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Abstract: Recent studies have indicated that microRNA and VEGF are considered to be genetic
modifiers and are associated with elevated levels of fetal haemoglobin HbF, and thus they reduce the
clinical impact of sickle haemoglobin (HbS) patients. This cross-sectional study was performed on
clinical confirmed subjects of SCD cases. miR-423-rs6505162 C>T and VEGF-2578 C>A genotyping
was conducted by ARMS-PCR in SCD and healthy controls. A strong clinical significance was
reported while comparing the association of miR-423 C>T genotypes between SCD patients and
controls (p = 0.031). The microRNA-423 AA genotype was associated with an increased severity of
SCD in codominant model with odd ratio (OR = 2.36, 95% CI, (1.15–4.84), p = 0.018) and similarly
a significant association was observed in recessive inheritance model for microRNA-423 AA vs
(CC+CA) genotypes (OR = 2.19, 95% CI, (1.32–3.62), p < 0.002). The A allele was associated with SCD
severity (OR = 1.57, 95% CI, (1.13–2.19), p < 0.007). The distribution of VEGF-2578 C>A genotypes
between SCD patients and healthy controls was significant (p < 0.013). Our results indicated that in
the codominant model, the VEGF-2578-CA genotype was strongly associated with increased SCD
severity with OR = 2.56, 95% CI, (1.36–4.82), p < 0.003. The higher expression of HbA1 (65.9%), HbA2
(4.40%), was reported in SCD patients carrying miR-423-AA genotype than miR-423 CA genotype in
SCD patients carrying miR-423 CA genotype HbA1 (59.98%), HbA2 (3.74%) whereas SCD patients
carrying miR-423 CA genotype has higher expression of HbF (0.98%) and HbS (38.1%) than in the
patients carrying AA genotype HbF (0.60%), HbS (36.1%). ARMS-PCR has been proven to be rapid,
inexpensive and is highly applicable to gene mutation screening in laboratories and clinical practices.
This research highlights the significance of elucidating genetic determinants that play roles in the
amelioration of the HbF levels that is used as an indicator of severity of clinical complications of the
monogenic disease. Further well-designed studies with larger sample sizes are necessary to confirm
our findings.
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1. Introduction

Sickle cell anemia (SCA) is a monogenetic hematological disorder caused by homozy-
gosity mutation in the beta-globin gene on chromosome 11 [1]. SCA was the “first molecular
disease”, where technological innovations and chemical differences used to evaluate the
abnormality of genes [2]. According to the World Health Organization (WHO), 5.2% of
the world’s population is affected by SCD and this percentage varies in Saudi Arabia’s
population according to provinces and areas [3]. The Saudi population is considered at
high risk of suffering from SCA due to traditional, cultural, and social factors [2,4]. Im-
portantly, there are several causes for clinical and hematologic variability in SCA patients
including the single mutation in the beta-globin gene, environmental effects and other
genetic modifiers [5,6]. With modern molecular techniques and advanced genotype testing,
there is insufficient information about nucleotide polymorphisms analysis and frequency
for SCA patients in Saudi Arabia [7].

An earlier study investigated the relationship between genetic polymorphism and
sickle cell mutation [8]. The miR-423 exists in 2 mature forms called miR-423-3p and
miR-423-5p and their modified expression has been documented in several hematological
disorders and cancers [9–12]. Current studies have indicated that microRNAs play crucial
role in the differentiation and maturing of RBC, expressing hematopoietic factors and
thereby regulating the expression of globin genes via post-transcriptional gene silencing
and there significant change in the microRNAs (miR-320, miR-144, miR-451, miR-503)
expression in/sickle and thalassemic cells compared with normal RBCS and leads to
clinical severity [13]. Research scientists are trying to develop some new strategies for
increasing HbF induction such as identifying new molecular targets that regulate γ-globin
gene transcription and translation [14].

Primary erythroid progenitor data and genome wide miRNA microarray support
the fact that indicates a γ-globin gene regulation in sickle cell disease is regulated by
miR-144/NRF2-mediated mechanism [15]. Taken together, it has been concluded that
microRNAs in erythrocytes may act as a genetic modifier of HBS in Sickle cell anemia and
may exhibit innovative insights into the clinical pathobiology heterogeneity of sickle cell
disease [16]. MicroRNAs is reported to control the translation of many genes involved in
erythropoiesis. However, limited or no research studies have documented the link between
miRNA-423C>A gene polymorphism and risk of Sickle cell anemia (SCA). Therefore,
we studied the association of miR-423 genotyping (rs6505162C>A) with susceptibility
of sickle cell disease among Saudi Arabia population. Ferrara (1999) [17] reported that
vascular endothelial growth factor (VEGF) is a mitogen for vascular endothelial cells
derived from arteries, veins, and lymphatics. Lubin (1997) [18] reported that the interactions
between vascular endothelium and sickle cells are essential events in many of the clinical
complications including vaso-occlusive events (VOEs) of SCD. Solovey et al. [19] indicated
that sickle cell anemia involves an abnormal and enhanced antiapoptotic tendency for
endothelial cells and VEGF was responsible for this behavior. Bottomley et al. [20] reported
that overexpression of VEGF prompts high expression levels of intercellular adhesion
molecule-1 (ICAM-1) and high expression levels of VEGF and that was measured in the
plasma of SCD patients. Several studies have reported that an abnormal adherent of
RBCs to endothelial cells and their adhesiveness correlates with clinical severity in SCD
patients [21]. In addition, there is an association between VEGFA gene variants, VEGF
secretion with vaso-occlusive crisis (VOC) in SCD patients; therefore, it was concluded
that the specific VEGFA variants could contribute to the pathogenesis of SCD with vaso-
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occlusive crisis VOC [22,23]. In light of this, we investigated the association of VEGF-2578
C>A genotyping with susceptibility of sickle cell disease in Saudi Arabia population.

Nowadays, many molecular methodologies have been utilized to detect gene poly-
morphism or mutations, such as Sanger sequencing, but this technique cannot rapidly
screen large numbers of mutations in samples. Fortunately, this problem can be solved by
massive next-generation sequencing (NGS) [24]. However, both Sanger sequencing and
NGS are expensive. ARMS-PCR is based on the principle that the 3′-terminal nucleotides
of the PCR primer must be complementary to its target sequence for efficient amplification.
ARMS-PCR has been approved by the China Food and Drug Administration (CFDA) and
has become a widely used method in clinical practice. Therefore, the aim of this study was
to develop, optimize, and validate a direct T-ARMS-based PCR assay for the precise and
rapid genotyping of vascular endothelial growth factor receptor and microRNA-423 gene
abnormalities and their association with fetal hemoglobin expression in the patients with
Sickle Cell Disease.

2. Materials and Methods
2.1. Selection Criteria of Patients

The study was performed on clinically confirmed cases of SCD and included 287 sub-
jects, 127 of which were Sickle cell disease patients and 160 of which were healthy individu-
als. The SCD patients were diagnosed by HPLC. In addition, any patients with previous
history of any chronic with disease were excluded from this study.

2.2. Sample Collection

From each clinically confirmed case of SCD patient, 3 mL of peripheral blood sample
was collected by venipuncture in EDTA tubes. Healthy controls were enrolled from the
general population of the same geographical region. Our study included one hundred
sixty subjects visited King Khaled hospital for routine checkup and simple routine medical
check-up was performed (such as complete blood count (CBC), Kidney Function Test, Liver
Function Test etc.). A standard questionnaire was used and history of illness if detected
was recorded by a health practitioner.

2.3. Genomic DNA Extraction

Genomic DNA was extracted from the whole blood samples using DNA extraction
kit from Qiagen (Cat No. 69506, Hilden, Germany) according to the manufacturer’s
instructions. Isolated DNA was dissolved in nuclease-free water and then stored at 4 ◦C
until use. The purity of the obtained DNA was checked by running the sample in 1%
agarose gel. The concentration of the extracted DNA was determined by absorbance at
260 nm and 280 nm using a NanoDrop™ (Thermo Scientific, Waltham, MA, USA).

2.4. Genotyping for microRNA-423 rs6505162 C>A and VEGF-2578 C>A

Optimization of an amplification-refractory mutation system PCR was performed by
using tetra-primers specific for miR-423 rs6505162 C>T and VEGF-2578 C>A genotyping
polymorphism. ARMS primers were designed by using Primer3 software online free
software as represented in Table 1.
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Table 1. Amplification-refractory mutation system (ARMS) primers.

Direction Primer Sequence AT Product
Size

Primer Sequence of miR-423 C>A Genotyping

miR-423 FO 5′-TTTTCCCGGATGGAAGCCCGAAGTTTGA-3′ 62 ◦C 336 bp
miR-423 RO 5′-TTTTGCGGCAACGTATACCCCAATTTCC-3′

miR-423FI
(T allele) 5′-TGAGGCCCCTCAGTCTTGCTTCCCAA-3′ 228 bp

miR-423 RI
(C allele) 5′-CAAGCGGGGAGAAACTCAAGCGCGAGG-3′ 160 bp

Primer Sequence of VEGF-2578 C>A Genotyping

VEGF FO 5-CCTTTTCCTCATAAGGGCCTTAG-3 58 ◦C 353 bp
VEGF RO 5-AGGAAGCAGCTTGGAAAAATTC-3
FI A VEGF
(A allele) 5-TAGGCCAGACCCTGGCAA-3 149 bp

RI C VEGF
(G allele) 5-GTCTGATTATCCACCCAGATCG-3 243 bp

2.5. Allele Genotyping of miR-423-rs6505162 C>A

A PCR reaction was performed in a total volume of 12 µL consisting of template DNA
(50 ng), FO—0.12 µL, RO—0.12 µL, FI—0.12 µL, RI—0.12 µL (25 pmol of each primer) and
6 µL from Green PCR Master Mix (2X) (K1081) (Thermo Scientific, Waltham, MA, USA).
The final volume of 12 µL was adjusted by adding nuclease-free ddH2O. At the end, 2 µL
of DNA was added from each patient.

PCR thermocycling conditions used were at 95 ◦C for 12 min followed by 40 cycles of
95 ◦C for 39 s, 62 ◦C for 42 s (miR-423 C>A genotyping), 58 ◦C for 40 s (VEGF-2578 C>A
genotyping), 72 ◦C for 43 s followed by the final extension at 72 ◦C for 8 min.

The miR-423-rs6505162 C>A PCR products were resolved through 2% agarose gel
electrophoresis stained with Sybre safe dye. The gel image was visualized by gel documen-
tation system from Bio-Rad. Outer primers FO and RO amplify the interested region of the
miR-423-rs6505162 C>A genotyping gene site and generating a band of 336 bp and that
serve as a control for DNA purity. Primers FI and RO amplify a C genotype generating a
band of 160 bp, and primers FO and RI generate a band of 228 bp from the T genotype as
shown in Figures 1 and 2.
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Figure 2. Optimization of Amplification-refractory mutation system (ARMS) primers for microRNA-
423 rs6505162 C>A genotyping in healthy controls. M-100 BP DNA ladder, Heterozygous-(AC)-C1,
C4, C6, C7, C8, C10, C11, Homozygous-(AA)-C2, C3, C5, Homozygous-(CC)-C9.

2.6. Allele Genotyping of VEGF-2578 C>A

A PCR reaction was performed in a total volume of 12 µL consisting of template DNA
(50 ng), FO—0.10 µL, RO—0.10 µL, FI—0.10 µL, RI—0.1 µL (25 pmol of each primer) and
6 µL from Green PCR Master Mix (2X) (K1081) (Thermo Scientific, Waltham, MA, USA).
The final volume of 12.50 µL was adjusted by adding nuclease-free ddH2O. At the end,
2.5 µL of DNA was added from each patient. The thermocycling conditions used were
at 95 ◦C for 9 min followed by 30 cycles of 94 ◦C for 30 s, 58 ◦C for 35 s, 72 ◦C for 40 s
followed by the final extension at 72 ◦C for 10 min. VEGF-2578 C>A gene amplification
products were separated by electrophoresis through 2% agarose gel stained with 0.5 µg/mL
ethidium bromide and visualized on a UV transilluminator. Primers FO and RO flank the
exon of the VEGF-2578 C>A gene, resulting in a band of 353 bp to control for DNA quality
and quantity. Primers Fwt and RO amplify a wild-type allele (C genotype), generating a
band of 243 bp, and primers FO and Rmt generate a band of 149 bp from the mutant allele
(A genotype) as depicted in the Figure 3.
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Figure 3. Optimization of Amplification-refractory mutation system (ARMS) primers for VEGF-2578
C>A genotyping in SCD patients. M-100 BP DNA ladder, Heterozygous-(AC)-S1, S3, S4, S9, S10, S12,
S13, S15, S16, Homozygous-(AA)-S2, S5, Homozygous-(CC) S6, S7, S8, S11, S14.

2.7. Statistical Analysis

All statistical analyses were performed using SPSS26 (IBM Corp., 2017. IBM SPSS
Statistics for Windows, Armonk, NY: IBM Corp). Deviations from Hardy-Weinberg disequi-
librium (HWD) were calculated by a Chi-square (χ2) goodness-of-fit test. The associations
between miR-423 (rs6505162 C>T) and VEGF-2578 C>A genotypes and SCD were estimated
by computing the odds ratios (ORs), risk ratios (RRs) and risk differences (RDs) with 95%
confidence intervals (CIs). A p-value < 0.05 was considered significant.

3. Results
3.1. Laboratory Characteristics of Patients with SCD

The various hematological tests were performed, and the results were documented
from all 127 SCD patients. Few missing results were gathered from the medical records
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of SCD patients as described in Table 2. The mean percentage for different hemoglobin
variants HbA1, HbA2 and HbF were calculated for all 127 SCD patients as 64.55%, 4.70%
and 0.79%, respectively. The sickle cell hemoglobin (HbS) expression level was in a range
from 26.00% to 84.40%, with overall mean value of 35.60%.

Table 2. Laboratory characteristics of patients with SCD.

Variables Mean ± SD Range (Min–Max)

RBC (×1012/L) 5.14 ± 0.76 3.64–7.15
WBC (×109/L) 8.18 ± 1.67 3.77–17.00

MCV (fL) 80.92 ± 6.07 66.01–92.01
Hematocrit (%) 40.96 ± 5.09 19.01–52.9

Hemoglobin (g/dL) 14.45 ± 1.88 5.90–18.25
Platelets (×109/L) 351.92 ± 66.84 191.01–456.01

RDW (%) 12.73 ± 1.24 11.01–18.01
HbA1 (%) 63.3 ± 13.44 3.15–97.60
HbA2 (%) 3.36 ± 0.57 2.50–26.20
HbF (%) 0.64 ± 0.57 0.00–14.80
HbS (%) 35.6 ± 3.30 26.00–84.40

Hb—Hemoglobin, MCV—Mean corpuscular volume, RBC—Red blood cells, WBC—White blood cells and
RDW-Red cell distribution width.

3.2. The Hardy-Weinberg Equilibrium Analysis

Deviations from Hardy-Weinberg disequilibrium (HWD) were calculated by a Chi-
square (χ2) goodness-of-fit test. The distribution and frequency of genotypes as well
as allele of the miR-423 rs6505162 C>A and VEGF-2578 C>A obeyed Hardy-Weinberg
disequilibrium (HWD) (p = 0.83) (χ2 = 0.043, p = 0.83) in the control group. Only ten percent
samples from the healthy control group were randomly selected to review the SNP results
showing that the accuracy rate was more than 99%.

3.3. Statistical Comparisons between SCD Patients and Controls for microRNA-423
C>A Genotypes

The association of miR-423 rs6505162 C>A genotypes in SCD cases compared to
healthy controls was statistically significant (p = 0.034) (Table 3). Higher frequency of
miR-423-AA genotype was reported in SCD patients 42.51% than healthy controls (23.75%).
However, 57.5% of miR-423-CA heterozygosity was observed among healthy controls
compared to 48% SCD patients. Among the SCD patients the frequency of A allele (fA) was
higher than the healthy controls (0.66 vs. 0.53) as depicted in Table 3.

Table 3. Association of miR-423 rs6505162 C>A gene variation in SCD cases and controls.

Subjects N CC CA AA
Df

Degree of
Freedom

χ2

Chi Square
C A p Value

Cases 127 18
(14.17%) 61 (48%) 54

(42.51%) 2 6.74 0.34 0.66 0.034

Controls 160 30
(18.75%) 92 (57.5%) 38

(23.75%) 0.47 0.53

3.4. Association of VEGF-2578 C>A Genotypes between SCD Patients and Controls

In SCD patients, the CC, CT and TT genotype frequencies were 41%, 47% and 12%,
respectively, whereas in healthy controls CC, CT and TT genotype frequencies were 51%,
23% and 26%, respectively (Table 4). The distribution of VEGF-2578 C>A genotypes
observed between SCD patients and healthy controls was significant (p < 0.013). Moreover,
the frequency of C allele (fC) was found to be significantly higher among SCD patients
than in healthy controls HC (0.65 vs. 0.50) (Table 4).
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Table 4. Association of VEGF-2578 C>A gene variation in SCD cases and controls.

Subjects N CC CT TT Df χ2 C T p Value

Cases 105 43 (41%) 49 (47%) 13 (12%) 2 6.13 0.65 0.35 0.013

Controls 105 54 (51%) 24 (23%) 25 (26%) 0.50 0.37

Df-degree of freedom Chi square test χ2

3.5. Multivariate Analysis of microRNA-423C>A Polymorphism between SCD Patients and
Healthy Controls

An unconditional logistic regression was used to estimate associations between the
genotypes and risk of Sickle cell disease patients (Table 5). It was found that an increased
severity of Sickle cell disease patients was associated with the microRNA-423-AA genotype
in an allele dosage-dependent manner.

Table 5. Association of miR-423-rs6505162 C>A gene variation in SCD cases and controls.

Genotypes Healthy Controls SAD Cases OR (95% CI) Risk Ratio (RR) p-Value

(N = 160) % (N = 127) %

Codominant
inheritance model
miRNA-423-CC 30/160 18.75% 18/127 14.17% 1 (ref.) 1 (ref.)
miRNA-423-CA 92/160 57.5% 69/127 54.33% 1.10 (0.566–2.15) 1.03 (0.80–1.34) 0.76
miRNA-423-AA 38/160 23.75% 58/127 45.67% 2.36 (1.15–4.84) 1.51 (1.090–2.09) 0.018

Dominant ant
inheritance model

miR-423-CC 30/160 18.75% 18/133 13.53% 1 (ref.) 1 (ref.)
miR-423-(CA + AA) 130/160 81.25% 115/133 86.47% 1.47 (0.78–2.78) 1.17 (0.91–1.51) 0.23

Recessive ant
inheritance model

miR-423-(CC + CA) 122/160 76.25% 79/133 59.4% 1 (ref.) 1 (ref.)
miR-423-AA 38/160 23.75% 54/133 40.6% 2.19 (1.32–3.62) 1.46 (1.12–1.92) 0.002

Allele
miR-423-C 152/320 47.5% 97/266 36.5% 1 (ref.) 1 (ref.)
miR-423-A 168/320 52% 169/266 63.5% 1.57 (1.13–2.19) 1.22 (1.05–1.41) 0.007

Our results indicated that in the codominant model, the AA genotype of the microRNA-
423 polymorphism was linked with increased SCD severity with OR 2.36 (95%) CI = (1.15–
4.84), RR = 1.51 (1.09–2.09), p < 0.018. In case of dominant inheritance model, (CA + AA) vs.
CC genotypes are not associated with SCD severity with OR = 1.47 (95%) CI (0.78–2.78),
RR = 1.17 (0.91–1.51), p < 0.23 (Table 4). In case of the recessive model, (CC + CA) vs. (AA)
genotypes were associated with increased Sickle cell disease severity with OR = 2.19 (95%)
CI (1.32–3.62), RR = 1.46 (1.12–1.92), p < 0.002. The microRNA-423 AA allele is associated
with SCD severity with OR = 1.57 (95%) CI (1.13–2.19), RR = 1.22 (1.05–1.41), p < 0.007)
(Table 5) and may be considered to be genetic modifiers.

3.6. Association of VEGF-2578 C>A Gene Variation with SCD Susceptibility Utilizing
Multivariate Analysis

A multivariate analysis based on logistic regression such as odds ratio (OD) and risk
ratio (RR) with 95% confidence intervals (CI) were calculated for each group to estimate
the association between VEGF-2578 C>A genotypes and risk to SCD and the data are
summarized in Table 5. Our results indicated that in the codominant model, the VEGF-
2578-CA genotype was strongly associated with increased SCD severity with OR 2.56 (95%)
CI = (1.36 to 4.82) RR = 1.69 (1.16 to 2.45) p < 0.003 whereas VEGF-2578-AA genotype was
not associated with SCD severity with OR 0.65 (95%) CI = (0.29 to 1.42), RR = 0.84 (0.63 to
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1.130) p < 0.28. The VEGF-2578-A allele was not associated with Sickle cell disease severity
with OR = 1.18 (95%) CI (0.77–1.81), RR = 1.08 (0.08–1.32), p < 0.44) (Table 6).

Table 6. Association of VEGF-2578 C>A gene variation in SCD cases and controls.

Genotypes Healthy Controls SCD Cases OR (95% CI) Risk Ratio (RR) p-Value

(N = 105) (N = 105)

Codominant ant inheritance
model

VEGF-2578-CC 54 43 1 (ref.) 1(ref.)
VEGF-2578-CA 24 49 2.56 (1.36–4.82) 1.69 (1.16–2.45) 0.003
VEGF-2578-AA 25 13 0.65 (0.29–1.42) 0.84 (0.63–1.130) 0.28

Dominant ant inheritance model
VEGF-2578-CC 54 43 1 (ref.) 1 (ref.)

VEGF-2578 (CA + AA) 49 52 1.33 (0.76–2.33) 1.14 (0.87–1.50) 0.314
Recessive ant inheritance model

VEGF-2578(CC + CA) 78 62 1 (ref.) 1 (ref.)
VEGF-2578-AA 25 13 0.65 (0.30–1.38) 0.82 (0.63–1.07) 0.26

Allele
VEGF-2578-C 132 105 1 (ref.) 1 (ref.)
VEGF-2578-A 69 65 1.18 (0.77–1.81) 1.08 (0.88–1.32) 0.44

3.7. Association of HbA1, HbA2, HbF and HbS with miR-423 rs6505162 Genotypes in
SCD Patients

The important laboratory characteristics HbA1, HbA2, HbF and HbS of patients
with sickle cell disease were compared with the miR-423 C>A genotypes as depicted in
Table 7. The higher expression of fetal hemoglobin HbF was reported in SCD patients
carrying CA genotype of miR-423 rs6505162 CA-0.98%) followed by genotype CC-0.64%
and AA-0.59%. Similarly, the patients (SCD) carrying miR-423 CC genotype, the mean %
percentage expression level of different hemoglobin variants HbA1, HbA2, HbF and HbS
were 64.53%, 3.36%, 0.64% and 35.6%, respectively, and Sickle cell disease patients carrying
miR-423 AA genotype, the mean percentage expression level of different hemoglobin
variants HbA1, HbA2, HbF and HbS were 65.9%, 4.40%, 0.59% and 36.1%, respectively
(Table 7), and patients carrying miR-423 with heterozygosity genotype (miR-423 CA) the
mean percentage expression level of different hemoglobin variants were HbA2, HbA1, HbF
and HbS 3.74%, 59.98%, 0.98% and 38.1%, respectively. Clinical association of HbA1, HbA2,
HbF and HbS with miR-423 genotypes in SCD patients is summarized in Figure 4.

Table 7. HbA1, HbA2, HbF and HbS association with miR-423 rs6505162 genotypes in SCD patients.

MiR-423
Genotypes

HbA1
(Mean ± SD) p Value HbA2

(Mean ± SD) p Value HbF
(Mean ± SD) p Value HbS

(Mean ± SD) p Value

CC (18) 63.3 ± 8.1 0.54 3.36 ± 0.57 0.45 0.64 ± 0.57 0.49 35.6 ± 3.3 0.35
CA (61) 59.8 ± 14.8 3.74 ± 2.90 0.98 ± 2.3 38.1 ± 11.0
AA (48) 65.9 ± 11.8 4.40 ± 4.50 0.59 ± 0.95 36.1 ± 4.1
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4. Discussion
4.1. Role of ARMS-PCR for SNP Studies

MiRNAs are a group of non-coding RNAs of ~22 nucleotides in length. They post-
transcriptionally control the expression of their target genes as well as chromatin-remodeling,
differentiation, apoptosis, and proliferation. Decreased fetal hemoglobin in SCD patients is
a big issue. Increasing fetal hemoglobin (HbF) is a significant therapeutic tool to overcome
anemia and ineffective hematopoiesis. Different modalities including hydroxyurea, epi-
genetic modifications and microRNA-based regulation are used for induction of γ globin
which may be used for therapeutic purposes in β-thalassemia and SCD patients. Recently
it has been possible to increasing γ globin gene expression and fetal hemoglobin (HbF)
production in these patients [25].

Although several sophisticated techniques and tools are applied to study genotyping
and clinical diagnosis, but most of them are very complex, expensive for the laboratories
in undeveloped countries. Previously, β-thalassemia prenatally was diagnosed by suc-
cessfully using ARMS-PCR system in China and in Iran (Fu et al., and Moghadam et al.),
respectively [26,27]; Chiu et al., utilized ARMS-PCR to detect the wild as well as mutant
mitochondrial tDNA heteroplasmies [28], whereas ARMS-PCR was applied to the antenatal
diagnosis of cystic fibrosis [29]. Rashid Mir et al., applied ARMS-PCR for studying geno-
typing in coronary artery disease, breast cancer and also utilized ARMS-PCR for microRNA
genotyping [30–33]. Recently, Singh et al. [34] utilized ARMS PCR for prenatal diagnosis
for SCD. Similarly, Aquino et al. [35] utilized ARMS PCR to detect known mutations of
Cystic fibrosis transmembrane conductance regulator (CFTR) gene in Peruvian patients.
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ARMS-PCR and DNA sequencing was combined in East-Western Indian population for
better management for the diagnosis of β-thalassemia [36]. Keeping all these studies in
mind, it is recommended that ARMS-PCR may be utilized in the prenatal as well as post-
natal diagnosis of various genetic diseases. Researchers in the past have used different
techniques for genotyping of specific polymorphic nucleotide loci [37–49]. In this study we
have successfully optimized the ARMS-PCR assay to study the genotyping of miR-423 and
VEGF in SCD.

4.2. Steps for Optimization of ARMS-PCR Primers

The ARMS PCR is a powerful technique for detecting any mutation involving a single-
base change. However, the optimization step required hard work and is time-consuming.
For optimization of miR-423-rs6505162 C>T and VEGF-2578 C>A genotyping a gradient
PCR was performed using different annealing temperatures and a lesser number of cycles
were used (25 to 30 cycles). We made some small changes in the reagent concentrations,
which significantly affected the PCR—especially MgCl2. Balancing the inner primers band
was a key step. In order to balance the inner primers band, it was important to observe
the band intensity and which band was the weakest in order to promote this band by
increasing its concentration. This optimization for miR-423-rs6505162 C>T and VEGF-2578
C>A genotyping was achieved in a series of optimization experiments in a single run by the
gradient PCR machine following some previous reported studies [21–24]. The annealing
temperature via gradient PCR was optimized from 58 ◦C to 62 ◦C, but the best results were
obtained at a temperature 62 ◦C for miR-423-rs6505162 C>T as depicted in Figures 1 and 2.
Similarly, the best results were obtained for VEGF-2578 C>A genotyping at a temperature
58 ◦C as depicted Figure 3. The use of our ARMS-PCR for of miR-423-rs6505162 C>T and
VEGF-2578 C>A genotyping fulfils our goal. ARMS-PCR proved to be rapid, accurate,
inexpensive and highly applicable.

4.3. Association of miR-423 rs6505162 C>A Genotypes and Fetal Hemoglobin in Sickle
Cell Disease

Sickle cell disease (SCD) is a Mendelian disorder caused by a point mutation leading
to a single amino acid substitution (Glu → Val) in the beta subunit of hemoglobin, the
principal oxygen transporter in red blood cells. It has been estimated that SCD results
in the annual loss of several millions of disability-adjusted life years, particularly in the
developing world. Recent studies have shown that together, common SNPs at the BCL11A,
HBS1L-MYB, and beta-globin (HBB) loci account for >20% of the variation in HbF levels
in SCD patients and provide a clear example of inherited common sequence variants
modifying the severity of a monogenic disease [49,50]. A large variety of regulatory factors
that control the transcription of HbF has been discovered [51]. A number of studies have
indicated towards the regulation of fetal hemoglobin being mediated by miRNAs. It was
demonstrated post-transcriptional regulation of HU-mediated γ-globin expression through
miRNA in SCD patients [52–54].

4.4. Hemoglobin Variables and microRNA-423 Genotypes

Fornari et al. [55] reported that the alterations in expression of microRNAs (miR-
503/-144/-320/-451/-146/ etc.) in sickle cells or in thalassemic compared with normal
RBCs may induce clinical severity these patients. Moreover, it is now proved that miRs
are transcriptionally regulating erythroid-specific genes such as KLFs and Kruppel-like
transcription factor D (KLFD) and therefore are involved in the regulation of expression
of globin genes. Therefore, it can be argued that changes in expression of these small
microRNAs are effective in reducing clinical complications in thalassemic patients. We
studied the association of microRNA-423 with hemoglobin variables HbA1, HbA2, HbF and
HbS of the patients with sickle cell disease were compared with the 3 genotypes (AA, AC
and CC) of miR-423. The p values using unpaired t-test was calculated by comparing alleles
with each other. In case of Sickle cell disease patient, those with miR-423 CC genotype,
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the mean percentage levels for HbA1, HbA2, HbF and HbS reported were 64.53%, 3.36%,
0.64% and 35.6%, respectively, whereas among SCD patients with miR-423 AA genotype,
the mean percentage levels were 65.9%, 4.40%, 0.60% and 36.1%, respectively (Table 7).
Similarly, it was observed that in case of SCD patients with miR-423 CA genotype, the
mean percentage levels for HbA1, HbA2, HbF and HbS were 59.98%, 3.74%, 0.98% and
38.1%, respectively.

Interestingly, HbS level was observed to be 65% in the patient who possessed both
miR-423 AA and miR-423 CA genotypes. It was reported that an increased risk of Sickle cell
disease severity was observed with miR-423 AA genotype. Byon et al. [56] reported that
miR144/NRF2 regulatory mechanism predisposes HbSS to hemolysis, oxidative stress and
more severe anemia. Therefore, erythrocyte microRNA expression manipulation provides
a new approach to reduce clinical and pathological signs in SCD patients.

Duraisingh et al. [57] reported in his study that inhibition of the translocation of
miR-451 and miR-223, by using 2′-O-methyl antisense oligonucleotides, reduced sickle cell
resistance to malaria. This indicates that the induction of these microRNAs in infected cells
can be used for host cell defense against pathogens. Frequency of miR-423 rs6505162 C>A
genotypes in different population was determined as depicted in Table 8.

Table 8. Frequency of miR-423 rs6505162 C>A genotypes in different population.

Country Controls CC CA AA References

IRAN 300 141 (47%) 123 (41%) 36 (12%) [45]
China 530 342 (64.53%) 170 (32.8%) 18 (3.40%) [46]
Japan 623 412 (66.13%) 190 (30.5%) 21 (3.37%) [47]

South America 807 284 (35%) 385 (48%) 138 (17%) [48]
Australia 174 42 (24.14%) 80 (45.98%) 52 (29.89%) [41]

South Africa 572 12 (2.1%) 184 (32.2%) 376 (65.7%) [42]
Our study 160 30 (18.75%) 92 (57.5%) 38 (23.75%)

5. Conclusions

Collectively, our amplification-refractory mutation system (ARMS) has been proven
to be rapid, accurate, sensitive, and inexpensive and is highly applicable for miR-423
rs6505162 and vascular endothelial growth factor gene variation VEGF-2578 C>A screening
in laboratories and clinical practices. This research highlights the significance of elucidating
genetic determinants that play roles in the amelioration of the HbF levels, that is used
as an indicator of severity of clinical complications of the monogenic disease. Further
well-designed studies with larger sample sizes are necessary to confirm our findings.
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