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Abstract

Mutations are central to evolution, providing the genetic variation upon which selection acts. A mutation’s effect on the
suitability of a gene to perform a particular function (gene fitness) can be positive, negative, or neutral. Knowledge of the
distribution of fitness effects (DFE) of mutations is fundamental for understanding evolutionary dynamics, molecular-
level genetic variation, complex genetic disease, the accumulation of deleterious mutations, and the molecular clock. We
present comprehensive DFEs for point and codon mutants of the Escherichia coli TEM-1 b-lactamase gene and missense
mutations in the TEM-1 protein. These DFEs provide insight into the inherent benefits of the genetic code’s architecture,
support for the hypothesis that mRNA stability dictates codon usage at the beginning of genes, an extensive framework
for understanding protein mutational tolerance, and evidence that mutational effects on protein thermodynamic sta-
bility shape the DFE. Contrary to prevailing expectations, we find that deleterious effects of mutation primarily arise from
a decrease in specific protein activity and not cellular protein levels.
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Introduction
The fitness landscape model for protein evolution, as first
conceptualized by Smith in 1970 (Smith 1970) and general-
ized by others (Orr 2005), imagines evolution as a process by
which a sequence moves by stochastic processes from its
wild-type sequence through fitter and fitter sequences until
the sequence reaches a local fitness optimum. The nature of
the fitness landscape determines the dynamics of evolution
and fundamentally shapes what is and is not possible in evo-
lution. Much has been learned from theoretical studies and
small-scale interrogations of real fitness landscapes (Eyre-
Walker and Keightley 2007). However, we still lack a system-
atic, assumption-free, experimental determination of the dis-
tribution of fitness effects (DFE) for all mutations of a gene
performing its native function in its native host. The situation
is akin to having a small set of aerial photographs of a geo-
graphical area versus having comprehensive satellite coverage
such as provided by Google Earth.

We sought to provide a comprehensive, quantitative
description of a fitness landscape corresponding to a gene
and its nearest neighbors in both DNA and protein sequence
space (i.e., the set of all sequences that differ by a single bp,
codon, or amino acid) but avoid or ameliorate current limi-
tations of large-scale measurements of fitness. Growth com-
petition experiments or experiments in which alleles are
enriched based on a threshold for function are the current
state of the art (Fowler et al. 2010; Araya et al. 2012; Deng et al.
2012; McLaughlin et al. 2012; Schlinkmann et al. 2012;
Whitehead et al. 2012; Roscoe et al. 2013; Starita et al.
2013). To varying degrees such experiments offer a direct
“head-to-head” comparison of alleles but suffer four

significant limitations. First, most studies utilize nonnative
reporter assays (e.g., phage display, cell surface display, and
two-hybrid systems) in which the gene or gene fragment is
removed from its native context and host and fused to an-
other gene (but see Deng et al. 2012; Roscoe et al. 2013).
Second, population size can affect the measured value of fit-
ness due to stochastic effects. Third, these experiments have
limited ability to measure fitness for low fitness alleles because
such alleles are depleted during the course of the experiment.
For example, Roscoe et al. (2013) were unable to reproducibly
measure the fitness of ubiquitin point mutants with a fitness
below approximately 40% of wild-type due to their rapid
depletion in growth competition experiments. Thus, al-
though such experiments tell us the location of valleys in
the landscape, they cannot tell us anything about what the
valleys look like. Fourth, the fitness measurements are subject
to the extent and underlying form of genotype-by-environ-
ment interactions. For example, the fitness of an antibiotic
resistance gene measured by a growth competition experi-
ment will be a function of the arbitrary selective pressure used
in the experiment (the antibiotic concentration). Alleles con-
ferring resistance far above or below the level necessary for
growth at one antibiotic concentration may show no fitness
difference in that environment yet show significant differ-
ences at a different antibiotic concentration closer to their
resistance limit. We desired to decouple fitness from geno-
type-by-environment interactions as much as possible to
quantify the underlying landscape and thus better under-
stand a gene’s intrinsic evolutionary potential and limitations.

A key determinant of the fitness landscape is what we are
defining here as “gene fitness.” “Fitness” in the traditional
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biological definition refers to the extent to which an organism
is adapted to or able to produce offspring in a particular
environment (often measured as growth rate in the fitness
landscape of bacteria). Instead, we are referring to “gene fit-
ness” as a phenotypic signature—the suitability of a gene to
provide a particular function. Thus, a gene fitness landscape
might also be referred to as a phenotypic landscape. Although
to a large extent this landscape reflects a protein functional
landscape, we use the term “gene fitness” because our land-
scape encompasses mutational effects at the DNA, RNA and
protein level and is a holistic metric of the ability of an allele to
provide a particular function. However, when we average the
gene fitness values of synonymous alleles to examine the
effect of missense mutations, we refer to this as a protein
fitness landscape. “Protein fitness” is similarly defined as the
suitability of a protein to provide a particular function. Unless
otherwise specified, use of the word fitness in relation to a
specific allele refers to “gene fitness,” whereas its use in rela-
tion to a specific protein refers to “protein fitness.” These
landscapes define the relationship between DNA/protein
sequence and biological function. The more that function is
related to growth rate in particular environment, the more
direct the relationship between gene fitness and organismal
fitness. For example, in the case of antibiotic resistance genes,
gene/protein fitness (as measured by minimum inhibitory
concentration [MIC] of the antibiotic), and organismal fitness
(as measured by growth rate) correlate to some extent (Deris
et al. 2013; Jacquier et al. 2013), provided the antibiotic con-
centration is at the appropriate level for comparing the alleles.
Here, we present a comprehensive gene fitness landscape for
the TEM-1 b-lactamase gene and a protein fitness landscape
for the TEM-1 protein.

Results and Discussion

Fitness Landscape of TEM-1 b-Lactamase

We chose to measure the DFE of the TEM-1b-lactamase gene,
a convenient model for the study of evolution and the fitness
effects of mutations (Salverda et al. 2010; Soskine and Tawfik
2010). TEM-1 is native to Escherichia coli as a plasmid-borne
gene (Medeiros 1984), and we examined TEM-1 in this con-
text. TEM-1 confers high resistance to penicillin antibiotics
such as ampicillin (Amp). Thus, when E. coli cells bearing
TEM-1 are challenged to grow in the presence of Amp, alleles
conferring an enhanced ability to degrade the antibiotic will
enrich. Thus, Amp resistance is a key determinant of organ-
ismal fitness in the presence of Amp (Bershtein et al. 2006;
Weinreich et al. 2006; Jacquier et al. 2013), although assessing
TEM-1 fitness by measuring Amp resistance does not capture
organismal fitness differences not associated with antibiotic
resistance. Previous partial characterizations of the DFE of
TEM-1 (Bershtein et al. 2006; Deng et al. 2012; Jacquier et al.
2013) suffer several significant limitations. These studies did
not characterize the relationship between sequence and fit-
ness (Bershtein et al. 2006), used error-prone PCR to generate
mutations that were heavily biased to A/T to C/G transitions
(80%) (Bershtein et al. 2006; Jacquier et al. 2013), and/or fo-
cused on the characterization of high fitness alleles with more

than one mutation and assumed additivity for predicting the
effect of the individual mutations (Deng et al. 2012). In addi-
tion, fitness was either measured using either growth compe-
tition experiments (Deng et al. 2012), which suffer from
limitations described in the Introduction, or in the coarse-
grained manner of a MIC assay (Bershtein et al. 2006; Jacquier
et al. 2013). MIC assays suffer the drawbacks of being low-
throughput and low-resolution. Alleles with known muta-
tions must be isolated and tested individually, and MICs are
measured in discrete values (typically 2-fold increments). For
example, the resolution of the MIC assay in a study of the
amoxicillin resistance effects of 18% of the possible amino
acid substitutions in TEM-1 was insufficient to capture the
effects of synonymous mutations or to identify any beneficial
mutations (Jacquier et al. 2013), both of which we readily
achieve.

Here, we describe a synthetic biology approach to quantify
fitness of TEM-1 in a single experiment that avoids or ame-
liorates the limitations of growth competition experiments
and MIC assays and allows a comprehensive analysis of the
DFE. A synthetic biology approach is by definition artificial
in at least some aspects, but unlike several previous studies
we measure the DFE of the gene in its native host and do
not employ gene fusions or artificial reporters of fitness.
Additionally, because TEM-1 increases the Amp resistance
of E. coli cells over 1,000-fold, the combination of TEM-1
and Amp afforded the opportunity to determine the DFE
over a wide range of fitness values. Our approach decouples
genotype-by-environment interactions as far as Amp
resistance is concerned. We quantify TEM-1’s underlying fit-
ness landscape and thus its intrinsic evolutionary potential
and limitations. This gene fitness landscape is a very signifi-
cant determinant in the organismal fitness landscape for
growth of the bacteria in the presence of Amp (Jacquier
et al. 2013). However, the two types of landscapes are not
equivalent.

We determined the DFE for 98.2% (2,536/2,583) of all point
mutations (i.e., all 1-bp changes) and 83.9% (15,167/18,081) of
all codon substitutions in the TEM-1 gene (fig. 1). The latter
includes all 1-, 2-, and 3-bp changes of the 287 codons of
TEM-1. We also determined the DFE for 95.6% (5,212/5,453)
of the possible single amino acid substitutions in the corre-
sponding TEM-1 protein (fig. 2). We excluded insertions and
deletions (indels) from our analysis of the DFE, an important
class of mutations that generally have more deleterious effects
on fitness (Toth-Petroczy and Tawfik 2013). The source of
TEM-1 variants was a previously described library (CCM-2)
designed to contain all possible single codon substitutions in
the TEM-1 gene (i.e., each codon position in the gene could be
changed to any of the other 63 codons but each allele had
only one position changed) (Firnberg and Ostermeier 2012).
To measure gene fitness, we first partitioned the CCM-2
library into 13 partially overlapping sublibraries based on
relative Amp resistance using a synthetic gene circuit that
functions as a tunable bandpass genetic selection for Amp
resistance (Sohka et al. 2009) (supplementary fig. S1,
Supplementary Material online). Next, we performed deep
sequencing on each of the sublibraries, counting how many
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times each allele appeared in each sublibrary and used these
statistics to quantify each allele’s conferred antibiotic resis-
tance or gene fitness (w) relative to TEM-1 (supplementary
fig. S2, Supplementary Material online). We used the fitness
effects of synonymous mutations to determine an upper limit
on the error of our fitness measurements (supplementary
fig. S3 and Materials and Methods, Supplementary Material
online). Our method enables the accurate fitness quantifica-
tion of any allele and avoids population size effects because
the alleles are isolated on a plate. Unlike growth competition
experiments, the probability of observing an allele in our
experiment is predominantly independent of its conferred
fitness. Additionally, the method decouples fitness from
genotype-by-environment interactions, at least as far as the
major environmental factor affecting fitness is concerned (i.e.,
the antibiotic concentration). We individually sequenced the
alleles from 27 randomly selected colonies from two of the
sublibraries and found these alleles’ gene fitness values were in
the expected range (supplementary fig. S4, Supplementary
Material online).

TEM-1’s DFE (fig. 1) indicated the gene was fairly robust to
mutations as nearly one-half (47.3%) of all alleles retained at
least 50% of the fitness of TEM-1. Among alleles with point
mutations, 63.8% maintained at least 50% of the fitness of
TEM-1 (53.2% of the nonsynonymous and 97.2% of the syn-
onymous point mutations), less than a previous estimation of
75% (Soskine and Tawfik 2010). Still, a sizable fraction of the
mutants lost more than 90% of their fitness (19.6% of the
point mutations and 30.3% of all codon substitutions),
roughly in line with previous estimates of the frequency of
mutations having a severe deleterious effect (Camps et al.
2007). Among point mutants, only 6% of the alleles comple-
tely lost the ability to provide any Amp resistance and 33% of
those were nonsense mutations (fig. 1A), which is similar to
the approximately 8% inactivating mutations found in a pre-
vious study of an error-prone PCR library of TEM-1 (Soskine
and Tawfik 2010). Only 7.1% (1,074/15,167) of the alleles and
7.0% (367/5,212) of the missense mutations increased fitness
above that of TEM-1 outside the range of the error. The bi-
modal distribution was qualitatively similar to the DFE of
randomly chosen point mutations in DNA and RNA viruses
(Sanjuan et al. 2004; Peris et al. 2010), the DFE of a set of
induced mutations in yeast (Wloch et al. 2001), the DFE of
missense mutations of ubiquitin (Roscoe et al. 2013), a sam-
pling of TEM-1’s DFE for amoxicillin resistance (Jacquier et al.
2013), and estimations of TEM-1’s DFE for Amp resistance
(Soskine and Tawfik 2010).

Benefits of the Genetic Code’s Architecture

TEM-1’s DFE provides evidence that the standard genetic
code’s architecture minimizes the deleterious effects of mu-
tations and enriches for adaptive mutations. The adaptive
theory on the origin of the genetic code states that the
genetic code is arranged to minimize the deleterious effects
of mutations and mistranslations (Sonneborn 1965; Woese
1965). This theory predicts that point mutations would be
less deleterious than 2- or 3-bp substitutions. We have re-
cently shown this prediction held true for mutations in two
small genes (HB36 and HB80; Whitehead et al. 2012) that were
reengineered for a new function in a nonnative organism
(Firnberg and Ostermeier 2013). Here, we find that this pre-
diction is also true of a wild-type gene in its native host. The
median changes in relative gene fitness for 1-, 2-, and 3-bp
substitutions at a codon position were �0.36, �0.52, and
�0.63, respectively. More significantly, the frequency of
point mutations among the alleles with a fitness less than
0.1 was 35.3% less than that expected if the point muta-
tions were evenly distributed across all fitness values
(P = 1.1� 10�40 based on comparison with a hypergeometric
distribution). For HB36 and HB80, point mutations were
56.4% and 53.8% depleted from clones with a fitness less
than 0.1, respectively (P = 1.35� 10�18 and 1.27� 10�21)
(Firnberg and Ostermeier 2013). We interpret this result as
evidence that the code’s arrangement minimizes the fitness
cost of amino acid substitutions. An alternative explanation is
that TEM-1, as a product of millions of years of evolution
under the standard genetic code (Hall and Barlow 2004),
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(A) The DFE of point mutations (i.e., 1-bp changes in the gene). (B) The
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resistance are presented on a log scale with 0 corresponding to the
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evolved to minimize the deleterious effects of mutations
under the rules of this code.

We also find further support for our hypothesis that the
standard genetic code’s architecture enriches for adaptive
mutations (Firnberg and Ostermeier 2013). Among the 367
beneficial missense mutations in TEM-1, 41.1% can be

achieved by point mutations, 32.5% higher than the 31.0%
expected if 367 missense mutations were chosen at random
(P = 8.8� 10�6 based on comparison to a hypergeometric
distribution). Our comprehensive analysis of beneficial muta-
tions in a natural gene in its native host is the strongest
evidence yet supporting the hypothesis that the code’s
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arrangement makes adaptive mutations more likely. The role,
if any, such enrichment played in the origin of the genetic
code and whether the enrichment is a side effect of the code’s
error minimization bias are difficult questions to answer
(Firnberg and Ostermeier 2013).

The Effects of Synonymous Mutations

The effects of synonymous mutations on protein synthesis
and fitness have important implications for evolution and
biotechnology. However, despite an abundance of plausible
hypotheses, we lack a mechanistic understanding of these
effects (Plotkin and Kudla 2011). Our systematic strategy pro-
vides an assumption-free approach for testing and generating
these hypotheses. We first examined the gene fitness values of
725 alleles synonymous to TEM-1. Beneficial and deleterious
synonymous mutations distributed differently across the
sequence of TEM-1 (fig. 3A). Beneficial mutations occur pri-
marily in positions 15–30 and 130–260, whereas deleterious
mutations appeared in clusters in the first half of the gene and
were almost absent from the second half of the gene.
No trend in the types of substitutions for either beneficial
or deleterious effect was apparent other than eight of the ten
beneficial mutations at Arg codons being to the rare E. coli
codons AGA (2/10) and AGG (6/10). The pattern of beneficial
and deleterious synonymous codons indicates the existence
of regions of TEM-1 with suboptimal and less robust mRNA
properties, respectively.

We next analyzed the effects of 14,055 synonymous
substitutions among the set of 15,167 alleles with gene fitness
measurements (supplementary fig. S3, Supplementary
Material online). Over the length of the entire gene, CUA
(Leu), AGG (Arg), and UCG (Ser) provided an average fitness
advantage over some of their synonymous codons (supple-
mentary fig. S5, Supplementary Material online), but the ad-
vantage was only approximately 5%. Interestingly, CUA and
AGG are rare codons in E. coli. Codon usage often differs in
the beginning of the gene from the rest of the gene, which has
been hypothesized to result from a selection against 50 mRNA
structure and/or a selection for rare codons that provide a
slower elongation time at the 50 end (Plotkin and Kudla 2011).
Our data address both these hypotheses. Positions 2–10 in
TEM-1 had an almost 2-fold broader distribution of synony-
mous effects compared with any other section of the gene
(supplementary fig. S3F, Supplementary Material online).
Within these nine positions, we observed 26–85% mean
fitness increases for certain codons of Ala, Arg, Gly, Leu,
Pro, and Ser relative to select synonyms (supplementary fig.
S6, Supplementary Material online). These synonymous fit-
ness differences distributed differently among the nine posi-
tions (supplementary fig. S7, Supplementary Material online).
Contrary to the slow elongation hypothesis, favored codons
tended to appear more frequently in the E. coli genome than
their corresponding disfavored codon (fig. 3B) (Hilterbrand
et al. 2012). However, none of the 16 observed codon prefer-
ences were between the most and least frequently used
codons within a synonym set suggesting that codon usage
was an inadequate explanation for the observed preferences

(e.g., as a result of tRNA abundance). We next calculated the
folding energy of the mRNA around the initiation codon for
alleles exhibiting gene fitness differences (Hofacker 2009). In
almost all cases, favored codons reduced mRNA stability
around the translation start site compared to disfavored
codons (fig. 3C). Our findings reinforce recent studies that
undermine the slow elongation hypothesis (Supek and Smuc
2010; Charneski and Hurst 2013) and support the theory that
mRNA structure at the beginning of genes determines the
translation rate (Bentele et al. 2013; Goodman et al. 2013).
Like the most recent of these studies (Goodman et al. 2013),
our study shows how systematic analyses of large synthetic
libraries is a powerful approach for testing competing
hypotheses.

Exceptions to the Standard Genetic Code

Among the three stop codons, UAG (amber) exhibited non-
sense suppression (supplementary fig. S8A, Supplementary
Material online). A 30 flanking purine after the UAG enhanced
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this suppression (supplementary fig. S8B, Supplementary
Material online), as has been observed with the amber sup-
pressor tRNA allele supE (Bossi 1983; Miller and Albertini
1983). We sequenced the seven tRNAs known to serve as
amber nonsense suppressors and found that E. coli strain
SNO301 harbors the supE44 allele, which consists of a dupli-
cate copy of the glnV tRNA gene, glnX, with the expected
anticodon mutation (thereby inserting glutamine at UAG
codons) (Singaravelan et al. 2010). This allele suppressed
a UAG with a 30 flanking purine at a mean efficiency of
7–10% (supplementary fig. S8C, Supplementary Material
online).

Substitutions for the AUG start codon that provided sig-
nificant antibiotic resistance (>5% of that of TEM-1) included
seven of the nine point mutants of AUG (supplementary
fig. S9, Supplementary Material online), consistent with
known native and nonnative alternative initiation codons
in E. coli (Sacerdot et al. 1996; Sussman et al. 1996). In addition,
we observed that GUA, GUC, and GUU could serve as weak
initiation codons (7–14% as efficient AUG). Initiation from
GUA in E. coli has been previously reported (Haggerty and
Lovett 1997), but initiation from GUC and GUU has not.

Mutational Tolerance

As the effects of nonsynonymous mutations dwarfed that of
synonymous mutations, we combined the gene fitness data
of synonymous codons to determine the DFE of missense
mutations in the TEM-1 protein (fig. 2). This protein fitness
landscape of TEM-1 broadly matched what is known about
protein structure in general and TEM-1 in particular. For
example, proline was the least tolerated substitution (supple-
mentary fig. S10, Supplementary Material online, which dis-
plays TEM-1’s amino acid substitution matrix for Amp
resistance), especially in alpha helices, and key TEM-1 active
site residues did not tolerate mutation (fig. 2). TEM-1’s signal
sequence is required for export via the Sec pathway to the
periplasm. The signal sequence (fig. 2) tolerated most muta-
tions consistent with the pathway’s broad specificity
(Gierasch 1989). However, the hydrophobic core of the
signal sequence did not tolerate substitution of charged res-
idues, consistent with typical export-defective mutants in Sec
pathway signal sequences (Gierasch 1989). Signal sequence
residue L21 was a hot spot for beneficial mutations, and L21F
is found in some extended-spectrum–resistant TEM alleles
(Sougakoff et al. 1989).

The comprehensive protein fitness landscape of missense
mutations enables a rigorous determination of a protein’s
mutational tolerance in its biological context. We determined
the effective number of amino acids at a position (k*), which
derives from the fitness entropy that is calculated from the
distribution of protein fitness values for the 20 amino acids at
that position. This measure of tolerance is more informative
than establishing an arbitrary fitness cutoff for deciding
whether a mutation is tolerated. Our approach is analogous
to how information-theoretical entropy is used to measure
variability at a position in a set of aligned sequences (Shenkin
et al. 1991). However, our measure of tolerance is specific for

TEM-1 and the effect of single amino acid substitutions. This
tolerance is a measure of TEM-1’s ability to move a Hamming
distance of one on the amino acid level and thus does not
include epistatic effects. A k* value of 1 corresponds to a
position at which all missense mutations completely inacti-
vate the protein and a k* value of 20 means that all 19 amino
acid substitutions provide the same fitness as the wild-type
amino acid.

The distribution of k* was strongly biased toward high
values (fig. 4A). Half of all positions accepted 15.5 or more
amino acid substitutions. Under the simple assumption of a
linear correlation, percent solvent-accessible surface area
accounted for 49% of the k*’s variance (fig. 4B) and predicted
k* better than distance from the active site (fig. 4C) or a k*
determined from a sequence alignment of 156 class A
b-lactamases (Deng et al. 2012) (fig. 4D). Both a k* based on
a multiple sequence alignment (fig. 4D) and previous calcula-
tions of k* for TEM-1 (Deng et al. 2012) (supplementary
fig. S11, Supplementary Material online) greatly underesti-
mated TEM-1’s mutational tolerance to single amino acid
substitutions presumably because epistatic constraints will
further limit what sequence combinations are seen naturally,
the set of known functional sequences is only a small subset of
all possible functional sequences, and a high stringency was
used in selecting functional sequences in the case of the later
study. The tolerance of amino acid position i weakly correlated
with positions i + 1, i + 3, and i + 4 (correlation coefficient
0.25–0.28, P� 1.8� 10�5) but not i + 2 or i> 4. This corre-
lation primarily occurred at residues with high k* values. The
eight positions with k*< 2.5 include the four strictly con-
served residues involved in the catalytic mechanism (S70,
K73, S130, and E166) and four other highly conserved residues
(fig. 4E). In contrast, the 42 most tolerant positions (k*> 19)
predominantly appeared away from the active site in surface
loops and at position 2 in alpha helices (fig. 4E). Alpha helices
(mean k* = 13.5 ± 5.4) tolerated substitutions better than beta
strands (mean k* = 9.89 ± 4.8) (P = 0.0005 Student’s t-test),
perhaps a reflection of the buried nature of the beta strands.

Substitution matrices, such as BLOSUM (Henikoff S and
Henikoff JG 1992), score the likelihood of substituting one
amino acid for another based on alignments of conserved
regions of related proteins. A recent study found that the
BLOSUM62 matrix best predicted the effect of nonsynon-
ymous mutations in TEM-1 and explained 16% of the vari-
ance in the MIC for amoxicillin (Jacquier et al. 2013). We find
that BLOSUM62 matrix scores predict 16% of the variance in
protein fitness caused by nonsynonymous mutations.

Determinants of Mutational Effects on Protein Fitness

What basic phenomena underlie the DFE? For an enzyme,
fitness (w) will strongly depend on the total catalytic activity
in the cell (vt), which is a product of the enzyme’s specific
catalytic activity (vsp) and the protein abundance (P), which is
how much protein is present in the cell in a correctly folded,
soluble form.

w ¼ f ðvtÞ ð1Þ
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vt ¼ vspP ð2Þ

For many genes, especially essential genes, the functional
form of equation (1) is likely complex. For example, an
increase in vt may be detrimental for fitness if it neg-
atively perturbs metabolic flux in the cell. In addition, essen-
tial genes are likely to have evolved to be buffered against the
deleterious effects of mutation (i.e., they possess a vt that is
well above a level that would compromise fitness). A study of
27 mutants of the essential enzyme dihydrofolate
reductase (DHFR) supports this idea (Bershtein et al. 2012).
The mutations were chosen to have little effect on specific
catalytic activity but a range of effects on thermostability. The
authors found that organismal fitness (i.e., growth rate) only
weakly correlated with protein abundance, and large de-
creases in protein abundance generally had marginal effects
on fitness. A follow-up study estimated that DHFR could
sustain an 80% cut in protein abundance with little effect
on organismal fitness and that the dependence of fitness
on protein abundance exhibited Michaelis–Menten-like
behavior (Bershtein et al. 2013). This study illustrates the
challenge of gaining insight into the basic phenomena
underling the DFE without knowledge of the form of
equation (1). TEM-1 offers a simple case for addressing this
issue, as TEM-1 fulfills a single cellular role (inactivation of b-
lactam antibiotics), and the reaction’s substrate and
product are not part of any native E. coli metabolic or
signaling pathway. As a result, fitness for TEM-1 is di-
rectly proportional to the total antibiotic hydrolysis

activity in the cell (Soskine and Tawfik 2010), as shown in
equation (3):

w / vt ¼ vspP ð3Þ

and this facilitates an analysis of the relative effects of muta-
tion on both vsp and P.

Experimental evolution studies have shown that vsp and
P are equally important targets for adaptive evolution
(Counago et al. 2008; Walkiewicz et al. 2012). We expect
protein abundance to be a function of the thermodynamic
stability (�G) as well as protein production rates (i.e., arising
from mRNA properties, interactions with chaperones) and
degradation rates (i.e., proteolytic susceptibility). Both com-
putational and experimental studies show that, on average,
missense mutations decrease thermodynamic stability
(Tokuriki et al. 2007). A prevailing hypothesis on the origin
of deleterious fitness effects of mutation states that thermo-
dynamic stability is the primary determinant of the DFE
through its effect on protein abundance (DePristo et al.
2005; Camps et al. 2007; Tokuriki et al. 2007; Wylie and
Shakhnovich 2011). Although the hypothesis is intuitive
and appealing, experimental evidence for a significant corre-
lation between protein stability and fitness via an effect on
protein abundance is scant (Bershtein et al. 2012). Mutations
that reduce function often show decreased protein abun-
dance (Pakula et al. 1986; Schultz and Richards 1986); how-
ever, mutations that increase stability can reduce specific
activity (Shoichet et al. 1995) and reductions in protein
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stability often accompany adaptive mutations (Wang et al.
2002). In the aforementioned study of 27 mutations that
destabilized DHFR (most of which were buried in the hydro-
phobic core of the protein) the authors found that although
protein abundance correlated with thermostability (r2 = 0.41
at 37 �C), organismal fitness changed very little with protein
abundance (Bershtein et al. 2012). The study could not
address how the deleterious effects of mutations partition
between effects on specific catalytic activity and protein
abundance because the mutations were selected to be
those that do not affect catalytic activity. A study of 990
missense mutations in TEM-1 found that 15–19% of the var-
iance in amoxicillin resistance could be explained by the com-
putationally predicted change in protein stability caused by
the introduction of the mutation in TEM-116 (TEM-116 is
TEM-1 with the V84I and A184V mutations) (Jacquier et al.
2013); however, the study did not address the mutations’
effect on protein abundance or specific catalytic activity.
A comprehensive, systematic study of 1) the relationship
between fitness and thermostability, and 2) the relative con-
tributions of protein abundance and specific activity to the
deleterious effects of mutations would more fully address the
fundamental phenomena underlying the DFE.

We predicted ��G (�Gwild-type – �Gmutant) using Rosetta
(Das and Baker 2008; Chaudhury et al. 2010) for 4,783 mis-
sense mutations of TEM-1, allowing limited backbone flexi-
bility (fig. 5A). Variants that were predicted to be more stable
tended to have higher protein fitness (fig. 5A; supplementary
fig. S12A, Supplementary Material online). The larger a mu-
tation’s deleterious effect on fitness, the higher the probability

that the mutation produced a very large predicted energy
score (supplementary fig. S12A, Supplementary Material on-
line). Predictions of ��G using PoPMuSiC (Dehouck et al.
2011), a more empirical approach than Rosetta to predicting
changes in protein stability, produced similar results and in-
dicated that 18% of the variance in protein fitness can be
explained by thermostability (supplementary fig. S12B,
Supplementary Material online). We compared fitness with
experimentally measured melting temperatures of 36 TEM-1
alleles and found a positive correlation with an r2 of 0.53
(supplementary fig. S12D, Supplementary Material online).
This suggests that limitations in the computational prediction
of ��G result in an underestimation of the degree to which
thermodynamic stability determines fitness. The lack of a
positive correlation between melting temperature and fitness
observed in a previous study (Bershtein et al. 2012) under-
scores the fact that protein stability effects on fitness will be
observed only when the fitness function of equation (1) is in a
regime where changes to vt affect fitness. Our systematic and
comprehensive approach to examining the relationship be-
tween protein stability and protein fitness for a single protein,
combined with our observed correlation between melting
temperature and fitness provides strong experimental evi-
dence that effects on protein stability significantly shape
the DFE.

Whether mutational reductions in protein abundance as
opposed to specific activity are the major cause of loss of
fitness has not previously been experimentally addressed.
We experimentally addressed this question by analyzing the
soluble fraction of cell lysates of the 13 sublibraries and
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randomly selected alleles from our TEM-1 library. We first
established that w and vt are directly proportional as pre-
dicted by equation (3) by measuring the mean total hydrolysis
activity of the cell <vt> for the 13 sublibraries of CCM-2
(fig. 5B). We measured protein abundance by quantitative
western blot of the soluble fraction of cell lysates (supplemen-
tary fig. S13, Supplementary Material online). We assumed all
soluble protein was folded and active. The mean protein
abundance <P> of the sublibraries did not decrease nearly
as rapidly with decreasing protein fitness as<vt> did (fig. 5B).
In addition, an increase in the mean amount of aggregated
protein did not accompany a loss of fitness (supplementary
fig. S15, Supplementary Material online). These findings sug-
gest that mutational effects on vsp rather than on P may play
the larger role in the deleterious effects of mutation. As this
interpretation hinges on the distribution of values of P in the
sublibraries, we measured P for 27 randomly selected alleles
with a protein fitness of about 0.025–0.05 (i.e., the alleles of
supplementary fig. S4, Supplementary Material online). We
chose this fitness range so that the mutational effects were
substantial, but not inactivating. This ensured that our con-
clusions would not depend on small changes in w and P. We
excluded the I13E allele from analysis since this mutation
in the signal sequence caused a defect in normal export/pro-
teolytic processing (supplementary fig. S13, Supplementary
Material online). The remaining 26 alleles exhibited a decrease
in both protein abundance and predicted thermodynamic
stability relative to TEM-1 with the exception of the R244E
allele, which showed an increase in both (supplementary
fig. S12C, Supplementary Material online). From w and P,
we calculated vsp using equation (3) and examined the pro-
tein fitness phase space by plotting P versus vsp (fig. 5C). We
find that the deleterious effects of mutations, at least for
mutations with large deleterious effects, arise more from a
decrease in specific activity than from a decrease in protein
abundance. Despite the large negative effects on specific ac-
tivity, the mutated residues of the 26 alleles were not clus-
tered around the active site but were scattered throughout
the protein (supplementary fig. S4C, Supplementary Material
online). Thus, the dominant effect of mutation on specific
activity does not arise because the 26 mutations were biased
to be proximal to the active site. We postulate that muta-
tional effects on specific activity may be as important to the
DFE at high fitness as at low fitness, but this postulate requires
experimental investigation.

We do not interpret the diminished role of mutational
effects on protein abundance as reducing the role of thermo-
dynamic stability in fitness. Protein stability, in addition to its
effect on protein abundance, may exert its effect on fitness
through a decrease in a protein’s specific activity. Perhaps, this
manifests by perturbing the conformational ensemble away
from more active states or by increasing the number of states
(i.e., altering protein dynamics). Protein abundance’s relative
resilience to decreases in thermodynamic stability is striking
but fits the growing appreciation that the cellular environ-
ment is not a passive solution at equilibrium (Bershtein et al.
2013). Rather, the cellular environment acts as a buffer for
deleterious mutational effects on protein abundance through

the effect of chaperones, proteins that facilitate the proper
folding of other proteins (Rutherford 2003). Chaperone over-
expression can compensate for the deleterious mutational
effects on protein abundance (Tokuriki and Tawfik 2009)
and fitness (Bershtein et al. 2013). This theory offers an
explanation for TEM-1’s stability threshold that buffers the
effect of mutations on fitness (Bershtein et al. 2006). We
suspect that the relative contribution of protein abundance
to fitness may increase with the number of mutations as the
protein’s stability margin is exhausted by the cumulative
effect of mutations, an effect that is characterized by negative
epistasis (Bershtein et al. 2006). As such, negative epistasis
may arise in part as a consequence of the beneficial properties
of the cellular environment in addition to a protein’s intrinsic
stability margin.

Conclusions
The application of synthetic biology to the study of funda-
mental biological questions, as we have done in this study of
gene and protein fitness landscapes, offers a well-defined,
systematic approach for testing and generating hypotheses.
Our comprehensive determination of the fitness effects of
mutation of TEM-1 provides the first detailed maps of fitness
landscapes corresponding to a gene and its nearest neighbors
at the basepair, codon, and amino acid level. To the extent
that TEM-1 is a representative gene, our study provides several
important insights. Evolution must traverse fitness landscapes
under the constraints of the genetic code—constraints that
minimize the effect of mutation and enrich for beneficial
mutations. The small fitness effects of synonymous mutations
have complex determinants including regional proclivities for
synonymous fitness effects in the gene. At the beginning of
the gene, fitness effects of synonymous mutations strongly
correlate with mRNA stability. Missense mutational effects on
thermodynamic stability shape the DFE, but their deleterious
effect on specific protein activity tends to exceed that on
protein abundance, at least for mutations with large delete-
rious effects. We hypothesize that TEM-1’s high mutational
tolerance may in part derive from the cell’s buffering capacity
to mediate the deleterious effects of lost stability on protein
abundance, a phenomena that might give rise to negative
epistasis. Further inquiry into the fundamental determinants
of the landscape’s topology is necessary to address this
hypothesis and substantiate these findings.

Materials and Methods

Fitness Determination

Escherichia coli SNO301 (ampD1, ampA1, ampC8, pyrB, recA,
and rpsL) cells harboring the comprehensive codon mutagen-
esis library CCM2 (Firnberg and Ostermeier 2012) were plated
on LB-agar plates supplemented with 13 different Amp con-
centrations (2-fold increments ranging from 0.25mg/ml to
1,024mg/ml) to partition the library into 13 partially over-
lapping sublibraries based on relative Amp resistance using
a synthetic gene circuit that functions as a tunable band-pass
genetic selection for Amp resistance (Sohka et al. 2009) (sup-
plementary figs. S1 and S2, Supplementary Material online).
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Barcoded PCR amplicons were prepared from each plate and
subjected to 454 deep-sequencing. The 1,325,979 sequencing
reads were filtered for quality and for reads that only con-
tained one codon substitution. We tabulated the number of
sequencing counts for each allele at each Amp concentration
and determined the fitness w relative to TEM-1 from the
statistics. As the distribution of growth as a function of
Amp is roughly symmetric when plotted as the log2(Amp
concentration) (Sohka et al. 2009), we determined the unnor-
malized fitness f of allele i as

fi ¼

P13

p¼1
ci,p log2ðapÞ

P13

p¼1
ci,p

ð4Þ

in which ci,p is the number of counts of allele i on sublibrary
plate p in the deep sequencing data and ap is the concentra-
tion of Amp on sublibrary plate p in mg/ml. We normalized all
fitnesses by the fitness of wild type as follows:

wi ¼
2fi

2fWT
: ð5Þ

This result is a normalized fitness wi that is 1.0 for wild-type
TEM-1, greater than 1.0 for beneficial mutations, and between
0 and 1.0 for deleterious mutations. We determined the fit-
ness of wild-type TEM-1 (fWT) using equation (4) using the
counts of all alleles with a synonymous substitution in TEM-1,
because the fitness of these varied very little. As a check, we
compared this value with the fitness determined by equation
(4) using the counts of all sequencing reads that lacked a
mutation. The two values differed by only 2.5%. We deter-
mined an upper limit on the error in our fitness measure-
ments from the DFEs of synonymous mutations as a function
of the number of times an allele was observed (supplemen-
tary fig. S3, Supplementary Material online). Fitness values and
error estimates are tabulated in supplementary data S1 and
S2 (Supplementary Material online).

Prediction of mRNA Stability at the Transcript Start

The RNAfold utility of the Vienna RNA Package (version 2.1.2)
was used to predict the minimum free energy of RNA se-
quences (Hofacker 2009). For each allele in supplementary
figure S7 (Supplementary Material online), the Gibbs free
energy was calculated as the average free energy of every
39 nt window centered on nucleotides from �5 to + 10 of
the gene start as described (Bentele et al. 2013).

Mutational Tolerance

The observed effective number of amino acids k�o at a position
was determined from the protein fitness values of the n mis-
sense mutations with fitness data at that position using equa-
tions (6) and (7).

S ¼ �
Xn

i¼1

wi log2 wi ð6Þ

k�o ¼ 2S ð7Þ

We obtained the effective number of amino acids k* by nor-
malizing k�o to be based on 20 amino acids by equation (8).

k� ¼
20k�o

n
ð8Þ

A table of k�o and k* is provided as supplementary data S4
(Supplementary Material online).

Prediction of Protein Thermodynamic Stability

PyRosetta v3.4.0 r55307 (Chaudhury et al. 2010) was used to
compute the difference in score (in Rosetta energy units
[REU]) between the mature structures (lacking the signal se-
quence) of each amino acid mutant and wild-type TEM-1
(Protein Data Bank identifier 1XPB; Fonze et al. 1995).
PopMusic predictions of ��G (supplementary fig. S12B,
Supplementary Material online) were determine online at
http://babylone.ulb.ac.be/popmusic (last accessed February
17, 2014) (Dehouck et al. 2011) using 1XPB.

Protein Abundance and Total Catalytic Activity

Relative protein abundance was quantified by using Quantity
One 1-D analysis software (Bio-Rad) of Western blots of the
soluble fraction of cell lysates in comparison with a standard
curve. Representative westerns are shown in supplementary
figure S13, Supplementary Material online. Catalytic activity
of the sublibraries and clones was determined by measuring
the rate of hydrolysis (at 486 nm) of 50mM nitrocefin in
10 mM phosphate buffer pH 7.4 at 37 �C. The initial rate
was normalized by the total amount of protein added for
each sample.

Supplementary Material
Supplementary materials and methods, figures S1–S15, and
data S1–S4 are available at Molecular Biology and Evolution
online (http://www.mbe.oxfordjournals.org/).

Acknowledgments

The authors thank Yousif Shamoo and Barrett Steinberg for
helpful comments on the manuscript. This work was sup-
ported by the National Science Foundation (DEB-0950939
and MCB-0919377) to M.O.

References
Ambler RP, Coulson AF, Frere JM, Ghuysen JM, Joris B, Forsman M,

Levesque RC, Tiraby G, Waley SG. 1991. A standard numbering
scheme for the class A beta-lactamases. Biochem J. 276(Pt
1):269–270.

Araya CL, Fowler DM, Chen W, Muniez I, Kelly JW, Fields S. 2012. A
fundamental protein property, thermodynamic stability, revealed
solely from large-scale measurements of protein function. Proc
Natl Acad Sci U S A. 109:16858–16863.

Bentele K, Saffert P, Rauscher R, Ignatova Z, Bluthgen N. 2013. Efficient
translation initiation dictates codon usage at gene start. Mol Syst
Biol. 9:675.

Bershtein S, Mu W, Serohijos AW, Zhou J, Shakhnovich EI. 2013. Protein
quality control acts on folding intermediates to shape the effects of
mutations on organismal fitness. Mol Cell. 49:133–144.

1590

Firnberg et al. . doi:10.1093/molbev/msu081 MBE

.  
Since 
-
-
-
>
.  
since 
to 
.   
&percnt;.  
distribution of fitness effect
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu081/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu081/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu081/-/DC1
).  
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu081/-/DC1
 Data 
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu081/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu081/-/DC1
.
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu081/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu081/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu081/-/DC1
-
.
<inlinemediaobject><imageobject><imagedata fileref=
<inlinemediaobject><imageobject><imagedata fileref=
<inlinemediaobject><imageobject><imagedata fileref=
<inlinemediaobject><imageobject><imagedata fileref=
<inlinemediaobject><imageobject><imagedata fileref=
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu081/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu081/-/DC1
.
,
wild 
)
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu081/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu081/-/DC1
http://babylone.ulb.ac.be/popmusic
.
to 
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu081/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu081/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu081/-/DC1
-
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu081/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu081/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu081/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu081/-/DC1
http://www.mbe.oxfordjournals.org/


Bershtein S, Mu W, Shakhnovich EI. 2012. Soluble oligomerization pro-
vides a beneficial fitness effect on destabilizing mutations. Proc Natl
Acad Sci U S A. 109:4857–4862.

Bershtein S, Segal M, Bekerman R, Tokuriki N, Tawfik DS. 2006.
Robustness-epistasis link shapes the fitness landscape of a randomly
drifting protein. Nature 444:929–932.

Bossi L. 1983. Context effects: translation of UAG codon by suppressor
tRNA is affected by the sequence following UAG in the message.
J Mol Biol. 164:73–87.

Camps M, Herman A, Loh E, Loeb LA. 2007. Genetic constraints on
protein evolution. Crit Rev Biochem Mol Biol. 42:313–326.

Charneski CA, Hurst LD. 2013. Positively charged residues are the major
determinants of ribosomal velocity. PLoS Biol. 11:e1001508.

Chaudhury S, Lyskov S, Gray JJ. 2010. PyRosetta: a script-based interface
for implementing molecular modeling algorithms using Rosetta.
Bioinformatics 26:689–691.

Counago R, Wilson CJ, Pena MI, Wittung-Stafshede P, Shamoo Y. 2008.
An adaptive mutation in adenylate kinase that increases organismal
fitness is linked to stability-activity trade-offs. Protein Eng Des Sel. 21:
19–27.

Das R, Baker D. 2008. Macromolecular modeling with Rosetta. Annu Rev
Biochem. 77:363–382.

Dehouck Y, Kwasigroch JM, Gilis D, Rooman M. 2011. PoPMuSiC 2.1: a
web server for the estimation of protein stability changes upon
mutation and sequence optimality. BMC Bioinformatics 12:151.

Deng Z, Huang W, Bakkalbasi E, Brown NG, Adamski CJ, Rice K, Muzny
D, Gibbs RA, Palzkill T. 2012. Deep sequencing of systematic com-
binatorial libraries reveals beta-lactamase sequence constraints at
high resolution. J Mol Biol. 424:150–167.

DePristo MA, Weinreich DM, Hartl DL. 2005. Missense meanderings in
sequence space: a biophysical view of protein evolution. Nat Rev
Genet. 6:678–687.

Deris JB, Kim M, Zhang Z, Okano H, Hermsen R, Groisman A, Hwa T.
2013. The innate growth bistability and fitness landscapes of anti-
biotic-resistant bacteria. Science 342:1237435.

Eyre-Walker A, Keightley PD. 2007. The distribution of fitness effects
of new mutations. Nat Rev Genet. 8:610–618.

Firnberg E, Ostermeier M. 2012. PFunkel: efficient, expansive, user-
defined mutagenesis. PLoS One 7:e52031.

Firnberg E, Ostermeier M. 2013. The genetic code constrains yet facili-
tates Darwinian evolution. Nucleic Acids Res. 41:7420–7428.

Fonze E, Charlier P, To’th Y, Vermeire M, Raquet X, Dubus A, Frere JM.
1995. TEM1 beta-lactamase structure solved by molecular replace-
ment and refined structure of the S235A mutant. Acta Crystallogr D
Biol Crystallogr. 51:682–694.

Fowler DM, Araya CL, Fleishman SJ, Kellogg EH, Stephany JJ, Baker D,
Fields S. 2010. High-resolution mapping of protein sequence-
function relationships. Nat Methods 7:741–746.

Gierasch LM. 1989. Signal sequences. Biochemistry 28:923–930.
Goodman DB, Church GM, Kosuri S. 2013. Causes and effects of

N-terminal codon bias in bacterial genes. Science 342:475–479.
Haggerty TJ, Lovett ST. 1997. IF3-mediated suppression of a GUA initi-

ation codon mutation in the recJ gene of Escherichia coli. J Bacteriol.
179:6705–6713.

Hall BG, Barlow M. 2004. Evolution of the serine beta-lactamases: past,
present and future. Drug Resist Updat. 7:111–123.

Henikoff S, Henikoff JG. 1992. Amino acid substitution matrices from
protein blocks. Proc Natl Acad Sci U S A. 89:10915–10919.

Hilterbrand A, Saelens J, Putonti C. 2012. CBDB: the codon bias database.
BMC Bioinformatics 13:62.

Hofacker IL. 2009. RNA secondary structure analysis using the Vienna
RNA package. Curr Protoc Bioinformatics. Chapter 12:Unit12.12.

Jacquier H, Birgy A, Le Nagard H, Mechulam Y, Schmitt E, Glodt J, Bercot
B, Petit E, Poulain J, Barnaud G, et al. 2013. Capturing the mutational
landscape of the beta-lactamase TEM-1. Proc Natl Acad Sci U S A.
110:13067–13072.

McLaughlin RN Jr, Poelwijk FJ, Raman A, Gosal WS, Ranganathan R.
2012. The spatial architecture of protein function and adaptation.
Nature 491:138–142.

Medeiros AA. 1984. Beta-lactamases. Br Med Bull. 40:18–27.
Miller JH, Albertini AM. 1983. Effects of surrounding sequence on the

suppression of nonsense codons. J Mol Biol. 164:59–71.
Orr HA. 2005. The genetic theory of adaptation: a brief history. Nat Rev

Genet. 6:119–127.
Pakula AA, Young VB, Sauer RT. 1986. Bacteriophage lambda cro mu-

tations: effects on activity and intracellular degradation. Proc Natl
Acad Sci U S A. 83:8829–8833.

Peris JB, Davis P, Cuevas JM, Nebot MR, Sanjuan R. 2010. Distribution of
fitness effects caused by single-nucleotide substitutions in bacterio-
phage f1. Genetics 185:603–609.

Plotkin JB, Kudla G. 2011. Synonymous but not the same: the causes and
consequences of codon bias. Nat Rev Genet. 12:32–42.

Roscoe BP, Thayer KM, Zeldovich KB, Fushman D, Bolon DN. 2013.
Analyses of the effects of all ubiquitin point mutants on yeast
growth rate. J Mol Biol. 425:1363–1377.

Rutherford SL. 2003. Between genotype and phenotype: protein chap-
erones and evolvability. Nat Rev Genet. 4:263–274.

Sacerdot C, Chiaruttini C, Engst K, Graffe M, Milet M, Mathy N, Dondon
J, Springer M. 1996. The role of the AUU initiation codon in the
negative feedback regulation of the gene for translation initiation
factor IF3 in Escherichia coli. Mol Microbiol. 21:331–346.

Salverda ML, De Visser JA, Barlow M. 2010. Natural evolution of TEM-1
beta-lactamase: experimental reconstruction and clinical relevance.
FEMS Microbiol Rev. 34:1015–1036.

Sanjuan R, Moya A, Elena SF. 2004. The distribution of fitness effects
caused by single-nucleotide substitutions in an RNA virus. Proc Natl
Acad Sci U S A. 101:8396–8401.

Schlinkmann KM, Honegger A, Tureci E, Robison KE, Lipovsek D,
Pluckthun A. 2012. Critical features for biosynthesis, stability, and
functionality of a G protein-coupled receptor uncovered by all-
versus-all mutations. Proc Natl Acad Sci U S A. 109:9810–9815.

Schultz SC, Richards JH. 1986. Site-saturation studies of beta-lactamase:
production and characterization of mutant beta-lactamases with all
possible amino acid substitutions at residue 71. Proc Natl Acad Sci
U S A. 83:1588–1592.

Shenkin PS, Erman B, Mastrandrea LD. 1991. Information-theoretical
entropy as a measure of sequence variability. Proteins 11:297–313.

Shoichet BK, Baase WA, Kuroki R, Matthews BW. 1995. A relationship
between protein stability and protein function. Proc Natl Acad Sci
U S A. 92:452–456.

Singaravelan B, Roshini BR, Munavar MH. 2010. Evidence that the
supE44 mutation of Escherichia coli is an amber suppressor allele of
glnX and that it also suppresses ochre and opal nonsense mutations.
J Bacteriol. 192:6039–6044.

Smith JM. 1970. Natural selection and the concept of a protein space.
Nature 225:563–564.

Sohka T, Heins RA, Phelan RM, Greisler JM, Townsend CA, Ostermeier
M. 2009. An externally-tunable bacterial band-pass filter. Proc Natl
Acad Sci U S A. 106:10135–10140.

Sonneborn TM. 1965. Degeneracy of the genetic code: extent, nature,
and genetic implications. In: Bryson V, Voge HJ, editors. Evolving
genes and proteins. New York: Academic Press. p. 377–397.

Soskine M, Tawfik DS. 2010. Mutational effects and the evolution of new
protein functions. Nat Rev Genet. 11:572–582.

Sougakoff W, Petit A, Goussard S, Sirot D, Bure A, Courvalin P. 1989.
Characterization of the plasmid genes blaT-4 and blaT-5 which
encode the broad-spectrum beta-lactamases TEM-4 and TEM-5 in
enterobacteriaceae. Gene 78:339–348.

Starita LM, Pruneda JN, Lo RS, Fowler DM, Kim HJ, Hiatt JB, Shendure J,
Brzovic PS, Fields S, Klevit RE. 2013. Activity-enhancing mutations in
an E3 ubiquitin ligase identified by high-throughput mutagenesis.
Proc Natl Acad Sci U S A. 110:E1263–E1272.

Supek F, Smuc T. 2010. On relevance of codon usage to expression
of synthetic and natural genes in Escherichia coli. Genetics 185:
1129–1134.

Sussman JK, Simons EL, Simons RW. 1996. Escherichia coli translation
initiation factor 3 discriminates the initiation codon in vivo. Mol
Microbiol. 21:347–360.

1591

Comprehensive, High-Resolution Map of Gene Fitness . doi:10.1093/molbev/msu081 MBE



Tokuriki N, Stricher F, Schymkowitz J, Serrano L, Tawfik DS. 2007. The
stability effects of protein mutations appear to be universally dis-
tributed. J Mol Biol. 369:1318–1332.

Tokuriki N, Tawfik DS. 2009. Chaperonin overexpression promotes
genetic variation and enzyme evolution. Nature 459:668–673.

Toth-Petroczy A, Tawfik DS. 2013. Protein insertions and deletions
enabled by neutral roaming in sequence space. Mol Biol Evol. 30:
761–771.

Walkiewicz K, Benitez Cardenas AS, Sun C, Bacorn C, Saxer G, Shamoo Y.
2012. Small changes in enzyme function can lead to surprisingly
large fitness effects during adaptive evolution of antibiotic resis-
tance. Proc Natl Acad Sci U S A. 109:21408–21413.

Wang X, Minasov G, Shoichet BK. 2002. Evolution of an antibiotic
resistance enzyme constrained by stability and activity trade-offs.
J Mol Biol. 320:85–95.

Weinreich DM, Delaney NF, Depristo MA, Hartl DL. 2006. Darwinian
evolution can follow only very few mutational paths to fitter pro-
teins. Science 312:111–114.

Whitehead TA, Chevalier A, Song Y, Dreyfus C, Fleishman SJ, De Mattos
C, Myers CA, Kamisetty H, Blair P, Wilson IA, et al. 2012.
Optimization of affinity, specificity and function of designed influ-
enza inhibitors using deep sequencing. Nat Biotechnol. 30:543–548.

Wloch DM, Szafraniec K, Borts RH, Korona R. 2001. Direct estimate of
the mutation rate and the distribution of fitness effects in the yeast
Saccharomyces cerevisiae. Genetics 159:441–452.

Woese CR. 1965. On the evolution of the genetic code. Proc Natl Acad
Sci U S A. 54:1546–1552.

Wylie CS, Shakhnovich EI. 2011. A biophysical protein folding model
accounts for most mutational fitness effects in viruses. Proc Natl
Acad Sci U S A. 108:9916–9921.

1592

Firnberg et al. . doi:10.1093/molbev/msu081 MBE


