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Abstract

Pigs are often colonized by more than one bacterial and/or viral species during respiratory tract infections. This
phenomenon is known as the porcine respiratory disease complex (PRDC). Actinobacillus pleuropneumoniae (App) and
porcine reproductive and respiratory syndrome virus (PRRSV) are pathogens that are frequently involved in PRDC. The main
objective of this project was to study the in vitro interactions between these two pathogens and the host cells in the
context of mixed infections. To fulfill this objective, PRRSV permissive cell lines such as MARC-145, SJPL, and porcine alveolar
macrophages (PAM) were used. A pre-infection with PRRSV was performed at 0.5 multiplicity of infection (MOI) followed by
an infection with App at 10 MOI. Bacterial adherence and cell death were compared. Results showed that PRRSV pre-
infection did not affect bacterial adherence to the cells. PRRSV and App co-infection produced an additive cytotoxicity
effect. Interestingly, a pre-infection of SJPL and PAM cells with App blocked completely PRRSV infection. Incubation of SJPL
and PAM cells with an App cell-free culture supernatant is also sufficient to significantly block PRRSV infection. This antiviral
activity is not due to LPS but rather by small molecular weight, heat-resistant App metabolites (,1 kDa). The antiviral
activity was also observed in SJPL cells infected with swine influenza virus but to a much lower extent compared to PRRSV.
More importantly, the PRRSV antiviral activity of App was also seen with PAM, the cells targeted by the virus in vivo during
infection in pigs. The antiviral activity might be due, at least in part, to the production of interferon c. The use of in vitro
experimental models to study viral and bacterial co-infections will lead to a better understanding of the interactions
between pathogens and their host cells, and could allow the development of novel prophylactic and therapeutic tools.
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Introduction

Respiratory disease in pigs is common in modern pork

production worldwide and is often referred to as porcine

respiratory disease complex (PRDC) [1]. PRDC is polymicrobial

in nature, and occurs following infections with various combina-

tions of primary and secondary respiratory pathogens. There are a

variety of viral and bacterial pathogens commonly associated with

PRDC including porcine reproductive and respiratory syndrome

virus (PRRSV) and Actinobacillus pleuropneumoniae (App) [1]. Both are

considered pathogens of major importance or relevance for the pig

industry [1]. Furthermore, bacterial-viral co-infections can exac-

erbate the pathogenicity of respiratory pig diseases [1]. For

example, co-infections with Mycoplasma hyopneumoniae and swine

influenza virus (SIV) exhibited more severe clinical disease [2],

PRRSV and Streptococcus suis co-infection experiments confirmed

that PRRSV predisposes pigs to S. suis infection and bacteremia

[3] and increases the virulence of PRRSV in pigs [4], M.

hyopneumoniae infection increases effectiveness of PRRSV infection

and lesions [5], and PRRSV infection was able to accelerate

Haemophilus parasuis infection and loads [6]. Those studies on co-

infections principally looked at the macroscopic lesions and at the

clinical signs. Only a few recent studies are investigating more

closely the direct interactions and mechanisms involved between

the pathogens. As an example, Qiao and collaborators showed

that PRRSV and bacterial endotoxin (LPS) act in synergy to

amplify the inflammatory response of infected macrophages [7].

Thus, it is crucial to develop new in vitro models to investigate in

more details the mechanistic and the interactions involved in

polymicrobial infections.

Porcine reproductive and respiratory syndrome (PRRS) is the

most economically devastating viral disease affecting the swine

industry worldwide [8]. The etiological agent, PRRSV, possesses a
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RNA viral genome with ten open reading frames [8–10]. PRRSV

virulence is multigenic and resides in both the non-structural and

structural viral proteins. The molecular characteristics, biological

and immunological functions of the PRRSV structural and non-

structural proteins and their involvement in the virus pathogenesis

were recently reviewed [8]. The disease induced by PRRSV has

many clinical manifestations but the two most prevalent are severe

reproductive failure in sows and gilts (characterized by late-term

abortions, an increased number of stillborn, mummified and weak-

born pigs) [11,12] and respiratory problems in pigs of all ages

associated with a non-specific lymphomononuclear interstitial

pneumonitis [11–13].

App is the causative agent of porcine pleuropneumonia, a severe

and highly contagious respiratory disease responsible for major

economic losses in the swine industry worldwide [14]. The disease,

transmitted by aerosol or by direct contact with infected pigs, may

result in rapid death or in severe pathology characterized by

hemorrhagic, fibrinous, and necrotic lung lesions. Exposure to the

organism may lead to chronic infection such that animals fail to

thrive; alternatively, they survive as asymptomatic carriers that

transmit the disease to healthy herds. Many virulence factors of

this microorganism have been well characterized [14–16]. To

date, fifteen serotypes of App based on capsular antigens have been

described [17,18]. The prevalence of specific serotypes varies with

geographic region [17].

Recent advances in pathogen detection methods allow better

understanding of interactions between pathogens, improve char-

acterization of their mechanisms in disease potentiation and

demonstrate the importance of polymicrobial disease [1]. In the

present study, the in vitro interactions between PRRSV and App in

PRRSV permissive cell models were investigated. Thus, MARC-

145 cells, SJPL cell line and pulmonary alveolar macrophages

(PAM) were used in this study since they have been shown

previously to be permissive to PRRSV infection and replication

[8,19]. Results indicate that App possesses a strong antiviral activity

against PRRSV in vitro.

Results

PRRSV Infection Effect on App Bacterial Adherence
Bacterial adherence of Appwt and AppDapxIDapxIIC to PRRSV-

infected and non-infected SJPL and MARC-145 cells was

compared (Figure 1). Prior infection of both cell types with

PRRSV did not significantly affect the adhesion of neither Appwt

nor AppDapxIDapxIIC strain.

Impact of App and PRRSV Co-infection on Cell
Cytotoxicity

Auger et al. 2009 [20] have previously published that SJPL cell

death induced by App occurs through necrosis and not apoptosis.

Consequently, based on this previous report, only a cytotoxicity

experiment was performed in order to verify if PRRSV infection

increases the cytotoxicity of App. Moreover, this assay was done to

confirm that inactivation of the toxins ApxI and ApxII in the

mutant AppDapxIDapxIIC reduces cell death seen with Appwt strain.

Thus, LDH cytotoxicity assays to detect cell death were performed

on cells infected with PRRSV for 72 hours and then co-infected

with Appwt strain or AppDapxIDapxIIC. As shown in Figure 2, the

cytotoxic activity of Appwt was higher in both cell lines after 2

hours of incubation, around 36% in SJPL cells (Figure 2A) and

around 14% in MARC-145 cells (Figure 2C) compared to the one

of AppDapxIDapxIIC mutant after 6 hours of incubation, which was

less than 15% in SJPL cells (Figure 2B) and around 7% in MARC-

145 cells (Figure 2D). As expected, the AppDapxIDapxIIC mutant is

markedly less cytotoxic than the parental strain Appwt. Thus,

AppDapxIDapxIIC mutant allows much longer incubation periods

with cells and facilitate in vitro observation. Furthermore, co-

infection with PRRSV and AppDapxIDapxIIC increased SJPL and

MARC-145 cells death compared to App single infection (Figure 2B

and D, respectively), showing an additive cytotoxicity effect of

PRRSV and AppDapxIDapxIIC. Because of its markedly reduced

cytotoxicity, the AppDapxIDapxIIC was used for all the subsequent

experiments.

App Effects on PRRSV Infection
In SJPL cells, co-infection with AppDapxIDapxIIC and PRRSV

shows absence of PRRSV N viral protein detection by IFA

compared to control where SJPL cells were infected with PRRSV

alone (Figure 3A) suggesting an inhibition of PRRSV infection

and/or replication (Figure 3B). MARC-145 cell line was used to

compare results obtained with SJPL cell line since MARC-145

cells are the most common cells used during in vitro PRRSV

studies. Interestingly, results were different between the two cell

lines. In PRRSV infected MARC-145 cells, only a small reduction

of cells expressing the PRRSV N protein was observed following a

co-infection with AppDapxIDapxIIC (Figure 3G). Thus, SJPL cells

were qualitatively more responsive to the App antiviral affect than

MARC-145 cells. Moreover, since SJPL cells were recently shown

to be from monkey origin [21] and not from swine as first

described [22], evaluation of the antiviral activity of App was tested

in a porcine relevant cell model, the PAM cells. Co-infection with

AppDapxIDapxIIC and PRRSV in PAM cells also presented total

absence of PRRSV N protein detection (Figure 3L), as in SJPL

cells (Figure 3B), suggesting that AppDapxIDapxIIC can also inhibits

PRRSV in PRRSV’s in vivo porcine target cells, the porcine

alveolar macrophages. Incubation with UV-inactivated AppDapxI-

DapxIIC bacteria after PRRSV infection allowed the detection of

N proteins of PRRSV by IFA in all cell types (Figure 3C, 3H and

3M) showing that UV-inactivated bacteria were not able to block

PRRSV infection. Interestingly, the bacteria-free culture super-

natant of AppDapxIDapxIIC also effectively blocked PRRSV

infection in SJPL and PAM cells (Figure 3D and 3N, respectively).

A weak inhibition was observed in MARC-145 cells (Figure 3I).

pH did not vary between all the tested conditions, being stable at

around 7.360.1. The active metabolites present in the culture

supernatant did not seem to be App LPS (Figure 3E, 3J and 3O)

nor peptidoglycan fragments (assayed with NOD1 or NOD2

ligands) (Figure S1D and S1F, respectively). Dilutions of

AppDapxIDapxIIC supernatant showed a dose-dependent effect on

PRRSV’s detection by IFA. A 1:2 dilution resulted in twice as

much PRRSV N protein when observed with IFA (data not

shown). The loss of antiviral activity of AppDapxIDapxIIC

supernatant was observed with 1:10, 1:20 and 1:40 dilutions.

PRRSV titers were measured to confirm IFA observations and

to quantify the inhibitory effect of AppDapxIDapxIIC on PRRSV

infection. SJPL, MARC-145 and PAM cells were infected or

treated as described previously. In SJPL cells after 72 hours post

PRRSV infection, viral titer obtained was 6.25 log10 TCID50/ml

(Figure 4A), in MARC-145 cells, was 7.6 log10 TCID50/ml

(Figure 4B) and in PAM cells, 6.0 log10 TCID50/ml (Figure 4C).

Co-infection with AppDDapxIDapxIIC or treatment with its culture

supernatant blocked completely PRRSV replication (P,0.01) in

SJPL cells (Figure 4A). But in MARC-145 cells, their antiviral

effect on PRRSV replication was markedly less efficient. More

specifically, in MARC-145 cells, PRRSV titers were 4.9 log10

TCID50/ml (which correspond to a 751 fold decrease compared to

PRRSV non-treated infected cell) and 6.5 log10 TCID50/ml

(which correspond to a 19 fold decrease compared to PRRSV

Inhibition of PRRS Virus Infection
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non-treated infected cell) for AppDapxIDapxIIC (P,0.01) and its

cell-free culture supernatant (P,0.05) treated cells, respectively

(Figure 4B). In PAM cells, results obtained with PRRSV’s titration

showed that live AppDapxIDapxIIC completely blocked PRRSV

replication (P,0.001) and that its culture supernatant significantly

inhibits PRRSV infection in PAM, reducing its amount of

infectious virions to 2.9 log10 TCID50/ml (P,0.001 compared

to PRRSV infection at 106 TCID50/mL) which correspond to a

1250 fold decrease (Figure 4C). Stimulation of the cells with App

purified LPS or co-infection with UV inactivated bacteria did not

have any effect on PRRSV titer in all cell types (Figure 4A, 4B and

4C). Those results confirm the IFA data obtained previously. In

addition, it is important to note that inhibition in PAM is total with

live AppDapxIDapxIIC as observed previously in SJPL cells and

below PRRSV inoculum when treated with AppDapxIDapxIIC cell

culture supernatant. Thus, those results indicate that AppDapxI-

DapxIIC antiviral effect against PRRSV can be observed not only

in SJPL cells but also in porcine alveolar macrophages.

Figure 1. Bacterial adherence over time of Appwt or AppDapxIDapxIIC in PRRSV co-infected SJPL and MARC-145 cells. SJPL (A) and
MARC-145 (B) cells were infected with or without PRRSV at an MOI of 0.5 during 72 hours, and then cells were co-infected with Appwt or
AppDapxIDapxIIC at an MOI of 10. Bacterial adherence was measured in CFU per well after 1, 2 and 3 hours post bacterial infection as described in
Auger et al., 2009 [20]. Values are presented as 6 Standard Deviation (SD). No statistical significance was obtained following two-away ANOVA
analysis. All experiments were repeated 3 times.
doi:10.1371/journal.pone.0098434.g001
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Fractionation of Cell Culture Supernatant of
AppDapxIDapxIIC

Fractionation of the cell culture supernatant of AppDapxIDapxIIC

indicated that the ihnibitory effect on PRRSV infection is

mediated by small App metabolite(s) weighting ,1 kDa

(Figure 5C). The same results were obtained with all small

fractions tested, ,3 (Figure S2D), 10 (data not shown) and 50 kDa

(Figure S2F). Additionally, treatment at 56uC for 30 min of these

low molecular weight App metabolite(s) did not inactivate their

ihnibitory effect on PRRSV infection and/or replication in SJPL

cells, showing that those App antiviral metabolites are heat-

resistant (data not shown).

Antiviral Efficacy of AppDapxIDapxIIC Cell Culture
Supernatant against Several other Viruses

Since AppDapxIDapxIIC cell culture supernatant inhibits PRRSV

replication, other viruses were tested in order to verify if this

inhibition is virus specific or if it is a general antiviral effect. First,

the SJPL cells permissivity was tested in regards to different DNA

genome viruses such as: BAV3, BHV-1, BHV-4, CPV, EHV-1,

and PCV2; as well as RNA genome viruses such as: BVDV-1,

Influenza H1N1, and Influenza H3N2. BAV3, BHV-1, EHV-1,

BVDV-1, Influenza H1N1, and Influenza H3N2 viruses were able

to infect and replicate in SJPL cells (Table 1). Thus, treatment with

AppDapxIDapxIIC culture supernatant was performed after infec-

tion with those viruses in SJPL cells, to verify its spectrum of

antiviral activity. Overall, 50% of the viruses tested that are able to

replicate in SJPL cells (excluding PRRSV) were inhibited by

Figure 2. Cytotoxicity over time of Appwt or AppDapxIDapxIIC in PRRSV co-infected SJPL and MARC-145 cells. SJPL (A and B) and MARC-
145 cells (C and D) were infected with or without PRRSV at an MOI of 0.5 during 72 hours, and then cells were co-infected with App (for 1 or 2 hours)
(A and C, respectively) or with AppDapxIDapxIIC (for 4, 5 and 6 hours) (B and D, respectively) at an MOI of 10. Cytotoxicity was measured in % using
lactate dehydrogenase (LDH) CytoTox assay [20]. Values are presented as 6 Standard Deviation (SD). Two-away ANOVA analysis was used to obtain
statistical data. *P,0.05. All experiments were performed 3 times.
doi:10.1371/journal.pone.0098434.g002
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AppDapxIDapxIIC cell culture supernatant. Those inhibited viruses

were: EHV-1, Influenza H1N1 and H3N2. However, it is

important to note that the inhibition of PRRSV replication

observed following treatment with AppDapxICDapxIIC supernatant

was significantly higher compared to than the inhibition observed

against EHV-1, Influenza H1N1 and H3N2 (Table 1). These

results are important because they indicate that SJPL cells were

still able to allow the replication of several viruses in the presence

of AppDapxIDapxIIC cell culture supernatant, indicating that the

SJPL cells are still metabolically active and fit for viruses’

replication.

Effect of AppDapxIDapxIIC Cell Culture Supernatant on
the Mrna Level of Type I and Type II IFNs

Since the levels of mRNA expression of type I (IFNa and IFNb)

and type II (IFNc) interferons are known to be implicated in the

cellular antiviral effect against PRRSV [23–26], mRNA levels of

those cytokines were measured by qRT-PCR (Figure 6). No

modulation of IFNa was observed in any of the tested conditions,

including the Poly I:C control. This observation was also

previously made by Provost et al., 2012 [19]. PRRSV infection

in SJPL cells significantly increased IFNb levels compared to mock

infected cells, as previously described in Provost et al., 2012 [19].

Treatment with AppDapxICDapxIIC supernantant alone induced a

significant increase of IFNb mRNA compared to mock infected

cells, but co-treated cells did not showed a significant increase

compared to mock infected cells. PRRSV infection in SJPL cells

Figure 3. PRRSV antigen detection in SJPL, MARC-145 and PAM cells co-infected with AppDapxIDapxIIC. PRRSV N protein revealed by IFA
in SJPL (A–E), MARC-145 (F–J) and PAM cells (K–O) were infected with PRRSV at an MOI of 0.5 for 4 hours (A, F and K) then co-infected with live
AppDapxIDapxIIC at an MOI of 10 (B, G and L), or with UV inactivated AppDapxIDapxIIC at an MOI of 10 (C, H and M), or with AppDapxIDapxIIC
supernatant (D, I and N) or treated with LPS 4 mg/ml (E, J and O) for 48 hours. Inserts are negative control where cells were not infected with PRRSV.
White scale bar represents 200 mm for SJPL and MARC-145 cells, and 100 mm for PAM cells. Pictures were taken at 100X magnification for SJPL and
MARC-145 cells, and 200X for PAM cells.
doi:10.1371/journal.pone.0098434.g003
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did not modulate IFNc mRNA levels. However, treatment with

AppDapxICDapxIIC supernantant alone or as co-treatment signif-

icantly increased IFNc mRNA compared to mock infected SJPL

cells.

Discussion

Many studies have previously shown that respiratory viral

infections can increase bacterial adherence to cells. For example,

influenza A infection increases adherence of Streptococcus pyogenes to

MDCK cells [27], rhinovirus infection increases adherence of

Streptococcus pneumoniae to cultured human airway epithelial cells

[28], and respiratory syncytial virus (RSV), human parainfluenza

virus 3 (HPIV-3), and influenza virus increase the adherence of

Haemophilus influenzae and S. pneumoniae to respiratory epithelial cells

[29]. However, in the present study, no modulation of App

adherence was observed when cells were infected with PRRSV.

Appwt induced, as expected, a high percentage of cytotoxicity in

SJPL cells (Figure 2). Its derivative, AppDapxIDapxIIC, that is

expressing the non-activated toxins ApxI and ApxII, showed a

much lower cytotoxicity in SJPL cells. Furthermore, as previously

described in Provost et al. 2012, PRRSV infection in SJPL cells

induced a significant increase of cell death [19]. However, co-

infection with PRRSV and AppDapxIDapxIIC did not result in a

significant increase of cell death when compared to PRRSV

infection alone, supporting that AppDapxIDapxIIC is less (if not)

toxic to eukaryotic cells and that cytotoxicity is mainly caused by

PRRSV in co-infected cells. Interestingly, this less toxic App

mutant enables longer exposure in in vitro experiments and allowed

us to observe App’s antiviral effect on PRRSV.

The antiviral effect of AppDapxIDapxIIC was first observed on

SJPL cells co-infected with PRRSV (Figure 3). Subsequently, other

results showed that the antiviral activity was also present in the

Figure 4. PRRSV titer in App treated SJPL, MARC-145 and PAM
cells. SJPL (A), MARC-145 (B) and PAM (C) cells were infected with
PRRSV MOI of 0.5 for 4 hours and then co-infected with AppDapxI-
DapxIIC MOI of 10, or with UV inactivated AppDapxIDapxIIC MOI of 10,
or treated with LPS (4 mg/ml) or culture supernatant of AppDapxIDap-
xIIC for 48 hours. PRRSV titer was determined on MARC-145 cells by the
Kärber method. Values are presented as 6 Standard Deviation (SD).
One-away ANOVA analysis was used to obtain statistical data. When
bars within a cell type are labeled with superscripts letters, it indicates
that these sets of data are statistically different from the other bars (P,
0.05).
doi:10.1371/journal.pone.0098434.g004

Figure 5. AppDapxIDapxIIC cell culture supernatant ,1 kDa
fraction antiviral activity against PRRSV. Detection of the N viral
protein in PRRSV infected SJPL cells by immunofluorescence. SJPL cells
were infected with 0.5 MOI of PRRSV for 4 hours then incubated with
DMEM culture medium alone (DMEM) (A) or either a DMEM culture
medium fraction of ,1 kDa (DMEM ,1 kDa) (B) or a AppDapxIDapxIIC
cell culture supernatant ,1 kDa fraction (App,1 kDa) (C) added to
complete SJPL culture medium for 48 hours. White scale bar represents
200 mm. Pictures were taken at 100X magnification.
doi:10.1371/journal.pone.0098434.g005
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bacterial supernatant and was not due to App purified LPS, nor

NOD ligands, but probably to low molecular weight metabolites of

,1 kDa. Inhibition of PRRSV replication by AppDapxIDapxIIC is

not generated by contact between bacterial and eukaryotic host

cell, since it was also observed with App cell culture supernatant;

thus without the presence of App bacterial cells. Furthermore, this

antiviral effect is not only observed in SJPL cells but also in the

PRRSV natural host target cells, i.e. PAM. This suggests that the

antiviral action of AppDapxIDapxIIC can be efficient in different cell

species and types. Viral inhibition in PAM cells was complete in

presence of the bacteria AppDapxIDapxIIC and was partial when

treated with its cell culture supernatant. Other combinations of

Table 1. Antiviral activity of AppDapxIDapxIIC supernatant against several animal DNA and RNA viruses in SJPL infected cells.

Viruses Virus titer Relative virus replication inhibition

Without AppDapxIDapxIIC With AppDapxIDapxIIC

(TCID50 log10 ± SD)

DNA genome

BHV-4 Neg - -

CPV Neg - -

PCV2 Neg - -

BAV3 2.7560.35 2.8860.18 0.7462.45

BHV-1 4.5460.48 4.4260.59 1.3265.75

EHV-1 5.0060.71 3.7560.35 17.7866.17

RNA genome

BVDV-1 4.3860.18 4.2560.35 1.3562.45

H1N1 5.4060.57 4.2360.50* 14.865.75

H3N2 4.8560.50 3.8260.45** 10.7264.68

PRRSV 5.4460.56 1.6160.59*** 6760.8366.46a

All experiences were performed at least 2 times.
Statistical P value compared to AppDapxIDapxIIC untreated cells: P = 0.15.
Statistically significative compared to AppDapxIDapxIIC untreated cells: *P,0.05, **P,0.01, ***P,0.001.
Statistically significative compared to other viruses: aP,0.01.
doi:10.1371/journal.pone.0098434.t001

Figure 6. AppDapxIDapxIIC cell culture supernatant and PRRSV effects on mRNA quantification of type I (IFNa, IFNb) and type II
(IFNc) interferons. qRT-PCR results expressed in relative expression (DDCT) for IFNa (A), IFNb (B) and IFNc (C) in SJPL cells. The cells were mock
infected or infected with 0.5 MOI of PRRSV for 4 hours then treated without or with AppDapxICDapxIIC cell culture supernatant for 48 hours. Poly (I:C)
and LPS were used as positive controls. Data labeled with superscripts of different letters indicates that these sets of data are statistically different (P,
0.05).
doi:10.1371/journal.pone.0098434.g006
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treatments have been tested. Data obtained gave some informa-

tion about the mechanism of the antiviral activity of AppDapxI-

DapxIIC supernatant. Overall, they suggested that AppDapxIDap-

xIIC supernatant’s antiviral activity is not interfering with PRRSV

attachment and entry. Other experiments are currently in progress

to further investigate by which mechanisms the AppDapxIDapxIIC

supernatant is inhibiting PRRSV replication.

Despite the fact that MARC-145 and SJPL are of monkey

origin, they are phenotypically distinct as demonstrated by our

group in Provost et al. (2012) [19]. In this previous report, we

demonstrated that SJPL and MARC-145 cells do not have the

same division rate and that the development of the cytopathic

effect (CPE) induced by PRRSV in SJPL cells was delayed

compared to MARC-145 cells. Furthermore, the cytokine profiles

after PRRSV infection were different between the two cell lines.

These results suggested that PRRSV infection could be different in

each. Thus, the difference in PRRSV infection between both cell

lines could explain the difference observed for the AppDapxIDap-

xIIC supernatant antiviral activity.

Type I IFNs, produced by many cell types, are part of the innate

immunity response [30]. Moreover, it is well known in the

literature that type I IFNs are often part of the cellular response

against viral infections, including PRRSV infections [23,25].

Results of this study showed that there is no modulation of IFNa
mRNA levels. IFNb mRNA levels were increased in PRRSV and

in AppDapxIDapxIIC supernatant alone but no significant increase

was observed in the PRRSV + AppDapxIDapxIIC supernatant

condition when compared to mock infected cells. Thus, the

impaired IFNb expression following co-treatment might be due to

PRRSV replication which might block IFN production induced by

AppDapxIDapxIIC supernatant. Additionally, those results demon-

strate that since PRRSV can inhibit type I IFN induction and

signalling [31–34], antiviral activity induced by AppDapxIDapxIIC

supernatant may not rely on its ability to induce IFNb. However,

this does not mean that IFNb is not part of the antiviral activity of

AppDapxIDapxIIC supernatant, since most viruses are still sensitive

to type I IFNs.

Type II IFNc, mainly produced by activated T cells and

Natural Killer cells, is mostly responsible for adaptive Th1

response, which is part of cell-mediated immunity [35]. Further-

more, its implication in antiviral response against PRRSV was also

demonstrated [24,26]. Nonetheless, IFNc mRNA levels in SJPL

cells were significantly increased by AppDapxIDapxIIC supernatant

alone and in PRRSV + AppDapxIDapxIIC supernatant condition.

This observation might give a clue by which cellular response

AppDapxIDapxIIC supernatant induces its antiviral effect; i.e. via

the increased of IFNc mRNA levels by the cell. However, it is

important to mention that it is not known if SJPL cells possess

IFNc receptors, which are necessary for IFNc mediated signalling.

Further investigations are needed to confirm this hypothesis.

PRRSV can lead to persistent infections [36,37] and current

PRRSV vaccines are not yet optimal, since they lack the ability to

induce a strong immune response and since they do not provide

complete immunity against homologous PRRSV infections (for

review see [38,39]). Moreover, most PRRSV vaccines are live

attenuated virus and thus present a safety issue; some vaccinated

pigs were shown to produce shedding of virulent PRRSV particles

[40]. Thus, it is important to further investigate new possible ways

to control PRRSV infections. In that regards, an antiviral

molecule or metabolite might be a good alternative to the

currently used vaccines. Recently published studies showed few

compounds that can inhibits PRRSV as glycosides, terpenoids,

coumarins, isoflavones, peptolides, alkaloids, flavones, macrolides

[41], N-acetylpenicillamine [42], cyclosporine A [43], sodium

tanshinone IIA sulfonate [44], flavaspidic acid AB [45], Ribavirin

[46], and morpholino oligomer [47], or compounds derived from

plant as a polysaccharide isolated from Achyranthes bidentata [48] or

a mushroom extract from Cryptoporus volvatus [49]. However, there

is no commercially available antiviral drug against PRRSV on the

market.

In conclusion, to the best of our knowledge, this is the first

description of an App antiviral activity. This study might lead to the

development of a new treatment against PRRSV derived from App

cell culture supernatant. However, more investigations are needed

to identify and/or purify the target metabolite(s) secreted by App

before generating a possible new antiviral molecule against

PRRSV. Moreover, since we have demonstrated that the antiviral

effect of the metabolite(s) secreted from App is not only specific to

PRRSV, but also effective against other RNA viruses, this antiviral

activity might as well lead to a new antiviral treatment. For

example, molecules such as Ribavirin, which is currently used

against human respiratory syncytial virus (RSV) [50,51] and

hepatitis C infection [52], was initially demonstrated to have a

broad antiviral activity against animal viruses [53]. This study

might therefore allow the development of a new antiviral molecule

against PRRSV, but also against other viruses such as influenza.

Materials and Methods

Cells
All cells products were ordered from Invitrogen Corporation

GibcoBRL (Burlington, ON, CA) unless specified. MARC-145

cells, a subclone of African green monkey kidney MA104 cells,

were grown in minimum essential medium (MEM) supplemented

with 10% of foetal bovine serum (FBS) (Wisent Inc, St-Bruno, QC,

Canada), 0.1 mM HEPES, 2 mM L-glutamine, 10 U/mL of

penicillin, 10 mg/mL of streptomycin and 250 g/L antibiotic-

antimitotic solution [54]. The SJPL cell line (St. Jude porcine lung

epithelial cell) was provided by Dr. R.G. Webster (St. Jude

Children’s Hospital, Memphis, TN, USA) [22] and later was

demonstrated to be from monkey origin [21]. This cell line was

grown in Dulbecco’s modified Eagle’s medium (DMEM) supple-

mented with 10% FBS (Wisent Inc), 1 mM sodium pyruvate,

2 mM L-glutamine, 1 mM MEM nonessential amino acid, 10 U/

mL of penicillin, 10 mg/mL of streptomycin and 250 g/L

antibiotic-antimitotic solution and, 100 mg/L gentamicin. Porcine

alveolar macrophages (PAM) were harvested from lungs of 2 to 14

weeks old pigs as described previously [19]. Pigs were sacrificed

following ethic protocol 12-Rech-1640 approved by our institu-

tional ethic committee (Comité d’éthique de l’utilisation des

animaux – CÉUA) following the guidelines of the Canadian

Council on Animal Care. Briefly, an instillation of the lungs with

PBS containing 10 units/mL penicillin, 10 mg/mL streptomycin

and 100 mg/L gentamicin was realized. Then, phosphate buffer

saline solution (PBS) was collected and PAM removed following

low speed centrifugation. Cells were washed with DMEM medium

complemented with 2 mM L-glutamine, 0,1 mM HEPES, 1 mM

non-essential amino acids, 250 g/L amphotericin B (Wisent Inc),

10 units/mL penicillin, 10 mg/mL streptomycin and 100 mg/L

gentamicin. Cells were then collected following low speed

centrifugation and were resuspended in freezing medium (same

as wash medium plus 20% foetal bovine serum and 10% DMSO

(Sigma-Aldrich, St-Louis, MO, USA)) and slowly frozen, than

stored in liquid nitrogen until further utilization. PAM cells were

cultured for 24 hours in complete DMEM prior to assay. All cells

were cultured and infected at 37uC in 5% CO2 atmosphere.
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PLOS ONE | www.plosone.org 8 May 2014 | Volume 9 | Issue 5 | e98434



Bacterial and Viral Strains
The App strains used in this study were the S4074 serotype 1

reference wild type strain (Appwt) and a mutant of this strain

(MBHPP147) producing non-active ApxI and ApxII toxins

(AppDapxICDapxIIC), kindly provided by Ruud P.A.M. Segers

(MSD Animal Health, Boxmeer, The Netherlands). App strains

were cultured on brain heart infusion (BHI) broth and/or agar

(Gibco) supplemented with 15 mg/ml nicotinamide adenine

dinucleotide (NAD) at 37uC in 5% CO2. The PRRSV strain

used in this study was the Canadian genotype II reference strain

IAF-Klop [55].

Adherence Assay
For the adherence assay, 105 epithelial cells/well were seeded

into 24 well-tissue culture plates (Sarstedt, Numbrecht, Germany)

and incubated overnight (O/N). Cells were infected with PRRSV

at 0.5 multiplicity of infection (MOI; virus particles or bacterial

cells per cell). Appwt and AppDapxIDapxIIC from an overnight

culture grown at an OD600 nm of 0.6 were resuspended in

complete cell culture medium to a concentration of 106 CFU/ml.

One ml of either suspension was added to each well at an MOI of

10 after 72 hours PRRSV infection, and plates were incubated for

1, 2 or 3 hours. Non-adherent bacteria were removed by washing

four times with Dulbecco’s Phosphate-Buffered Saline (DPBS)

(Gibco). Cells with adherent bacteria were released from the wells

by adding 100 ml of 1X trypsin-EDTA (Gibco) and resuspended in

900 ml DPBS buffer. Serial dilutions were performed and poured

on agar plates to determine the number of bacteria that adhered to

the epithelial cells. Bacteria colonies were counted as colonies

forming unit per well (CFU/well) as described by Auger et al., 2009

[20].

Cytotoxicity Detection Assay
For the cytotoxicity detection assay, 105 epithelial cells/wells

were seeded into 24 well-tissue culture plates (Sarstedt) and

incubated O/N. Cells were infected with PRRSV at 0.5 MOI.

Appwt and AppDapxIDapxIIC from an overnight culture grown at an

OD600 nm of 0.6 were resuspended in complete cell culture

medium to a concentration of 106 CFU/ml. One ml of either

suspension was added to each well at an MOI of 10 after 72 hours

PRRSV infection, and plates were incubated for 1 or 2 hours with

Appwt or for 4, 5 and 6 hours with AppDapxIDapxIIC. The cellular

cytotoxicity was determined using the lactate dehydrogenase

(LDH)-measuring CytoTox 96 nonradioactive cytotoxicity assay

(Promega, Madison, WI) as described by the manufacturer.

Noninfected cells were used as a negative control, while total cell

lysate was used for the 100%-cytotoxicity positive control, since all

LDH is released when cells are mechanically lysed. Optical

densities were measured at 490 nm with a Power Wave X340

(Biotek Instruments Inc, Winooski, VT) microplate reader and

used to calculate the percentage of cytotoxicity [55].

Immunofluorescence Assay
The presence of PRRSV antigens in infected cells was

determined by an immunofluorescence assay (IFA). Cells were

infected or treated as described below. Following treatment and/

or infections, cells were fixed with a 4% paraformaldehyde (PFA)

solution prepared as previously described [19]. Mock-infected or

non-treated cells were used as negative controls. After an

incubation period of 20 minutes at room temperature, the PFA

solution was removed and cells were washed three times with

Phosphate buffer solution (PBS). Then, cells were incubated

during 10 minutes at room temperature with a PBS solution

containing 0.1% Triton X-100 for cell membrane permeabiliza-

tion. After removing the Triton X-100 solution, cells were washed

three times with a PBS-Tween 20 solution (PBS containing 0.02%

Tween 20). Thereafter, cells were incubated 30 minutes with PBS

containing 0.02% Tween 20 and 1% foetal bovine serum albumin.

Then, the a7 rabbit monospecific antisera (anti-N PRRSV

protein) [55] was diluted 1/100 in the blocking solution and

added to the cells and incubated at 37uC for 90 minutes. Cells

were then washed and incubated for 60 minutes with the blocking

solution containing a 1/160 dilution of anti-rabbit specific

antiserum FITC conjugated (Sigma). Finally, cells were visualized

using a DMI 4000B reverse fluorescence microscope, image of the

cells were taken with a DFC 490 digital camera and the images

were analyzed using the Leica Application Suite Software, version

2.4.0 (Leica Microsystems Inc., Richmond Hill, Canada).

Antiviral Activity of AppDapxIDapxIIC Against PRRSV
Cells were infected with 0.5 MOI of PRRSV and incubated in

DMEM without serum or other additives for 4 hours, then all non-

attached virus were removed from the medium with soft washing

step using PBS. Thereafter fresh medium was added. AppDapxI-

DapxIIC from an overnight culture grown at an OD600 nm of 0.6

were resuspended at an MOI of 10 in complete cell culture

medium to a concentration of 106 CFU/ml. To obtain

AppDapxIDapxIIC UV inactivated, resuspended AppDapxIDapxIIC

at an MOI 100:1 were inactivated for 2 hours under UV light

(315 nm) in a rocking petri dish and their inactivation was

confirmed by plating on BHI-NAD. To obtain AppDapxIDapxIIC

supernatant, resuspended AppDapxIDapxIIC at an MOI of 10 were

centrifuged at 500 g for 15 minutes and harvested supernatants

were passed through a 0.22 mm filter to remove all residual

bacteria. Bacterial culture supernatants were further fractionated

through ultrafiltration membranes with cut-off of 50, 10, 3

(Amicon Ultra-15, Millipore, Billerica, MA) or 1 kDa (Macrosep

1K, Pall Life Sciences, Port Washington, NY) to obtain

AppDapxIDapxIIC cell culture supernatant fractions. AppDapxIDap-

xIIC supernatant was also diluted 1:2, 1:10, 1:20, 1:40. One ml of

the suspensions was added to each well 4 hours after PRRSV

infection, and plates were incubated for 48 hours. pH measure-

ments were performed directly in the wells of treated SJPL cells

using an Accumet basic AB15 pH meter (Fisher Scientific,

Ottawa, ON). The presence of PRRSV N antigen was determined

by IFA. The infectious dose of the virus was determined from

serial dilutions and calculated by the Kärber method [56]. Briefly,

samples infected by PRRSV were subjected to three cycles of

freeze-thaw and cellular suspensions were then clarified by low

speed centrifugation at 1200 g for 10 minutes. Supernatants were

serially diluted then used to infect MARC-145 cells in a 96-well

tissue culture plate. The plate was incubated for 96 hours. Virus

titers were expressed in tissue culture infectious dose 50 per ml

(TCID50/ml). Presence of PRRSV was also evaluated by qRT-

PCR using a commercial kit (Tetracore Inc., Rockville, MD, USA)

as previously described [57].

Treatment with LPS and NOD Ligands
Cells were infected with PRRSV at 0.5 MOI of in DMEM

without serum and other additives and incubated for 4 hours.

Then infected cells were washed and fresh medium was added.

Cells were treated with 4 mg/ml of LPS purified from Appwt [58],

or 100 to 1,000 ng/ml of C12-iE-DAP (a NOD1 ligand,

InvivoGen, San Diego CA), or 100 to 1,000 ng/ml of L18-MDP

(a NOD2 ligand, InvivoGen) for 48 hours. The presence of

PRRSV N protein was determined by IFA. The virus titer was

determined as described above.
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App Cell Culture Supernatant Antiviral Activity Against
other DNA and RNA Viruses

The DNA genome viruses used in this experiment were: bovine

herpes virus type 4 (BHV-4) of strain FMV09-1180503; porcine

circovirus 2 (PCV2b) of strain FMV05–6302 and bovine

adenovirus 3 (BAV3); bovine herpes virus type 1 (BHV-1); canine

parvovirus (CPV); equine herpes virus type 1 (EHV-1). The RNA

genome viruses used in this experiment were: bovine viral diarrhea

virus type 1 (BVDV1) of strain NADL (ATCC VR-534); swine

influenza H1N1 of strain A/Swine/Saint-Hyacinthe/148/90 [59];

and Swine Influenza H3N2 of strain A/Swine/Quebec/4001/05

[60]. Cells were infected with each virus at different dilutions (1/

10; 1/100; 1/1000; 1/10000; 1/1000000; 1/10000000) for 4

hours in DMEM as described for PRRSV and than treated with

AppDapxIDapxIIC culture supernatant for 48 hours as described

above. The infectious dose of each virus was calculated as

described above for PRRSV using SJPL cells.

Analysis of Cytokine mRNAs Expression by Real Time
Reverse Transcriptase-quantitative PCR

SJPL cells and PAMs were treated and infected as described

above or transfected with Polyinosinic–polycytidylic acid potassi-

um salt (Poly (I:C)) [50 mg/mL] (Sigma-Aldrich Inc., St-Louis,

USA) as a positive control for innate immunity induction, using

polyethylenimine (PEI) [1 mg/mL] (Sigma) for 48 hours or treated

with 1 mg/ml of lipopolysaccharide (LPS) from E. coli (Sigma) for

20 hours, as an IFNc inducer. Total cellular RNA was extracted

from cells using Trizol reagent (Invitrogen, Burlington, ON,

Canada) according to the manufacturer’s protocol. Quantification

of RNA was performed with a Nanodrop (NanoDrop Technol-

ogies, Inc., Wilmington, Delaware, USA). 1 mg of total RNA was

reverse-transcribed using the QuantiTect reverse transcription kit

(Qiagen, Mississauga, ON, Canada). The cDNA was amplified

using the SsoFast EvaGreen Supermix kit (Bio-rad, Hercules, CA,

USA). The PCR amplification program for all cDNA consisted of

an enzyme activation step of 3 min at 98uC, followed by 40 cycles

of a denaturing step for 2 sec at 98uC and an annealing/extension

step for 5 sec at 57uC. The primers used for amplification of the

different target cDNA were previously described in Provost et al.,

2012 [19]. All primers were tested to achieve amplification

efficiency between 90% and 110%. The primer sequences were all

designed from the NCBI GenBank mRNA sequences using web-

based software primerquest from Integrated DNA technologies.

The Bio-Rad CFX-96 sequence detector apparatus was used for

the cDNA amplification. The quantification of differences between

the different groups was calculated using the 22DDCt method.

Beta-2 microglobulin (B2M) was used as the normalizing gene to

compensate for potential differences in cDNA amounts. The non-

infected PAMs and SJPL cells were used as the calibrator reference

in the analysis.

Statistical Analyses
A two-way ANOVA model, followed by Bonferroni post-hoc

tests (Graphpad PRISM Version 5.03 software) were used to

determine if a statistically significant difference exists between

infections performed in adherence and cytotoxicity assays. One-

way ANOVA model, followed by Tukey’s Multiple Comparison

Test (Graphpad PRISM) were used to determine if a statistically

significant difference exists between PRRSV titer (TCID50)

obtained in MARC-145, SJPL and PAM cells. Unpaired t tests

were used for the qRT-PCR statistical analysis. Differences were

considered statistically significant with a P,0.05.

Supporting Information

Figure S1 NOD1 and NOD2 inhibition effect on PRRSV
replication. Detection of the N viral protein in PRRSV infected

SJPL cells by immunofluorescence. SJPL cells were infected with

PRRSV MOI of 0.5 for 4 hours (B) and then treated with 100 mM

of C12-iE-DAP (a NOD1 ligand) (D), or 100 mM of L18-MDP (a

NOD2 ligand) (F) for 48 hours. Control are SJPL cells untreated

(A) treated only with 100 mM of C12-iE-DAP (C), or 100 mM of

L18-MDP (E) for 48 hours. White scale bar represents 200 mm.

Pictures were taken at 100X magnification.

(TIFF)

Figure S2 Antiviral activities of AppDapxIDapxIIC cell
culture supernatant fractions against PRRSV. Detection of

the N viral protein in PRRSV infected SJPL cells by immuno-

fluorescence. SJPL cells were untreated (A) or infected with 0.5

MOI of PRRSV for 4 hours (B) then incubated with .3 kDa (C),

or ,3 kDa (D), or .50 kDa (E), or ,50 kDa (F) fraction of

AppDapxIDapxIIC cell culture supernatant. White scale bar

represents 200 mm. Pictures were taken at 100X magnification.

(TIFF)
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