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A B S T R A C T   

Few studies have examined the cardiac volume and radiation dose differences among cardiac phases during 
radiation therapy (RT). Such information is crucial to dose reconstruction and understanding of RT related 
cardiac toxicity. In a cohort of nine patients, we studied the changes in the volume and doses of several cardiac 
substructures between the end-diastolic and end-systolic phases based on the clinical magnetic resonance-guided 
RT (MRgRT) treatment plans. Significant differences in the volume and dose between the two phases were 
observed. Onboard cardiac cine MRI holds promise for patient-specific cardiac sparing treatment designs.   

1. Introduction 

Substantial radiation dose to the heart during radiation therapy (RT) 
is associated with an increased risk of cardiac toxicity and worse overall 
survival [1,2]. Radiation doses received by the heart from thoracic RT 
for lymphoma, lung, breast, and esophageal cancers can be substantial 
and consequential for long-term cardiac health [3–6]. Cardiac sub
structures, including the ventricles, the atria, the valves, and the great 
arteries, all contribute to cardiac function. Several studies have 
demonstrated a strong relationship between radiation doses to these 
substructures or cardiac subregions and the risk for developing cardiac 
disease [7–11]. 

Multiple studies measured the magnitude of the cardio-respiratory 
motion of the heart and its substructures among free-breathing pa
tients [12,13]. However, deep inhalation breath-hold (DIBH) represents 
one of the most well studied cardiac sparing techniques [14], and its 
application leads to the necessity of accurate information about the 
substructure motion and dose variation due to cardiac activity. The 
extent of displacements of the left ventricle and coronary arteries arising 
from intrinsic cardiac contraction has previously been evaluated using 

cardiac-gated CT and MRI [15–17]. However, there were limited studies 
analyzing the dose-volume parameter variation for these cardiac sub
structures in a time-resolved manner during a cardiac cycle, which is the 
main focus of this study. Such dynamic information may be crucial for 
accurately calculating cardiac dose and a better understanding of RT 
related cardiac toxicity. MRI-guided radiation therapy (MRgRT), with its 
onboard MRI, offers the option of acquiring cardiac MR images while the 
patient is in RT treatment position [18] and time-resolved cardiac doses. 
The potential incorporation of time-resolved cardiac substructure dose- 
volume information into the MRgRT treatment sessions may offer an 
opportunity to reduce RT-related cardiac toxicity by optimizing the 
timing of beam delivers to minimize RT dose. 

In this study, we aimed to evaluate radiation doses to various cardiac 
substructures at end-diastolic and end-systolic cardiac phases based on 
cardiac cine MRI. We hypothesized that variation in cardiac substruc
ture shape and position during RT delivery due to cardiac activity would 
significantly impact the dose delivered to the cardiac substructures. 
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2. Materials and methods 

2.1. Cardiac MRI protocol 

Our patient study was conducted using a 0.35T MRgRT system 
(ViewRay, Mountain View, CA) under a protocol approved by our 
institutional review board. Each patient signed an informed consent 
before the study. Nine patients with centrally located thoracic tumors 
who underwent clinical RT treatment using our MRgRT system were 
recruited between 2017 and 2018 (five males and four females, age: 60 
± 17 years). For each patient, an ECG-gated multi-slice balanced Steady- 
State Free Precession (bSSFP) cine MRI sequence was used to perform 
whole-heart imaging using the onboard MRI. Multiple axial slices during 
repeated breath-holds were acquired to cover the whole heart from the 
aortic arch to the apex. During each image acquisition, the patient 
performed nine breath-holds. For each breath-hold, three slices of im
ages with multiple cardiac phases were acquired. The DIBH technique 
was used to minimize respiratory motion. The imaging parameters were 
as follows: TR/TE = 4/2 ms, slice thickness = 7 mm, matrix 
256x192x25, the field of view = 361x270mm2, flip angle = 130◦, 
bandwidth = 720 Hz/pixel, 12 cardiac phases, parallel imaging using 
the GeneRalized Autocalibrating Partial Parallel Acquisition (GRAPPA) 
approach with an acceleration factor of two [19]. 

2.2. Radiation dose calculation 

Disease sites, prescription doses, and tumor characteristics were 
summarized in Supplementary Table 1. Based on the CINE MRI, the 
whole heart (WH) and five cardiac substructures (right ventricle 
myocardium (RVM), left ventricle myocardium (LVM), right atrium 

myocardium (RAM), left atrium myocardium (LAM) and pulmonary 
artery vessel wall (PA)) were contoured separately for the end-systolic 
and end-diastolic phases by a radiation oncologist. The cavities of the 
four cardiac chambers and pulmonary artery were not included in the 
contours. The cardiac substructure delineation and dose metrics 
extraction were performed using commercial software (MIM Software 
Inc., Cleveland, OH). Patient planning CT was deformably registered to 
the corresponding end-diastolic and end-systolic images from the CINE 
MRI data separately. Subsequently, electron density was transferred 
from CT to the deformably co-registered MR images for forward dose 
calculations. The dose maps were slightly different between the two 
cardiac phases due to the difference in the beam pathways caused by the 
different anatomy. The treatment planning system (TPS) used to 
perform dose calculations was the MRIdian Treatment Planning and 
Delivery Software (TPDS) (MRIdian, ViewRay Inc., Oakwood Village, 
OH). The following dose metrics were collected for the cardiac struc
tures: mean dose (Dmean), maximum dose (Dmax) and minimum dose 
(Dmin) in Gy, and volume receiving 5 Gy (V5Gy), 25 Gy (V25Gy), and 
50 Gy (V50Gy) in cm3. 

2.3. Evaluation of differences in volume and doses 

The volume variation of cardiac structure between the two cardiac 
phases was analyzed. Hausdorff distance (HD) [20] and Dice similarity 
coefficient (DSC) [21] were used to measure the distance and spatial 
overlap of cardiac structure contours, assuming DSC = 0.7 as the cut-off 
for fairly good overlap [22]. The dose-volume parameters of the end- 
diastolic and end-systolic phases were analyzed and compared. The 
mean absolute difference and the rate of variation of the dose metrics 
were calculated. Dose-volume parameter differences that were normally 

Fig. 1. Dose metrics comparison between diastolic and systolic phases for whole-heart and five cardiac substructures. The volume metrics are displayed on a 
logarithmic scale due to the broad range of values. WH: whole heart; LVM: left ventricle myocardium; RVM: right ventricle myocardium; RAM: right atrium 
myocardium; LAM: left atrium myocardium; PA: pulmonary artery. 
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distributed were assessed via a two-sided paired t-test. With the 
explorative aim, the false discovery rate (FDR) was controlled via the 
Benjamini-Hochberg procedure [23] to accommodate multiple testing 
issues with a threshold level for adjusted P-values of 0.2 [24,25]. The 
intra-class correlation coefficient (ICC) was then used to assess the 
consistency of dose difference between two phases among cardiac 
structures and patients [26]. 

3. Results 

Volume variation, Hausdorff distances, and DSCs of cardiac struc
tures between the two cardiac phases are shown in Supplementary Table 
2. The volumes of the WH, LVM, and RVM were decreased in end-systole 
by a mean volume difference of 99.5 cm3, 2.8 cm3, 6.8 cm3. However, 
the volumes of the LAM, RAM, and PA were increased in end-systole by a 
mean volume difference of 3.9 cm3, 3.7 cm3, and 0.2 cm3. The mean 
Hausdorff distance variations were <20 mm for the WH, LAM, LVM, and 
PA and >20 mm for RAM and RVM. For all patients, the DSCs were >0.7 
for the WH and <0.7 for the other cardiac substructures. Supplementary 
Fig. 1 shows an example of cardiac structure contours in MRIs and dose 
maps of end-diastolic and end-systolic phases. Volumetric and 

morphological changes of the cardiac substructures were observed. 
Differences in the dose maps could also be seen. The dose-volume his
togram of the same patient is shown in Supplementary Fig. 2. For this 
patient, the doses to the LVM, RAM, LAM were increased in end-diastole, 
whereas the doses to the RVM and PA were increased in end-systole. 

Dose variations to the WH and cardiac substructures between end- 
diastolic and end-systolic phases are illustrated in Fig. 1 and Supple
mentary Fig. 3, and summarized in Table 1. According to Fig. 1, a ten
dency of variation in the dose-volume difference was observed. 
Significant dose-volume differences between the two cardiac phases 
(adjusted P < 0.2) were observed for: V5Gy, V25Gy and V50Gy to the 
WH; Dmax, Dmin and V50Gy to the LVM; Dmean and Dmin to the RVM; 
Dmin to the LAM; and Dmin to the RAM. No dose metrics to the PA were 
found to be significantly different (Table 1). The absolute differences of 
Dmean, Dmax, and Dmin to the WH were lower than other cardiac 
substructures, whereas these differences to the RVM were higher than 
other cardiac structures. The absolute differences of Dmax were the 
highest among dose parameters for all cardiac structures. The rates of 
change of V5Gy, V25Gy, and V50Gy to all of the cardiac structures were 
> 10%. The rates of change of all dose-volume parameters to the WH 
were lower than other cardiac substructures (for additional details, see 

Table 1 
Dose-volume parameters variation for WH, LAM, LVM, PA, RAM, and RVM between the end-diastolic and end-systolic phases and adjusted P-value of the two-sided 
paired t-test.  

Dose Metrics Absolute Difference Mean 
(SD) 

Rate of change (%) Mean 
(SD) 

P- 
value 

Dose 
Metrics 

Absolute Difference Mean 
(SD) 

Rate of change (%) Mean 
(SD) 

P- 
value 

WH  
Dmean 
(Gy) 

0.6 (0.6) 4.6 (4.0)  0.45 V5Gy (cm3) 55.7 (37.5) 15.6 (12.60)  0.01  

Dmax (Gy) 0.8 (0.9) 1.3 (1.1)  0.36 V25Gy 
(cm3) 

25.1 (25.3) 11.0 (9.4)  0.11  

Dmin (Gy) 0.1 (0.1) 6.5 (7.1)  0.61 V50Gy 
(cm3) 

11.0 (14.5) 18.5 (13.1)  0.15 

LAM  
Dmean 
(Gy) 

2.0 (2.4) 8.5 (9.5)  0.45 V5Gy (cm3) 4.1 (2.8) 32.7 (13.4)  0.23  

Dmax (Gy) 2.6 (2.0) 11.4 (14.8)  0.36 V25Gy 
(cm3) 

2.2 (2.5) 31.4 (14.7)  0.42  

Dmin (Gy) 1.4 (1.7) 19.6 (23.6)  0.11 V50Gy 
(cm3) 

1.2 (1.7) 32.3 (21.4)  0.25 

LVM  
Dmean 
(Gy) 

2.1 (2.0) 14.6 (15.9)  0.78 V5Gy (cm3) 5.9 (7.1) 18.9 (33.3)  0.5  

Dmax (Gy) 3.0 (3.0) 10.8 (15.3)  0.19 V25Gy 
(cm3) 

9.0 (12.2) 20.2 (17.1)  0.42  

Dmin (Gy) 0.6 (0.9) 17.1 (18.9)  0.13 V50Gy 
(cm3) 

3.4 (4.1) 58.2 (36.5)  0.15 

PA  
Dmean 
(Gy) 

0.8 (0.5) 10.4 (13.2)  0.78 V5Gy (cm3) 1.6 (1.7) 32.9 (35.2)  0.90  

Dmax (Gy) 3.1 (3.5) 12.0 (13.9)  0.36 V25Gy 
(cm3) 

0.8 (1.3) 25.2 (20.5)  0.79  

Dmin (Gy) 1.4 (2.8) 14.1 (15.5)  0.61 V50Gy 
(cm3) 

0.5 (0.7) 46.4 (38.9)  0.57 

RAM  
Dmean 
(Gy) 

2.4 (2.9) 15.8 (14.9)  0.45 V5Gy (cm3) 2.6 (2.9) 35.2 (30.7)  0.50  

Dmax (Gy) 3.1 (3.1) 13.3 (12.4)  0.63 V25Gy 
(cm3) 

1.2 (2.3) 39.2 (38.3)  0.61  

Dmin (Gy) 1.0 (1.2) 13.3 (20.4)  0.12 V50Gy 
(cm3) 

0.3 (0.6) 18.8 (13.6)  0.32 

RVM  
Dmean 
(Gy) 

2.4 (1.6) 21.8 (13.2)  0.06 V5Gy (cm3) 3.5 (2.6) 26.4 (30.4)  0.51  

Dmax (Gy) 3.4 (3.4) 14.0 (19.2)  0.71 V25Gy 
(cm3) 

0.9 (1.1) 36.6 (42.3)  0.69  

Dmin (Gy) 1.6 (1.9) 27.4 (21.7)  0.11 V50Gy 
(cm3) 

0.6 (1.1) 57.9 (36.4)  0.25 

The numbers in bold indicate significant dose differences between the two cardiac phases with adjusted P-values. WH: whole heart; LVM: left ventricle myocardium; 
RVM: right ventricle myocardium; RAM: right atrium myocardium; LAM: left atrium myocardium; PA: pulmonary artery. Dmean: mean dose; Dmax: maximum dose; 
Dmin: minimun dose; V5Gy: volume receiving 5 Gy; V25Gy: volume receiving 25 Gy; V50Gy: volume receiving 50 Gy. 

R. Yan et al.                                                                                                                                                                                                                                     



Physics and Imaging in Radiation Oncology 17 (2021) 8–12

11

Supplementary Table 3). 
The intra-class correlation coefficients of all dose-volume differences 

between the two cardiac phases among all substructures and patients 
were less than 0.75, indicating a low to moderate consistency. 

4. Discussion 

This study evaluated the whole-heart and cardiac substructure dose- 
volume differences between the end-diastolic and end-systolic phases. 
We found significant dose-volume differences to the WH, LVM, and 
RVM. To the best of our knowledge, this is the first study comparing 
cardiac substructure volume and radiation doses among different car
diac phases during breath holds using onboard MRI of an MRgRT 
system. 

A study by Bahig et al. [27] evaluated the radiation dose variation to 
the WH and LV (including blood pool) during the cardiac cycle for pa
tients with left-sided breast cancer using dual source computed tomog
raphy (DSCT). They found that the WH Dmax and V5Gy were decreased 
in systole, and Dmax to the LV was lower in systole, consistent with our 
findings. Likewise, Tong et al. [28] assessed the variation in dose- 
volume parameters to the WH and LVM caused by cardiac activity for 
the patients with thoracic esophageal carcinomas using 4DCT. They 
found a significant difference in Dmean, V5Gy, V10Gy, V20Gy, V30Gy, 
and V40Gy for the LVM. In our study, a detailed analysis was performed 
on a larger number of cardiac substructures and their dose-volume pa
rameters, giving more comparisons with significant differences 
compared to prior studies. More importantly, we used cardiac bSSFP 
cine MRIs for cardiac substructure contouring, which provided superior 
soft-tissue contrast as compared with prior studies utilizing CT. One 
other major difference and merit of our study is that by excluding the 
blood pool in the cardiac chambers and pulmonary arteries from con
tours, all dosimetric analyses were performed solely on the cardiac tis
sue relevant to the development of cardiac side effects. 

In this study, we found the most significant dose difference was 
observed for the WH, RVM, and LVM. This was related to the sizeable 
physiological variation in positions, sizes, and shapes of these three 
structures during the cardiac cycle. For the RAM, LAM, and PA, although 
the DSCs were significantly lower than 0.7, there were less significant 
dose differences, which might be because the position and shape 
changes over cardiac phases of the myocardium of the atria and pul
monary artery wall were quantitatively small but significant relative to 
their size. As shown in Supplementary Fig. 3, we could not reach a 
general conclusion regarding which phase provided better cardiac 
sparing for all substructions. For example, for LVM, Dmin had a higher 
value at the end-systolic phase, while Dmax and V50Gy had a higher 
value at the end-diastolic phase. 

The intra-fraction motion of tumors observed from cine MRI during 
radiation therapy for different disease sites has been investigated in 
multiple studies [29–31]. However, the intra-fraction motion of the 
heart during radiation therapy, especially cardiac substructures, might 
be a non-trivial but overlooked source of treatment error. Our study 
showed the value of considering cardiac motion when evaluating car
diac RT toxicity. The value of paying attention to cardiac substructures 
during RT has been shown in different studies [5,10,32,33]. Being able 
to correlate toxicity with the actual dose received by each substructure 
will further our understanding of the mechanism of radiation toxicity to 
the heart and provide guidance on cardiac sparing treatment. 

This study has a few limitations. The patient cohort size is relatively 
small. While our analysis and data acquisition with the limited subjects 
show novelty and great promise, a more comprehensive study with a 
larger patient cohort is needed to strengthen conclusions further. Also, 
other cardiac substructures that could potentially relate to certain car
diovascular diseases (CVDs), such as coronary artery and valves, were 
not yet investigated. In addition, only the two extreme cardiac phases 
were investigated without considering phases in between. As part of 
future work, cardiac dose reconstruction accuracy could be further 

improved by incorporating the whole cardiac cycle. Lastly, due to the 
acquisitions spanning over multiple breath-holds, the variation between 
breath-hold positions could result in slice misalignment. However, only 
two of the nine patients’ images showed minor discontinuities in the 
slice direction. 

In conclusion, there were significant differences in volume and dose 
for cardiac substructures between the two cardiac phases we studied. 
Cardiac cine MRI would be crucial for accurate cardiac dose recon
struction if incorporated into post-treatment evaluation. It might also 
hold promises for patient-specific cardiac sparing treatment design to 
improve treatment efficacy. 
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