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Paclitaxel is a successful anti-cancer drug that kills cancer cells in two-dimen-

sional culture through perturbation of mitosis, but whether it causes tumour

regression by anti-mitotic actions is controversial. Drug candidates that specifi-

cally target mitosis, including inhibitors of kinesin-5, AurkA, AurkB and Plk1,

disappointed in the clinic. Current explanations for this discrepancy include

pharmacokinetic differences and hypothetical interphase actions of paclitaxel.

Here, we discuss post-mitotic micronucleation as a special activity of taxanes

that might explain their higher activity in solid tumours. We review data show-

ing that cells which exit mitosis in paclitaxel are highly micronucleated and

suffer post-mitotic DNA damage, and that these effects are much stronger

for paclitaxel than kinesin-5 inhibitors. We propose that post-mitotic micro-

nucleation promotes inflammatory signalling via cGAS–STING and other

pathways. In tumours, this signalling may recruit cytotoxic leucocytes,

damage blood vessels and prime T-cell responses, leading to whole-tumour

regression. We discuss experiments that are needed to test the micro-

nucleation hypothesis, and its implications for novel anti-mitotic targets and

enhancement of taxane-based therapies.
1. Introduction
From the early 1990s to the mid-2010s, the mitosis field engaged in a grand exper-

iment, to identify proteins other than tubulin that are essential for mitosis in human

cells, develop clinical grade small molecule inhibitors and test them for anti-cancer

action in man. The hope was for broad-spectrum anti-cancer drugs lacking the

neurotoxicity of taxanes. The first two arms were highly successful, and the field

is now blessed with potent and specific inhibitors of several essential mitosis pro-

teins including two kinesins (kinesin-5, CenpE) and three kinases (AurkA, AurkB

and Plk1). The clinical arm was much less successful. Most compounds lacked effi-

cacy at the toxicity limit, which was mostly set by neutropenia or gut toxicity [1–3].

This clinical failure, across multiple mitosis-specific targets, sharply decreased

pharmaceutical company interest in targeting mitosis. Its causes have been

reviewed, with different authors focusing on the low proliferation rate in cancer

cells [4,5] or differential pharmacodynamics (PD) [6].

The clinical failure of mitosis-specific drugs tested to date stands in stark con-

trast with the success of drugs that target microtubules, which include vinca

alkaloids, taxanes, ixabepilone and eribulin. All these drugs perturb mitosis as

their primary cytotoxic action in two-dimensional tissue culture, but whether

this is their therapeutic action in patients is controversial [4–6]. The purpose of

this review is to advance a hypothesis that is new to our knowledge, that the suc-

cess of taxanes in solid tumour treatment is due to their ability to induce multiple

micronuclei in cells that pass through mitosis in the presence of drug, which we

will term ‘micronucleation’. The mitosis-specific drugs tested to date exhibit

weaker micronucleation activity, which might explain their clinical failure.

Micronuclei are small nuclei containing one or a few chromosomes that

form due to mitotic chromosome segregation errors. Individual misplaced
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Figure 1. Three models for the anti-tumour actions of paclitaxel (illustration by T.J.M.). (a) Anti-mitotic actions that cause cell-autonomous death via mitotic arrest
or chromosome mis-segregation. This well-characterized action accounts for essentially all cell killing in two-dimensional cell culture and is shared with mitosis-
specific drugs [16,17]. (b) Interphase actions that cause cell-autonomous death of non-dividing cells. Proposed pathways include activation of MAPK signalling
[18,19] and inhibition of cytoplasm – nucleus trafficking [20]. Mitosis-specific drugs lack these actions. (c) New model for whole-tumour action via inflammatory
micronucleation. Perturbation of mitosis and cytokinesis by taxanes generates G1 cells with multiple micronuclei [7]. Small micronuclei are coloured orange to signify
possible DNA damage [9] and cGAS recruitment. These effects in micronuclei activate inflammatory signalling, causing secretion of inflammatory cytokines and
chemokines that promote whole-tumour regression in sensitive patients.
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chromosomes recruit a nuclear envelope during telophase, and

once formed, micronuclei typically do not fuse with the main

nucleus. Paclitaxel induces dramatic segregation errors, lead-

ing to partitioning of the genome into many small nuclei

that we term ‘micronucleation’. This effect was noted in early

cytological studies of taxane action in two-dimensional culture,

particularly at low drug concentrations that do not pro-

mote mitotic arrest [7,8]. We revisit it in the light of recent

discoveries that micronuclei undergo dramatic DNA damage

[9] and nuclear envelope rupture [10], and can activate

the pro-inflammatory cGAS–STING pathway [11,12]. Pro-

inflammatory signalling has the potential to cure tumours

[13], and direct activation of the cGAS–STING pathway by

small molecule STING agonists eliminates solid tumours in

mice [14,15]. Putting all these data together, we propose that

inflammatory signalling, caused by micronucleation, plays a

central role in taxane action in tumours (figure 1c), and we

will discuss this idea in detail below.

Tumour inflammation, and its role in therapy, is a hugely

complex area that we will only touch on here. Our main goal

is to draw attention to micronucleation as an underappreciated

discriminating factor between taxanes and mitosis-specific

drugs, and to review recent data on activation of inflammatory

pathways by damage to the cell nucleus. We hope to open a

new line of discussion around taxane action and potential

novel cancer targets in mitosis. We emphasize that our model

is speculative, that we respect alternative viewpoints and that

more data are needed to decide these complex issues.
2. How do taxanes work in solid tumours?
Taxanes are among the most important drugs for solid tumour

treatment, and their clinical activity is still being optimized.

They bind to microtubules and stabilize the lattice, which inhi-

bits dynamic instability and promotes ectopic nucleation. Two

main models have been advanced to explain their anti-tumour

activity. Figure 1a illustrates the standard anti-mitotic model,

in which perturbation of mitosis causes cell-autonomous death
of the dividing cell. This is the predominant action in tissue cul-

ture [6,21–23]. High taxane concentrations arrest dividing cells

in mitosis by preventing silencing of the spindle assembly check-

point (SAC). Subsequent behaviour is highly variable between

cell lines and individual cells. Arrested cells can die inside mito-

sis, or slip out by cyclin B degradation. After mitotic exit they can

die, undergo senescence or re-enter the cell cycle progression.

Mitotic arrest is not necessary for mitosis-dependent cell

death. Paclitaxel promotes chromosome mis-segregation at

concentrations too low to cause mitotic arrest, which can lead

to late cell death [7,8]. This action might be particularly relevant

in tumours as the drug concentration decreases over time follow-

ing a dose [24]. The clinical relevance of the anti-mitotic model

was strongly criticized from the perspective that the slow

proliferation rate in solid tumours is inconsistent with any

model where only cells that divide in drug are killed [4].

Figure 1b illustrates the main alternative proposed by Fojo

and others. In this model, taxanes act on interphase cells, e.g.

to perturb nucleus–cytoplasm trafficking [20,25] or MAPK

signalling [18,19], and this leads to cell-autonomous death.

This interphase killing model naturally accounts for the clinical

difference between taxanes and mitosis-specific drugs. The

main deficiency we see with this model is the lack of definitive

experimental systems where stabilization of interphase microtu-

bules causes death of non-dividing cancer cells. Many studies

have investigated alternative mechanisms of cell killing in two-

dimensional cultures, but most are clouded by failure to critically

discriminate mitosis-dependent versus -independent actions.

Time-lapse imaging is arguably the best way to do this [16].

Figure 1c proposes an alternative ‘inflammatory micronu-

cleation’ model that is new to our knowledge, though related

to other recent proposals [22,24]. It highlights the well known,

but underappreciated, mitosis-dependent micronucleating

activity of taxanes, and proposes inflammatory signalling to

amplify signals from a small fraction of dividing cells to elimin-

ate the whole tumour. It makes multiple untested assumptions,

and must be considered speculative. The central propositions of

this model are: (i) micronucleation is a special action of taxanes

and epothilones on dividing cells that is not shared with current
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mitosis-specific drugs, (ii) micronucleation promotes inflamma-
tory signalling and (iii) inflammatory signalling from a subset

of cells that pass through mitosis in drug promotes whole-
tumour regression, at least in sensitive patients. Micronucleation

can occur at taxane concentrations well below those required

for mitotic arrest, and micronucleated cells can persist for

days. These effects will likely lead to gradual accumulation of

multi-nucleated cells in a drug-treated tumour, unlike apoptotic

cells, which are rapidly cleared by phagocytosis. Below, we will

review evidence that leads us to propose the micronucleation

model, suggest experiments to test it and briefly discuss impli-

cations for novel anti-mitotic targets and taxane pharmacology.
en
Biol.7:170182
3. Why did current mitosis-specific drugs
fail in the clinic?

All available data on drugs that inhibit kinesin-5, CenpE,

AurkA, AurkB and Plk1 attest that they can cause lethal pertur-

bation of cell division by direct anti-mitotic actions (figure 1a). If

they were present in patients at sufficient concentration for suf-

ficient time, they should eliminate tumours by this mechanism.

The problem is therapeutic index. All these proteins are equally

required for mitosis in normal cells, and cell division occurs

more frequently in the bone marrow and gut than in solid

tumours [4,5]. Promyelocytes in the bone marrow are the fastest

dividing cell population in adults, which likely explains why

neutropenia was the dose-limiting toxicity of many of the

drug candidates that specifically target mitosis [3]. The need

to avoid bone marrow and gut toxicity presumably limited

drug exposure in patients to below that required to cause

tumour regression. Fojo and co-workers [4] argued that given

the low proliferation rate in solid tumours compared to

normal tissues, we cannot expect useful therapeutic index

from purely anti-mitotic actions of any drug. This argument is

strong, but it assumes that drug-induced cell death is cell-auton-

omous. We could rescue the anti-mitotic hypothesis if taxane

action on mitosis causes extensive bystander killing, while the

action of mitosis-specific drugs on mitosis does not [5].

The clinical failure of the mitosis-specific drugs raises

serious criticisms of the assays that were used to advance

them to the clinic. Fojo and co-workers [4] emphasized that

two-dimensional cell cultures and mouse tumour models all

exhibit cell division rates that are much higher than human

tumours, and thus tend to over-predict the efficacy of drugs

with cell cycle targets. We agree, but here we focus on a different

issue, lack of measurements of inflammatory signalling during

drug development. If solid tumours are eliminated by the con-

sequences of this signalling, then measuring it in culture would

better predict tumour responses than measuring cell death or

inhibition of proliferation. Another criticism is that mouse

studies appear to have systematically under-predicted the

bone marrow toxicity of mitosis-specific drugs, and rats may

provide a better model for this likely dose-limiting toxicity [26].
4. Paclitaxel and kinesin-5 inhibitors differ
in post-mitotic micronucleation and DNA
damage

It is instructive to compare the cellular actions of taxanes to

mitosis-specific drugs in pre-clinical models to try and
understand why paclitaxel is much more active as a solid

tumour treatment in man. We will focus only on kinesin-5

inhibitors (K5Is) for simplicity. To what extent our arguments

extend to inhibitors of mitotic kinases is an important open

question. K5Is were the first mitosis-specific drugs to be

tested in man, led by ispinesib from Cytokinetics/GSK [27].

K5I-treated cells arrest in mitosis with monopolar spindles

[28], and most K5Is are extremely specific because they

target allosteric pockets in the motor domain [29]. Our group

and others directly compared the cellular actions of paclitaxel

to K5Is in cell culture and mouse tumour models [17,30–33].

Differential cell killing during mitotic arrest is likely not a

discriminator between paclitaxel and K5Is. Both drugs arrest

cells in mitosis by preventing silencing of the same SAC.

Arrested cells eventually exit mitosis by degradation of cyclin

B without SAC inactivation, in a process termed mitotic slip-

page [34]. The duration of mitotic arrest and the fraction of

arrested cells that die in mitosis versus those that slip out of

mitosis were similar between paclitaxel and a K5I when the

two drugs were compared at high concentrations that

promoted strong mitotic arrest [17].

Interphase action is certainly a discriminator, though its

clinical significance is unclear. Paclitaxel promotes stabiliz-

ation and ectopic bundling of microtubules throughout the

cell cycle, while the only known function of kinesin-5

(a.k.a. Kif11, Eg5, KSP) is to separate the poles of the mitotic

spindle. The unresolved questions are if, and how, taxanes

kill non-dividing cancer cells in tumours, and the extent to

which interphase killing contributes to therapy. Potential

interphase actions of paclitaxel were reviewed briefly above;

the focus of this review is on mitosis-dependent actions.

Pharmacokinetics (PK) and PD may be discriminators.

Paclitaxel tends to persist in solid tumours for many days, pre-

sumably bound to microtubules [6,35], while K5Is exhibit more

ordinary pharmacology [1]. Paclitaxel causes chromosome seg-

regation errors and micronucleation after mitotic exit at low

concentrations that do not cause mitotic arrest [24,36]. These

low-concentration effects, combined with prolonged residence

of the drug in tumours, may well contribute to the higher

clinical efficacy of taxanes.

Micronucleation is the discriminator we focus on in this

review. As pointed out by Wilson and co-workers [7], cells that

pass through a paclitaxel-inhibited mitosis in two-dimensional

culture tend to exhibit multiple micronuclei, a morphology we

refer to as ‘bunch of grapes’ nuclei (figure 2). In marked contrast,

cells that slip out of K5I-inhibited mitosis tend to have a single

large nucleus. Head-to-head comparison in two-dimensional

culture and a mouse tumour model noted much stronger

micronucleation after exit from mitosis in paclitaxel than a K5I

(figure 2). For cytological analysis of micronucleation, it is

important to distinguish it from apoptosis, because both cause

a multi-lobed appearance of the nucleus. Chromatin is much

more condensed during apoptosis, and apoptosis leads to cell

rounding and blebbing shortly followed by lysis (in culture) or

removal by phagocytosis (in tumours). Multi-nucleated cells,

by contrast, decondense their chromatin and they can persist

for days after exiting from a drug-treated mitosis.

Post-slippage DNA damage is another potentially

important discriminator that is mechanistically linked to micro-

nucleation. Figure 3a shows data abstracted from papers where

we measured markers of apoptosis, mitosis and DNA damage

in parallel across four cell lines treated with saturating concen-

trations of paclitaxel versus a K5I [17]. The effects of the two
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treatment with paclitaxel (100 nM) or a K5I (K858, 10 mM). Most cells have slipped out of drug-arrested mitosis at this time point. Note multiple micronuclei in paclitaxel
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drugs were very similar in lines that tend to undergo apoptosis

during mitotic arrest or shortly afterwards (HeLa, U2OS). Note

that apoptosis (marked by Parp1 cleavage) triggered strong

DNA damage (marked by Phos-H2AX) due to DNA fragmenta-

tion by CAD nuclease. Here, we draw attention to extensive

DNA damage that occurred in cells that exited mitosis in pacli-

taxel but did not initiate apoptosis, as is the case for A549 and

RPE cells at 48 and 72 h (red asterisks in figure 3). This DNA

damage signal was much stronger in paclitaxel than K5I (com-

pare red asterisks to blue circles). At the time we did not

understand its cause. In the light of new data on induction of

DNA damage in micronuclei [9], we hypothesize this pacli-

taxel-specific, post-slippage, non-apoptotic DNA damage was

caused by extensive micronucleation after slippage out of pacli-

taxel-treated mitosis, followed by micronucleus-triggered DNA

damage. Consistent with this interpretation, figure 3b shows

cytological evidence for DNA damage in a micronucleated

cell from a more recent paper [33].
5. Paclitaxel micronucleation mechanism
The mechanisms by which paclitaxel promotes strong micronu-

cleation have not been studied in detail, and warrant further

analysis. We suspect at least two effects are at play based on

published cytology (figure 4). Mitotic spindles tend to assemble

with multiple poles in paclitaxel, even at low drug concen-

trations that do not promote strong mitotic arrest [24]

(figure 4a). Ectopic poles are probably caused by ectopic micro-

tubule nucleation, followed by clustering of minus ends by

dynein and NUMA [39]. Kinesin-5 knockdown reduced micro-

nucleation by paclitaxel, suggesting that kinesin-5 helps keep

ectopic poles separated [33]. The presence of multiple spindle
poles presumably leads to separation of chromosomes into mul-

tiple groups at anaphase onset. When paclitaxel-treated cells

exit mitosis, they tend to exhibit ectopic cleavage furrows

(figure 4b,c) [37,38]. These likely partition chromosome clusters

into separate pockets of cytoplasm, keeping them separated

during the critical period for nuclear envelope reformation in

telophase. Ectopic furrows may result from recruitment of

the furrow-stimulating complexes CPC and centralspindlin to

Taxol-stabilized microtubule bundles [38,40]. Paclitaxel’s

combined effects of promoting multi-polar spindles and trig-

gering ectopic cleavage furrows are not shared with current

mitosis-specific drugs, and likely endow it with higher

micronucleation activity.
6. DNA damage and nuclear envelope
breakdown in micronuculei

Pioneering work from Pellman and co-workers [9] showed that

the DNA in micronuclei formed by chromosome segregation

errors tends to undergo extensive DNA damage, while the

main nucleus in the same cell is spared. They went on to

show this can account for the phenomenon of chromothripsis,

where single chromosomes are fragmented and rearranged

during cancer progression [41]. Separately, Hetzer and co-

workers [10] showed that micronuclei tend to undergo cata-

strophic nuclear envelope breakdown that exposes their

DNA to the cytoplasm. The relationship between these obser-

vations, and the mechanisms that induce them, is under

intense investigation. These observations were made in cells

with only one or a few micronuclei, but the data in figure 2

suggest that taxane-induced micronucleation also causes

extensive DNA damage.
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7. Inflammatory signalling in
micronucleated cells

Figure 5 illustrates four candidate inflammatory pathways that

may be activated in micronucleated cells. This list is far from

exclusive, and other pathways likely remain to be discovered.

The top row in figure 5b illustrates nuclear export of DNA

fragments following DNA damage [42,43]. Once exported,

these fragments can bind to the cytosolic DNA sensor cGAS.

DNA binding triggers synthesis of the second messenger

2030cGAMP which binds to STING [44]. STING then activates

the TBK1–IRF3 pathway, leading to expression of inflamma-

tory cytokines and chemokines including interferons. The

second row illustrates cGAS activation by nuclear envelope col-

lapse, which is relatively frequent in micronuclei [10]. This

route to cGAS activation by micronuclei was recently impli-

cated in the response to tumours to DNA damaging drugs

and radiation [45,46]. Several other candidate nucleic acid sen-

sors might also recognize DNA after nuclear export or/and

nuclear envelope rupture [47]. The third row illustrates nuclear

export of the chromatin protein HMGB1, which occurs via

acetylation in response to DNA damage and other inflamma-

tory triggers. Extracellular HMGB1 acts as an alarmin to

activate inflammatory signalling [48], and was shown to pro-

mote anti-tumour inflammation in response to DNA damage

in a mouse model [49]. Extracellular HMGB1 has also been

implicated in response of human cancer to chemotherapy

[50], so it is an important candidate factor when considering
inflammatory responses to nuclear damage. The last row illus-

trates an interesting pathway by which tension in an intact

nuclear envelope promotes cPLA2 and 5-lipoxygenase acti-

vation, leading to secretion of pro-inflammatory leukotrienes.

This pathway was shown to mediate chemotaxis of leucocytes

to wounds in zebrafish, where the trigger was osmotic swelling

of nuclei at the wound margin [51]. Micronuclei might trigger

cPLA2 activation and inflammatory leukotriene release if their

envelope is under tension due to abnormally high surface

area/volume ratios.

Secretion of inflammatory cytokines by micronucleated

cells (figure 1c) conceptually resembles inflammatory signal-

ling by senescent cells that have entered the ‘senescence-

associated secretory phenotype’ (SASP) [22]. Data in recent

papers suggest that this similarity may extend to causal mech-

anisms. Induction of senescence by DNA damage, oncogenes

and ROS was shown to depend on cGAS–STING signalling

[52–54]. The trigger in each case was blobs of chromatin in

the cytoplasm of senescing cells that morphologically resemble

micronuclei without nuclear envelopes, but are thought to

form in a mitosis-independent manner, by extrusion from

interphase nuclei. These chromatin blobs presumably signal

in the same way as micronuclei whose envelopes have

ruptured (figure 5b, second row). The morphological and sig-

nalling similarities between micronucleated and senescent

cells revealed by these studies suggest that we might think of

taxanes as drugs that promote mitosis-dependent SASP, as

proposed by Cheng & Crasta [22].
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8. From inflammation to whole-tumour
responses

Inflammation can drive carcinogenesis and help tumours grow.

Sufficiently strong inflammation can also destroy tumours.

Which effects dominate under particular conditions is an

intense current research topic. Untreated tumours are infiltrated
with diverse leucocytes at baseline, to an extent that varies

widely between patients [13]. Chemotherapy and radiation

cause large changes in leucocyte infiltration and stromal inflam-

matory signalling which can oppose, or promote, therapy

depending on the context [55]. Tumour-associated macro-

phages present at baseline tend to protect mouse tumours

from taxanes [56]. In human breast tumours, paclitaxel
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caused a large influx of new macrophages, the extent of which

correlated with response to therapy [57]. Taxane-induced leuco-

cyte infiltration was also observed in a subset of mouse

syngeneic tumour models, where it again correlated with

strong responses [58]. Whether taxane-induced infiltrating leu-

cocytes play a causal role in tumour regression, protect cancer

cells or are merely cleaning up cell corpses killed by the drug

is unknown.

The best evidence that strong inflammatory signalling can

cause tumour regression comes from the therapeutic activity

of directly pro-inflammatory anti-cancer drugs. For example,

the TLR agonist imiquimod clears basal carcinomas in man

via local inflammation [59], and the STING agonist DMXAA

caused tumour regression in mice via vascular disruption

and immune activation [60]. Whether taxane-treated human

tumours contain sufficient multi-nucleated cells to drive a

therapeutically useful, whole-tumour inflammatory response

in an important open question.
9. Tumour selectivity
Taxane toxicities include neutropenia, alopecia, mucositis, der-

matitis and peripheral neuropathy, so their actions are far from

tumour-specific. However, they destroy solid tumours but not

normal tissues in sensitive patients, so they do have a useful

therapeutic index. None of the arguments above, or literature

proposals we are aware of, explain this selectivity. Micronu-

cleation alone does not help, because it should occur in

normal dividing cells in the bone marrow and gut by the

same mechanisms as in tumours, likely at a higher density

due to the higher proliferation rate. Perhaps cell cycle check-

points prevent progression to S-phase in micronucleated

normal cells, but not in drug-sensitive cancer cells, resulting

in more DNA damage-driven inflammatory signalling in

tumours. Alternatively, inflammatory responses may be

mis-regulated at the tissue-scale in tumours, e.g. tumour vascu-

lature may be hyper-sensitive to inflammatory cytokines. In

this case, similar inflammatory signalling by micronucleated

cells would only cause tissue-scale destruction in tumours.

The source of the therapeutic index in taxane chemotherapy

is a crucial unanswered question.
10. Testing the inflammatory
micronucleation model

The degree to which different anti-mitotic and microtubule-

targeting drugs promote micronucleation after mitotic

slippage has not, to our knowledge, been systematically

measured or compared except for the K5I comparisons cited

in figure 2. This should be straightforward in two-dimensional

culture using high content assays, and is feasible in tumour

models using histology and intravital microscopy [32]. We pre-

dict that taxanes promote more extensive micronucleation

that any current mitosis-specific drugs. Comparisons between

anti-microtubule drugs will also be interesting. Epothilone B

(a stabilizing drug) cause more micronucleation than discoder-

molide (a destabilizer) in one study [8]. The microtubule

destabilizing anti-cancer drug eribulin, which is approved for

breast cancer treatment, was intermediate between paclitaxel

and a K5I in promoting micronucleation in a mouse tumour
model (figure 2c), but the number of mice sampled was too

small for this to be a definitive conclusion.

A second important question is whether taxane-induced

micronucleation activates inflammatory signalling in cancer

cells, and if so, through which pathways. Obvious next steps

are to measure inflammatory signalling in cells that have been

micronucleated by taxanes, and test the effect of knocking out

key pathway components such as cGAS, HMGB1 and cPLA2.

An interesting possibility is that taxane-promoted interphase

microtubule reorganization might synergize with micronuclea-

tion to promote inflammatory signalling. Comparison between

drugs in these assays will require cell lines that do not undergo

apoptosis during mitotic arrest or immediately after slippage,

and may also depend on an intact cGAS–STING pathway,

both of which vary across cancer cell lines.

We then need to know if taxanes promote inflammatory sig-

nalling in mouse tumour models, and if so, whether it is

micronucleation-dependent, and whether it causes whole-

tumour regression. A majorchallenge in this area is development

of syngeneic or humanized models that accurately predict

the immunobiology of human tumours, including response

of leucocyte populations and tumour vasculature to drug

perturbation [55].

Finally, and most important, will be to profile micronu-

cleation-dependent inflammatory signalling in cancer cells

from patients who do, and do not, respond to taxanes. As dis-

cussed below, selection against cGAS–STING-dependent

inflammatory signalling during cancer progression may be

a major factor shaping drug responses.
11. Novel targets in mitosis
Micronucleation is an unanticipated side effect of taxane action

on microtubules. Do other targets exist for deliberately trigger-

ing micronucleation? One candidate is the VRK1–BAF

pathway. BAF (a.k.a. BANF1) is a structural protein that med-

iates interaction between chromatin and nuclear envelope, and

it is regulated by VRK1 kinase. Depletion of VRK1 or BAF pro-

motes strong micronucleation of dividing cells [61,62]. It is

possible that a VRK1 or BAF inhibitor would cause tumour

regression via micronucleation as efficiently as paclitaxel, but

lack neurotoxic side effects. Systematic investigation might

reveal additional targets for micronucleation-promoting drugs.
12. Patient variation and drug resistance
Paclitaxel alone promotes tumour regression in approximately

half of drug-naive breast cancer patients [63], and similar

response variation is seen in other diseases. The cause of

patient-to-patient variation is unknown despite decades of

research. Relapsed disease is often refractory to further treat-

ment, and the mechanistic basis of acquired resistance is also

unclear. In cell culture, taxane resistance usually occurs by

upregulation of drug efflux pumps, but the relevance of this

mechanism in patients is unclear, and P-glycoprotein inhibi-

tors were not successful in the clinic [64,65]. An important

finding, in both mice and patients, is that the response of

drug-naive tumours to paclitaxel did not correlate with the

extent of mitotic arrest shortly after drug administration

[66,67]. This lack of correlation between a direct, cell-auton-

omous PD biomarker and tumour regression suggests that

response variation is often due to variation in pathways that
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act downstream of mitotic perturbation, such as inflammatory

signalling, more than to cell-autonomous factors such as tubu-

lin isotype or P-glycoprotein expression. Recent work showed

that cGAS and STING are required for senescence of pre-can-

cerous cells exposed to DNA damage or activated oncogenes,

and proposed that progression to cancer involves downregula-

tion or mutation of this pathway [52–54]. Selection for loss of

cGAS/STING signalling during cancer progression might

help explain patient-to-patient variation, and suggests bio-

markers for predicting high responders. Finally, we propose

that pharmacological amplification of residual cGAS/STING

signalling will promote taxane responses, and combat acquired

resistance. One possible target for such a drug is ENPP1, the
only enzyme known to break down the cGAS product

2030cGAMP [68], but additional negative inputs could likely

be identified and targeted.
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