculated over various significance levels to generate
the ROC curve. The performance was measured by the
area under the curve (AUC) ranging from 0 to 1, with 1
representing better performance. The TPF and FPF were
calculated using the following equations:

TPF = (Number of True-Positive Activation Voxels)

× (Number of Truly Activated Voxels from

Ground Truth)
−1

,

FPF = (Number of False-Positive Activation Voxels)

× (Number of Truly Non-Activated Voxels

from Ground Truth)
−1

,

(6)

where TPF relates to sensitivity and 1 − FPF relates to
specificity.

3. Results

3.1. Determination of 𝑁
𝐹𝑂𝐶

. 𝑁FOC values determined via
subject-based leave-one-out cross-validation for Algorithm 1
were 4, 3, 3, and 3 for PatternR, PatternG, PatternGR, and
PatternGRC1, respectively, and those for Algorithm 2 were 5,
4, 4, and 4 for PatternR, PatternG, PatternGR, and PatternGRC1,
respectively. Identical 𝑁FOC values were found regardless of
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the pulse sequence type (i.e., GRE and bSSFP PC0, PC1,
PC2, and PC3) in all the subjects. All further analyses were
performed with the determined𝑁FOC values for each subject
data, to evaluate the performance of 𝑘-t FOCUSS algorithms
with the proposed stopping criterion.

3.2. OriginalData:High Field bSSFP. Different phase-cycling
angles in the fMRI maps of full-sampled bSSFP data showed
shifting in activation foci (i.e., the activation foci were located
around the cortical surface area for PC1 and 2, while they
were located in the middle cortical regions for PC0 and 3, as
indicated by white arrows in Figure 2(b)).This spatial shift of
activation foci as a function of PC angle implies that the high
field phase-cycled bSSFP maps are spatially heterogeneous
due to magnetic field inhomogeneity and was used in this
study to confirm that CS with an appropriate downsampling
scheme can preserve the details of the spatial pattern of the
functional activation.

3.3. Reconstruction with Algorithm 1: k-t FOCUSS with Temp-
oral FT. Visually the original baseline images becameblurred
with artifacts after downsampling was applied (Figure 3).
Despite the distortion and degradation after downsam-
pling, the baseline images were well reconstructed using
Algorithm 1 regardless of sampling pattern (Figures 4(a)–
4(d)). Visually the image contrast and resolution were well
preserved for CS reconstructed images from all sampling pat-
terns compared to the original baseline image (Figure 2(a))
and downsampled baseline image with only 𝑘-space low-
frequency information (Figure 2(c)). The frame-by-frame
normalized MSE values from all the CS sampling patterns
were significantly lower than those from downsampling
with only 𝑘-space low-frequency information (Figure 5),
indicating high reconstruction performance of Algorithm 1.
In particular, the mixture of Gaussian and uniform random
sampling scheme (i.e., PatternGR and PatternGRC1) showed
the lowest frame-by-frame normalized MSE values across all
time frames. Overall, all Gaussian-weighted sampling pat-
terns showed increased spatial resolution and SNR (Figures
4(b), 4(c), and 4(d)) with reduction of artifacts (indicated
by yellow arrow in Figure 2(a)) for all phase-cycled bSSFP
data, while downsampling with only 𝑘-space low-frequency
information showed increase of artifacts (Figure 2(c)).

The fMRI maps were also reconstructed well from all
Gaussian-weighted sampling patterns using Algorithm 1
(Figures 6(b), 6(c), and 6(d)), while those from PatternR
did not show any meaningful functional activations
(Figure 6(a)). The fMRI maps from downsampling
with only 𝑘-space low-frequency information showed
significant blurring in the activation region (Figure 2(d)).
The fMRImaps fromPatternGR (Figure 6(c)) and PatternGRC1
(Figure 6(d)) were closer to the original fMRI maps than
those from PatternG (Figure 6(b)) in terms of preserving
details in activation foci shift, presumably due to the inclusion
of appropriate high frequency 𝑘-space information.

The time course of the mean ROI value was also rela-
tively well preserved in images from all Gaussian-weighted
sampling patterns (Figures 7(b), 7(c), and 7(d)), while those

from PatternR differed from the original with significantly
increased temporal fluctuation (Figure 7(a)). Mean ROI time
courses of images from all Gaussian-weighted sampling
patterns resembled those of the original data; even with only
(1/4)th of the whole data, themean ROI time course followed
the trend of the original time course with slightly reduced
mean amplitude difference, percent signal change, and also
signal fluctuation.These observationswere applicable regard-
less of acquisition method and different PC angles for
bSSFP. The AUC value of ROC curves indicated overall high
sensitivity and specificity of all Gaussian-weighted sampling
patterns using Algorithm 1 (Table 1). PatternGRC1 displayed
the highest ROC performance than other sampling patterns
including downsampling with only 𝑘-space low-frequency
information.

The reconstruction times of the k-t FOCUSS algorithms
are shown for bSSFP PC2 and GRE in Table 2. Only one
representative case is shown for each bSSFP and GRE data
since similar results were obtained regardless of bSSFP
PC angle, sampling pattern, and subject rats, despite the
difference in total time due to the usage of different 𝑁FOC
parameter values.The reconstruction time for the bSSFP data
was approximately twice as long as that of the GRE data, since
the speed of reconstruction is largely dependent on the size of
thematrix and number of time frames (recall that the number
of time frames of GRE data was half of that of bSSFP data).

3.4. Reconstruction with Algorithm 2: k-t FOCUSS with KLT.
Results of Algorithm 2 in terms of baseline images, frame-by-
frame normalized MSE plot, fMRI maps, ROI time course,
and AUC values in ROC curve are shown in Figures 8,
9, 10, and 11 and Table 1, respectively. Overall the results
were similar to those of Algorithm 1. Slight differences were
observed between algorithms in the view points of sensitivity
and specificity depending on sampling pattern. The images
from all sampling patterns for Algorithm 2 showed slightly
lower sensitivity and specificity than those for Algorithm 1.
The reconstruction time of Algorithm 2 was longer than that
of Algorithm 1, mainly due to the calculation of covariance
matrix requiring the preliminary estimation (Table 2).

3.5. Investigation of𝑁
𝐶𝐺

and 𝜆 Effect. Representative results
from CS reconstruction of PatternGRC1 using Algorithms 1
and 2 are shown in Figures 12, 13, 14, and 15, and similar
results were obtained regardless of acquisition method and
sampling patterns. Based on the results from Figures 12 and
14, the𝑁CG value of 30 (i.e., value used for both Algorithms 1
and 2 throughout the paper) seems to be sufficient to ensure
data fitting and error convergence. As shown in Figures 13
and 15, the reconstruction error of k-t FOCUSS algorithms
was relatively insensitive to𝜆 variation andminimal errorwas
achieved with small values of 𝜆 (e.g., less than 1).

4. Discussion

To our knowledge, it is the first study to apply CS to high
field bSSFP fMRI and to systematically evaluate effects of
CS sparsity schemes on non-EPI fMRI. The CS sampling
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Table 1: ROC curve AUC values from fMRI maps of bSSFP time-series data with PC angle of 180∘ of a representative rat.

4x Down Center (control) CS
PatternR PatternG PatternGR PatternGRC1

0.9794 Algorithm 1 0.8943 0.9800 0.9795 0.9827
Algorithm 2 0.8639 0.9726 0.9714 0.9825

Table 2: Reconstruction speed of 𝑘-𝑡 FOCUSS algorithms on downsampled time-series data using PatternGRC1 of a representative rat.

Algorithm 1 Algorithm 2
Single FT-CG iteration Total time Covariance calculation Single KLT-CG iteration Total time

bSSFP PC2 0.46 s 41.35 s 27.81 s 0.64 s 77.26 s
GRE 0.24 s 21.29 s 14.27 s 0.29 s 34.98 s
∗FT: Fourier transform, CG: conjugate gradient method, and KLT: Karhunen-Loéve transform.
∗∗Calculated on PC (Windows 7), CPU: 3.30GHz, RAM: 4.00GB.

scheme should be determined in relation to the CS algo-
rithm to preserve detailed image information appropriately.
Dense sampling in 𝑘-space center region such as Gaussian-
weighting or inclusion of 𝑘-space center 1 line was better
for CS, due to the fact that most energy is located in the
𝑘-space center region and also due to incoherent aliasing
effects from variable-density sampling [13, 16]. The recon-
struction results from PatternGR and PatternGRC1 also verify
that a variation in sampling scheme with more 𝑘-space
high frequency information leads to better reconstruction
performance preserving signal details (e.g., activation foci
shifting phenomenon in bSSFP), which may become critical
for applications such as fMRI studies. Inclusion of more 𝑘-
space low-frequency information implies less 𝑘-space high
frequency information which may lead to an enlargement or
blurring of the activation foci in fMRI maps (e.g., Figures
2(d), 6(b), and 10(b)). Thus, both 𝑘-space center and edge
regions are important, and methods that achieve a certain
balance between them need to be exploited for correct
reconstruction of non-EPI fMRI data using CS. Overall the
mixture of Gaussian and uniform random sampling scheme
reconstructed both the baseline images and fMRI maps well
while preserving the signal details and thus seems to be an
ideal sampling scheme for CS applied to non-EPI fMRI.

The two algorithms of k-t FOCUSS with temporal FT
and KLT showed similar performances overall. The slight
differences in their results are presumed to be due to the
utilization of different transformation domains for each itera-
tion. Interestingly, k-t FOCUSS with temporal FT performed
slightly better than k-t FOCUSS with KLT in terms of
ROC performance in this study, despite the fact that KLT is
known as an efficient spectral decorrelator [27, 28]. Several
factors may account for this. First, the fMRI studies were
performed with block design paradigm in this work, and
temporal redundancy from the spatial-temporal frequency
domain may have been exploited better for such data type.
Since KLT is a data-driven transform, k-t FOCUSS with
KLT may potentially perform better in cases of rapid event-
related paradigms. Second, the decorrelation of nonperiodic
noise might not have been noticeable in the image, since
bSSFP sequence is known to provide the highest SNR per

unit time [29, 30] and the simulation studies were performed
on datasets with enough averaging (e.g., 15 to 25 times).
Recently, it has been reported that application of CS to
fMRI can increase FPF in real acquisition settings, and k-
t FOCUSS with KLT has shown to reconstruct fMRI maps
with reduced false activations [22]. Thus, the effectiveness of
both algorithms needs verification with real fMRI studies.
Nonetheless, results from the current study indicate that both
algorithms are potentially good solutions for acceleration of
high field non-EPI fMRI.

Appropriate choice of CS reconstruction parameters is
one of the main concerns of the application of CS. The
optimal parameters may vary depending on noise level,
temporal resolution, and other possible factors in actual
data acquisition environment. In general, reconstruction
parameters are found with known noise level [31] or alter-
natively are selected via cross-validation [32–34]. There are
multiple parameters involved for the case of k-t FOCUSS
algorithm, which requires hyperparameter optimization and
thus increases the computation burden [16]. Therefore, the
effect of two different k-t FOCUSS parameters, 𝜆 and 𝑁CG,
is additionally investigated in this study. Considering the
physical meaning of each parameter, two different metrics
were used for evaluation. Since the regularization parameter
𝜆 is a tuning parameter used to find the solution with best
improvement in SNR, average MSE was used to show its
effect on the noise level in the reconstructed image. Since
the CG method is employed to iteratively find the solution
to the unknown signal (i.e., denoted by x in (A.9) of the
Appendix), residual error was used to investigate data fitting
and convergence with decreases in measurement error (i.e.,
difference between sampled 𝑘-space measurements y and
estimation ŷ) as number of CG iterations increases (note
that the signal-measurement relationship is defined in (A.4)
of the Appendix and can be used to find ŷ from x). Based
on the results from Figures 12 and 14, fixation of 𝑁CG to
a sufficient value (e.g., 30 in case of our study) and 𝜆 to a
small value is preferred to reduce parameter variability and
to simplify the usage of k-t FOCUSS algorithms on high
field non-EPI fMRI studies.These results agree with previous
applications of k-t FOCUSS where a sufficient value of 𝑁CG
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Figure 3: Baseline images after downsampling. Baseline images of downsampled data using (a) PatternR, (b) PatternG, (c) PatternGR, and
(d) PatternGRC1 are shown. The 20th and 10th time frame of bSSFP and GRE is shown, respectively. Downsampling pattern and acquisition
method are shown on the top and left-hand side of the images, respectively. Notice the blurring and artifacts in the downsampled images.
The case from a representative rat is shown since similar results were obtained for different subject rats.

and a small value of 𝜆 are used and are proven to performwell
in high-quality fMRI studies from real scanner acquisitions
[16, 22]. However, care should be taken for extrapolation
of these parameters for data types different from those of
the current studies. With fixation of 𝑁CG and 𝜆, the only
issue for the application of k-t FOCUSS algorithms for high

field bSSFP fMRI data lies in the choice of 𝑁FOC. The 𝑁FOC
parameters found from the current study need to be tested
in the context of real CS application for verification and
general usage. The choice of a high 𝑁FOC value may ensure
minimal error for most cases of applications; however, this
also leads to increased number of calculations required for CS



10 BioMed Research International

M
as

k
G

RE
 Algorithm 1

+
PatternR

t

PE

−95

0

+96

 Algorithm 1
+

PatternG

t

PE

−95

0

+96

 Algorithm 1
+

PatternGR

t

PE

−95

0

+96

 Algorithm 1
+

PatternGRC1

t

PE

−95

0

+96

(a) (b) (c) (d)

bS
SF

P
PC

3
bS

SF
P

PC
2

bS
SF

P
PC

1
bS

SF
P

PC
0

Figure 4: Comparison of baseline images reconstructed using Algorithm 1 (k-t FOCUSS with temporal FT). Baseline images of CS
reconstructed data using Algorithm 1 and (a) PatternR, (b) PatternG, (c) PatternGR, and (d) PatternGRC1 are shown. The 20th and 10th time
frame of bSSFP and GRE is shown, respectively. Downsampling pattern and acquisition method are shown on the top and left-hand side of
the images, respectively. The case from a representative rat is shown since similar results were obtained for different subject rats.

reconstruction. Thus, the trade-off between minimization of
error and increase in postprocessing timemust be considered
appropriately before choosing the 𝑁FOC value for future
studies.

Eddy currents can cause problems in bSSFP imaging with
nonlinear phase-encoding orders.The problemsmay become
noticeable when the sparsity schemes tested in this study are
implemented in real acquisition settings. Previously Bieri et



BioMed Research International 11

5 10 15 20 25 30 35 40 45
0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Fr
am

e-
by

-fr
am

e n
or

m
al

iz
ed

 M
SE

Measurement time frame

4x Down Center (control)
PatternR
PatternG

PatternGR
PatternGRC1

Frame-by-frame normalized MSE(t) = ‖ut − ût‖22/‖ut‖
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Table 3: ROC curve AUC values from reconstructed fMRI maps
using 𝑘-𝑡 FOCUSS algorithms and pairwise sampling of PE lines
with PatternGRC1 on bSSFP time-series data with PC angle of 180∘
of a representative rat.

Algorithm 1 Algorithm 2
Pairwise PE PatternGRC1 0.9810 0.9736

al. [35] discovered a simple method to suppress the eddy
current effect by pairing two consecutive 𝑘-space lines. By
incorporating this idea, a simulation study was performed
to see the effect of pairwise downsampling scheme. A paired
PatternGRC1 was generated with a downsampling factor of
4. The downsampling scheme and reconstructed fMRI maps
from each k-t FOCUSS algorithm are shown in Figure 16,
and the ROC performance of the reconstructed data is shown
in Table 3. The employment of pairwise sampling scheme
showed maintenance of activation foci shift but decrease in
both activation detection sensitivity and specificity compared
to the results without pairwise sampling (Figures 6(d) and
10(d)), regardless of PC angle and k-t FOCUSS algorithm.
Overall, these results indicate that the pairwise sampling
scheme may be used to suppress eddy current artifacts in
bSSFP fMRI with CS, but there exists trade-off between the
suppression of eddy current effect and fMRI sensitivity as well
as specificity.

Application of CS to high field non-EPI fMRI can be
meaningful for high-resolution fMRI studies, since conven-
tional GRE-EPI fMRI is sensitive to image distortion and
degradation caused by local magnetic field inhomogeneity

at high magnetic fields. Although the temporal resolution of
non-EPI sequences is lower than the typically used GRE-EPI,
it is shown through the study that the temporal resolution
or the spatial coverage can be improved using CS. Several
potential advantages of CS can be derived for fMRI studies
in this regard. First, better temporal resolution increases the
number of time frames within a given time and can in turn
improve the statistical power of BOLD activations [22, 36].
Second, the weighted-norm process of the CS algorithm
can reduce artifacts from scanner-related drifts, respiratory-
induced noise, cardiac pulsation, and subject motion [37–39]
and can also improve the activation detection sensitivity in 𝑡-
statistics [22]. Lastly, CS can improve spatial coverage which
is essential for many fMRI studies that require a big ROI or
ROIs frommultiple brain regions.Thus, the application of CS
in fMRI has great potential in practice.

One negative aspect of CS in fMRI studies is the addition
of postprocessing time related to CS reconstruction. The
reconstruction time of k-t FOCUSS algorithms is largely
affected by the iteration parameters and the size of the
data (e.g., matrix size, number of slices, number of time
frames, etc.).The results fromTable 2 imply that the temporal
resolution or spatial coverage of non-EPI sequence fMRI
studies can be improved using CS at the cost of reason-
able addition of postprocessing time (i.e., several minutes).
Therefore, depending on applications, the trade-off between
reconstruction time and temporal resolution (and/or spatial
coverage)must be investigated before applying CS algorithms
to fMRI studies.

In the past, there have been many dynamic MRI studies
other than fMRI with acceleration factor of 8 or higher using
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Figure 6: Comparison of fMRI maps reconstructed using Algorithm 1 (k-t FOCUSS with temporal FT).The fMRI maps of CS reconstructed
data using Algorithm 1 and (a) PatternR, (b) PatternG, (c) PatternGR, and (d) PatternGRC1 are shown for significance level of 0.05.
Downsampling pattern and acquisition method are shown on the top and left-hand side of the images, respectively. Notice the activation
foci shift (white arrow) in the phase-cycled bSSFP data. The case from a representative rat is shown since similar results were obtained for
different subject rats.
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Figure 7: Comparison of mean ROI time course plots between full-sampled original data and CS reconstructed data using Algorithm 1 (k-t
FOCUSS with temporal FT). The time course of mean ROI from CS reconstructed data using Algorithm 1 and (a) PatternR, (b) PatternG,
(c) PatternGR, and (d) PatternGRC1 is shown. Mean ROI is calculated from bSSFP time-series data with PC angle of 180∘. The case from a
representative rat is shown since similar results were obtained for different subject rats.

CS [18, 40–42]. However, CS has been applied to fMRI in
a limited number of studies and acceleration factor up to
4 was used in most of the truly accelerated fMRI studies
[21, 22]. Decrease in image quality has also been reported

in some pilot studies after CS reconstruction even with 2-
fold acceleration [21]. This may be attributed to the fact
that distinct from other dynamic MRI studies fMRI requires
detection of fine signal changes, which can be achieved by
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Figure 8: Comparison of baseline images reconstructed using Algorithm 2 (k-t FOCUSS with KLT). Baseline images of CS reconstructed
data using Algorithm 2 and (a) PatternR, (b) PatternG, (c) PatternGR, and (d) PatternGRC1 are shown. The 20th and 10th time frame of bSSFP
and GRE is shown, respectively. Downsampling pattern and acquisition method are shown on the top and left-hand side of the images,
respectively. The case from a representative rat is shown since similar results were obtained for different subject rats.

preserving high frequency information. Based on the results
from our studies, acceleration factor of 4 seems sufficient
for CS application on high field non-EPI fMRI studies. For
example, for a bSSFP fMRI experiment withmatrix size = 128
× 128 and TR = 5ms, the temporal resolution becomes 0.64 s
for a single slice. Thus, the 4-fold acceleration can improve

the temporal resolution up to 0.16 s (i.e., close to the temporal
resolution of EPI) or the spatial coverage up to 24 slices (i.e.,
nearwhole brain coverage) with temporal resolution less than
4 s (note that although TR was 10ms in this study, bSSFP
with TR ≤ 10ms has been successfully applied to fMRI at
high field ≥7T). Nonetheless, improvements can be made to
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Figure 9: Comparison of frame-by-frame normalized MSE plots
from reconstructed baseline images usingAlgorithm 2 (k-t FOCUSS
with KLT). The frame-by-frame normalized MSE plots of bSSFP
time-series data with PC angle of 180∘ are shown. The case from a
representative rat is shown since similar results were obtained for
different subject rats.

increase the acceleration factor above 4 and the quality may
depend on the scan condition (e.g., scan resolution, SNR). A
systematic study for different acceleration factors may need
to be conducted to further improve application of CS on high
field non-EPI fMRI studies.

In this paper, the effect ofCS is investigated through retro-
spective downsampling of full-sampled fMRI data.Therefore,
further works are necessary to verify the downsampling
schemes that were retrospectively evaluated in this study, by
implementing them and performing real fMRI studies, which
is beyond the scope of this paper.

5. Conclusion

The CS reconstruction of fMRI data acquired at high field
using k-t FOCUSS varies greatly with sampling scheme and
thus the sampling scheme must be selected appropriately.
Information in both 𝑘-space low and high frequency regions
is important for better reconstruction performance and
preservation of signal details, respectively, and thus sampling
schemes that achieve a certain balance between the two must
be selected for the application of CS to non-EPI fMRI data.
The two k-t FOCUSS algorithms, temporal FT and KLT,
showed good reconstruction results overall with effective
suppression of downsampling artifacts and improved spatial
resolution and thus are good candidates for CS in high
field non-EPI fMRI studies. The application of CS to fMRI
has great potential in practice for improvement of temporal
resolution and/or spatial coverage.

Appendix

Review of 𝑘-𝑡 FOCUSS

k-t FOCUSS with Temporal Fourier Transform. k-t FOCUSS
is a recent CS algorithm developed for the reconstruction
of dynamic image data [16, 18]. As the name indicates, it is
based on FOCal Underdetermined System Solver (FOCUSS)
algorithm and utilizes random sampling in the 𝑘-𝑡 domain
[16, 43, 44]. Here, the basic structure of the algorithm will be
speculated. For simplicity, only the case of Cartesian 𝑘-space
trajectory will be discussed, with downsampling only in the
phase-encoding direction and full sampling in the frequency-
encoding direction.

In a discrete setup, the measurement-signal relationship
at time 𝑡 is

y
𝑡
= Fu
𝑡
, 𝑡 = 1, . . . , 𝑇, (A.1)

where F ∈ C𝑚×𝑛 denotes a downsampled Fourier transform
(FT) along the phase-encoding direction, y

𝑡
∈ C𝑚 denotes

the 𝑘 space measurement vectors, u
𝑡
∈ C𝑛 denotes the image

vector at time 𝑡, and 𝑇 denotes the number of time frames. If
image content varies periodically over time, we can sparsify
its temporal variation using 𝑇 × 𝑇 FT matrixΦ such that the
corresponding coefficients {x

𝑡
} become sparse:

U ≜ [u
1
, u
2
, . . . , u

𝑇
] = [x

1
, x
2
, . . . , x

𝑇
]Φ
𝐻

= XΦ𝐻, (A.2)

where X ≜ [x
1
, x
2
, . . . , x

𝑇
].

Then, the measurement-signal relationship becomes

Y ≜ [y
1
, y
2
, . . . , y

𝑇
] = FXΦ𝐻. (A.3)

Using the property vec(ABC) = (A⊗C𝐻) vec(B), where vec(⋅)
denotes columnwise vectorization operation, we have

y = (F ⊗Φ) x = Ax, (A.4)

where y = vec(Y) ∈ C𝑚𝑇 and x = vec(X) ∈ C𝑛𝑇. In k-t
FOCUSS, the unknown signal x is further decomposed as

x = x
0
+ Δx, (A.5)

where x
0
denotes a predicted signal (such as temporal mean)

andΔx denotes residual signal that needs to be reconstructed
using CS. Accordingly, the CS formulation is given by

min ‖Δx‖
1

s.t. 󵄩󵄩󵄩󵄩y − Ax0 − AΔx
󵄩󵄩󵄩󵄩2 ≤ 𝜖. (A.6)

As an optimization method for (A.6), k-t FOCUSS employs
weighted-𝑙

2
minimization or FOCUSS algorithm by convert-

ing Δx = Wq, which provides the following unconstrained
form of cost function:

𝐶 (q) = 󵄩󵄩󵄩󵄩y − Ax0 − AWq󵄩󵄩󵄩󵄩
2

2

+ 𝜆 ‖q‖2
2

, (A.7)

where

W = (

󵄨󵄨󵄨󵄨𝑞1
󵄨󵄨󵄨󵄨
𝑝

0 ⋅ ⋅ ⋅ 0

0
󵄨󵄨󵄨󵄨𝑞2
󵄨󵄨󵄨󵄨
𝑝

⋅ ⋅ ⋅ 0

.

.

.
.
.
. d

.

.

.

0 0 ⋅ ⋅ ⋅
󵄨󵄨󵄨󵄨𝑞𝑁
󵄨󵄨󵄨󵄨
𝑝

),
1

2
≤ 𝑝 ≤ 1. (A.8)
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Figure 10: Comparison of fMRI maps reconstructed using Algorithm 2 (k-t FOCUSS with KLT). fMRI maps of CS reconstructed data using
Algorithm 2 and (a) PatternR, (b) PatternG, (c) PatternGR, and (d) PatternGRC1 are shown for significance level of 0.05. Downsampling pattern
and acquisitionmethod used are shown on the top and left-hand side of the images, respectively. Notice the activation foci shift (white arrow)
in the phase-cycled bSSFP data. The case from a representative rat is shown since similar results were obtained for different subject rats.
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Figure 11: Comparison of mean ROI time course plots between full-sampled original data and CS reconstructed data using Algorithm 2 (k-t
FOCUSSwithKLT).The time course ofmeanROI fromCS reconstructed data usingAlgorithm 2 and (a) PatternR, (b) PatternG, (c) PatternGR,
and (d) PatternGRC1 is shown. Mean ROI is calculated from bSSFP time-series data with PC angle of 180∘. The case from a representative rat
is shown since similar results were obtained for different subject rats.
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Figure 12: Example showing the effect of 𝑁CG1 on reconstruction using Algorithm 1 (k-t FOCUSS with temporal FT). Residual error with
𝑁CG1 variation using Algorithm 1 on (a) bSSFP PC0, (b) bSSFP PC1, (c) bSSFP PC2, (d) bSSFP PC3, and (e) GRE data is shown for each
different𝑁FOC1. Plots are obtained from reconstruction of downsampled data using PatternGRC1 during testing phase of a representative rat,
and similar results were obtained from different sampling patterns and different subject rats. Notice that residual error reaches convergence
as𝑁CG1 increases. The chosen𝑁CG1 value of 30 is represented in each plot as a red dashed line.
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Figure 13: Example showing the effect of 𝜆
1

on reconstruction using Algorithm 1 (k-t FOCUSS with temporal FT). Average MSE with 𝜆
1

variation using Algorithm 1 on (a) bSSFP PC0, (b) bSSFP PC1, (c) bSSFP PC2, (d) bSSFP PC3, and (e) GRE data is shown. Plots are obtained
from reconstruction of downsampled data using PatternGRC1 and optimal𝑁FOC1 found during testing phase of a representative rat, and similar
results were obtained from different sampling patterns and different subject rats. Notice that reconstruction error is relatively invariant to 𝜆

1

variation and minimal error is achieved with small values of 𝜆
1

.



20 BioMed Research International

bSSFP-PC0

0 10 20 30 40 50
CG iteration

10
11

10
10

10
9

10
8

Re
sid

ua
l=

‖y
−
ŷ‖
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Figure 14: Example showing the effect of 𝑁CG2 on reconstruction using Algorithm 2 (k-t FOCUSS with KLT). Residual error with 𝑁CG2
variation using Algorithm 2 on (a) bSSFP PC0, (b) bSSFP PC1, (c) bSSFP PC2, (d) bSSFP PC3, and (e) GRE data is shown for each different
𝑁FOC2. Plots are obtained from reconstruction of downsampled data using PatternGRC1 during testing phase of a representative rat, and similar
results were obtained from different sampling patterns and different subject rats. Notice that residual error reaches convergence as 𝑁CG2
increases. The chosen𝑁CG2 value of 30 is represented in each plot as a red dashed line.
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Figure 15: Example showing the effect of 𝜆
2

on reconstruction using Algorithm 2 (k-t FOCUSS with KLT). Average MSE with 𝜆
2

variation
using Algorithm 2 on (a) bSSFP PC0, (b) bSSFP PC1, (c) bSSFP PC2, (d) bSSFP PC3, and (e) GRE data is shown. Plots are obtained from
reconstruction of downsampled data using PatternGRC1 and optimal 𝑁FOC2 found during testing phase of a representative rat, and similar
results were obtained from different sampling patterns and different subject rats. Notice that reconstruction error is relatively invariant to 𝜆

2

variation and minimal error is achieved with small values of 𝜆
2
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Figure 16: Presumed effect of paired random sampling scheme in the reconstruction of fMRI map using k-t FOCUSS algorithms. The fMRI
maps of CS reconstructed data using (a) Algorithm 1 and pairwise sampling of PatternGRC1 and (b) Algorithm 2 and pairwise sampling of
PatternGRC1 are shown for significance level of 0.05. Downsampling pattern and acquisition method used are shown on the top and left-hand
side of the images, respectively. Notice the decrease in activation sensitivity with the inclusion of pairwise sampling scheme.

Here,q = [𝑞
1

, . . . , 𝑞
𝑁

]denotes the estimated signal x from the
previous iteration with 𝑁 = 𝑛𝑇. Then, the optimal solution
of the problem is found by calculating the following:

x = x
0
+ΘA𝐻 (AΘA𝐻 + 𝜆I)

−1

(y − Ax
0
) , (A.9)

where Θ = WW𝐻. Since the direct calculation of (A.9) is
computationally demanding due to the matrix inversion of
a large size matrix, conjugate gradient (CG) method is used
to minimize the cost function (A.7).

A generic formof the implementation of k-t FOCUSS that
utilizes temporal FTΦ is summarized in Algorithm 1.

k-t FOCUSS with KLT. Even though k-t FOCUSS has been
developed as above utilizing temporal FT asΦ in (A.3), other
temporal transformations could also be used to efficiently
sparsify the signal [16]. One example is the utilization of
Karhunen-Loéve transform (KLT), which is also known as
principal component analysis (PCA) [45].



BioMed Research International 23

KLT or PCA is a data-dependentmathematical procedure
that uses an orthogonal transformation to convert possi-
bly correlated elements of the data into a set of linearly
uncorrelated components called “principal components.”The
transformation leads to a result in which the first principal
component accounts for the largest possible variance of the
data, and each succeeding component has the next largest
variance possible under the restriction that it is orthogonal
(i.e., uncorrelated) to the preceding components. The trans-
form is known to compact most of the energy into a small
number of expansion coefficients [45] and thus is ideal in CS
perspective [16].

The application of KLT within k-t FOCUSS requires
calculation of a covariance matrix from a trained dataset. In
this paper, the result from k-t FOCUSS that utilizes temporal
FT using Algorithm 1 is used for the calculation of covariance
matrix. Once the training dataset is defined, the covariance
matrix is constructed as follows:

C = Û𝐻Û. (A.10)

Then, the eigenvectors ofC can be used for the KL transform;
that is,

Φ←󳨀 eig (C) . (A.11)

After updating Φ, we can perform additional k-t FOCUSS
iterations. The algorithm is summarized in Algorithm 2.
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