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The pharmacological treatment of mesial temporal lobe epilepsy (mTLE), the most common
epileptic syndrome in adults, is still unsatisfactory, as one-third of the patients are or
become refractory to antiepileptic agents. Refractoriness may depend upon drug-induced
alterations, but the disease per se may also undergo a progressive evolution that affects
the sensitivity to drugs. mTLE has been shown to be associated with a dysfunction of the
inhibitory signaling mediated by GABAA receptors. In particular, the repetitive activation of
GABAA receptors produces a use-dependent decrease (rundown) of the evoked currents
(IGABA), which is markedly enhanced in the hippocampus and cortex of drug-resistant
mTLE patients.This phenomenon has been also observed in the pilocarpine model, where
the increased IGABA rundown is observed in the hippocampus at the time of the first
spontaneous seizure, then extends to the cortex and remains constant in the chronic phase
of the disease. Here, we examined the sensitivity of IGABA to pharmacological modulation.
We focused on the antiepileptic agent levetiracetam (LEV) and on the neurotrophin
brain-derived neurotrophic factor (BDNF), which were previously reported to attenuate
mTLE-induced increased rundown in the chronic human tissue. In the pilocarpine model,
BDNF displayed a paramount effect, decreasing rundown in the hippocampus at the time of
the first seizure, as well as in the hippocampus and cortex in the chronic period. In contrast,
LEV did not affect rundown in the hippocampus, but attenuated it in the cortex. Interestingly,
this effect of LEV was also observed on the still unaltered rundown observed in the cortex
at the time of the first spontaneous seizure. These data suggest that the sensitivity of
GABAA receptors to pharmacological interventions undergoes changes during the natural
history of mTLE, implicating that the site of seizure initiation and the timing of treatment
may highly affect the therapeutic outcome.
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INTRODUCTION
Mesial temporal lobe epilepsy (mTLE) is the most common form
of epilepsy of adulthood. In mTLE an initial “epileptogenic event”
(head trauma, stroke, brain infection or tumor) is often identi-
fiable which is followed, after a latent period of weeks to years,
by the spontaneous occurrence of seizures. Multiple pathologi-
cal and physio-pathological alterations have been identified that
may be responsible for the transformation of a normal brain in
an epileptic one (Pitkänen and Lukasiuk, 2011). In particular, we
have focused on alterations in the GABA system, and found that
GABAA receptors from epileptic tissue (hippocampus and neo-
cortex) become less responsive to repeated activation (as detected
by current rundown) than those from healthy tissue (Palma et al.,
2004, 2007a,b; Ragozzino et al., 2005). This use-dependent GABAA

receptor desensitization may imply hyper-excitability and favor
the occurrence of spontaneous seizures. This phenomenon occurs
both in human tissue and in animal models (pilocarpine), becomes

detectable in the hippocampus at the time of the first sponta-
neous seizure and may depend upon alteration in the molecular
composition of the GABAA receptor (Mazzuferi et al., 2010).

Once spontaneous seizures begin to occur and the diagno-
sis of epilepsy is made, the disease often continues to progress,
with increasing severity of seizures; neurological decline and
appearance of co-morbidities; development of resistance to phar-
macological treatments (Pitkänen and Sutula, 2002). Many studies
have been performed that provided mechanistic interpretations
for the development of pharmaco-resistance. The best-described
mechanisms are drug-related, i.e., drug-induced alterations in
transport to the CNS (blood–brain barrier crossing) or in pharma-
codynamics, which lead to attenuation or loss of therapeutic effects
(Schmidt and Löscher, 2005). However, the progression of the dis-
ease per se may also implicate alterations in the responsiveness
to pharmacological agents. Identifying these disease-induced
alterations in the response to drugs may provide the basis
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for more effective treatment strategies in the different phases
of mTLE.

To challenge the hypothesis that the disease progression affects
drug responsiveness, we explored the sensitivity to pharmacolog-
ical treatments of the increased rundown of the GABA current
(IGABA) observed in epileptic tissue at different stages of experi-
mental mTLE, namely at the time of the first spontaneous seizure
and in the chronic period. We employed two structurally unrelated
agents, levetiracetam (LEV) and brain-derived neurotrophic fac-
tor (BDNF), because both have been previously demonstrated to
be capable of reducing the increased IGABA rundown in the human
and also in the rat epileptic brain (Palma et al., 2005b, 2007a,b).
Whereas LEV is a clinically employed anti-epileptic drug, BDNF
has been reported to provide anti-epileptic effects under some
(Paradiso et al., 2009) but not all (He et al., 2004) experimental
conditions and is not in clinical use.

MATERIALS AND METHODS
ANIMALS
Male Sprague-Dawley rats (240–260 g; Harlan, Italy) were used
for all experiments. Animals were housed under standard condi-
tions: constant temperature (22–24◦C) and humidity (55–65%),
12-h dark–light cycle, and free access to food and water. All efforts
were made to minimize animal suffering. Procedures involving
animals and their care were carried out in accordance with Euro-
pean Community and national laws and policies (authorization
number: D.M. 83/2009-B; 246/2012-13).

PILOCARPINE
Pilocarpine was administered i.p. (300 mg/kg), and behavior
was observed for several hours thereafter. Within the first hour
after injection, all animals developed seizures evolving into recur-
rent generalized convulsions [status epilepticus (SE); average time
between pilocarpine administration and onset of convulsive SE:
19 ± 2]. SE was interrupted 3 h after onset by administration of
diazepam (10 mg/kg i.p). The animals were then assigned to two
experimental groups representing different phases of the natural
history of the disease: a subgroup was sacrificed 6 h after the first
spontaneous seizure; the other subgroup was sacrificed 1 month
after SE, i.e., in the chronic period when animals were experiencing
an average of 5.3 ± 1.2 spontaneous seizures per day.

Seizures were assessed by 24/24-h, 7/7-day video moni-
toring, performed using a digital video surveillance system
DSS1000 (AverMedia Technologies, USA). Recording electrodes
were implanted in the hippocampus and cortex for identification
of the first spontaneous seizure [continuous video-EEG (elec-
troencephalogram) monitoring from day 4 after SE until the day
of the first spontaneous seizure]. EEG seizure were categorized as
paroxysmal activity of high frequency (>5 Hz) characterized by a
>3-fold amplitude increment over baseline (Williams et al., 2009;
Paradiso et al., 2011). Seizure severity was scored using the scale of
Racine (1972): (1) chewing or mouth and facial movements; (2)
head nodding; (3) forelimb clonus; (4) generalized seizure with
rearing; (5) generalized seizure with rearing and falling. Analysis
was performed by two independent investigators that were blind
for the group to which the rats belonged. In case of differen-
tial evaluation, data were reviewed together to reach a consensus

(Paradiso et al., 2011). In the chronic period, animals were contin-
uously video recorded for a week before being killed (i.e., 23–30
days after SE), to identify frequency and duration of generalized
seizures.

OOCYTES
Membranes were prepared from the hippocampus and the fronto-
temporal cortex. Preparation of Xenopus laevis oocytes and
injection procedures were as previously described in detail (Miledi
et al., 2006). Briefly, tissues were homogenized using a Teflon
glass homogenizer with 2 ml of assay buffer of the following
composition (in mM): 200 glycine, 150 NaCl, 50 ethylene gly-
col tetraacetic acid (EGTA), 50 ethylenediaminetetraacetic acid
(EDTA), 300 sucrose; 20 μl protease inhibitors (Sigma Aldrich
Inc., USA); pH 9 (adjusted using NaOH). The homogenate was
centrifuged for 15 min at 9,500 g. The supernatant was col-
lected and centrifuged for 2 h at 105 g at 4◦C. The pellet was
washed, re-suspended in 5 mM glycine and used directly, or
aliquoted and stored at −80◦C for later use. From 12 to 48 h
after injection, membrane currents were recorded from voltage-
clamped oocytes using two microelectrodes filled with 3 M KCl.
The oocytes were placed in a recording chamber (0.1 ml) per-
fused continuously (9–10 ml/min) with oocyte’s Ringer solution
(OR) at room temperature (20–22◦C). OR had the following
composition (in mM): NaCl 82.5, KCl 2.5, CaCl2 2.5, MgCl2
1, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES)
5, pH 7.4 (adjusted using NaOH). GABA current rundown was
defined as the decrease (in percentage) of the current peak ampli-
tude after six 10-s applications of 1 mM GABA at 40-s intervals
(Palma et al., 2007a). The fast IGABA desensitization was defined as
the time taken for the current to decay from its peak to half-peak
value (T0.5).

Levetiracetam was dissolved in H2O and stored as frozen stock
solutions (100 mM). BDNF (Sigma) was dissolved in H2O, stored
as frozen stock solutions (50 μg/ml). Both LEV and BDNF were
diluted to working concentrations shortly before the experiments
and applied to oocytes for 2 h. In all experiments the hold-
ing potential was −60 mV. In some experiments, 3 h washout
with OR was performed before initiation of a new rundown
protocol.

All drugs were purchased from Sigma except GABA, which was
purchased from Tocris (UK). Data in Figure 1 were analyzed for
fitting a single exponential curve; data in Figures 2 and 3 were
statistically analyzed using analysis of variance (ANOVA) and post
hoc the Holm–Sidak test (SigmaPlot Software, USA).

RESULTS
In agreement with previous reports (Palma et al., 2007b; Maz-
zuferi et al., 2010) applications of 1 mM GABA to oocytes injected
with membranes from the cortex and hippocampus elicited inward
currents that were sensitive to 100 μM bicuculline (not shown).
Depending on the oocytes, the frogs and the rats, IGABA currents
had variable amplitudes: some were as large as −250 nA, oth-
ers as small as −10 nA. These currents exhibited rundown after
repetitive GABA applications: IGABA elicited by the sixth GABA
application fell to 69.4 ± 3 and 68.6 ± 4% of the one elicited by
the first GABA application in oocytes injected with cortical and
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FIGURE 1 | IGABA rundown in oocytes injected with rat brain

membranes. (A) Time course of current rundown in oocytes injected with
hippocampal membranes form control rats (◦), rats killed after the first
spontaneous seizure (•), and rats killed in the chronic period, 30 days after
SE (�). Peak amplitudes of IGABA were normalized to those elicited by the
first GABA application (95 ± 20 nA in the control group; 115 ± 21 nA in the
first seizure group; 98 ± 18 nA in the chronic group). (B) Time course of
current rundown in oocytes injected with cortical membranes form control
rats (◦), rats killed after the first spontaneous seizure (•), and rats killed in
the chronic period, 30 days after SE (�). Peak amplitudes of IGABA were
normalized to those elicited by the first application (190 ± 25 nA in control;
230 ± 25 nA in first seizure; 201 ± 30 nA in chronic). GABA pulses were
1 mM, 10-s duration every 40 s. Data are means ± SEM (n = 12). All data
sets fitted to an exponential curve.

hippocampal membranes, respectively (mean ± SEM of 3 rats,
9 frogs, 49 oocytes). As previously described (Mazzuferi et al.,
2010), IGABA rundown was increased in membranes prepared
from epileptic rats at the time of the first spontaneous seizure in
the hippocampus (fall to 45.7 ± 3%; range 14–62%; P < 0.01) but
not in the cortex (fall to 73.8 ± 4%; range 43–113%; Figure 1).
Again consistent with previous reports (Mazzuferi et al., 2010),
IGABA rundown was significantly increased both in the hippocam-
pus (44.5 ± 3%; range 20–62%; P < 0.01) and in the cortex
(41 ± 4%; range 15–54%; P < 0.01) of in membranes prepared
from chronic animals (Figure 1). This current rundown was not
accompanied by a significant change in current decay and it was

FIGURE 2 | Effect of BDNF on IGABA run-down from oocytes injected

with membranes prepared from rats killed at various time points after

pilocarpine-induced SE. (A) Representative superimposed currents
elicited by the first and sixth GABA application (1 mM, horizontal bar) in
oocytes injected with hippocampal or cortical membranes prepared from
rats killed 6 h after the first spontaneous seizure, in the presence or
absence of 0.5 μg/ml BDNF, as indicated. IGABA rundown in oocytes
injected with hippocampal (B) or cortical (C) membranes, in the absence or
in the presence of BDNF, as indicated. Data in (B,C) are the means ± SEM
of 15–36 oocytes per group (three to four rats; nine frogs). IGABA peak
values were normalized to the first IGABA peak current amplitude. Holding
potential, −60 mV. *P < 0.05 vs. control values, ANOVA and post hoc
Holm–Sidak test.
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partially reversible after 15–20 min of washout (not shown), as pre-
viously shown in human brain tissue (Palma et al., 2004; Ragozzino
et al., 2005).

Application of the neurotrophic factor BDNF abolished the
increase in IGABA rundown associated with epilepsy. Indeed,
in oocytes injected with hippocampal membranes, 2-h incu-
bation with 0.5 μg/ml BDNF decreased IGABA rundown both
in the first seizure (65.3 ± 3%) and in the chronic epilepsy
group (68 ± 4%; Figures 2A,B). Moreover, BDNF abolished the
increased IGABA rundown in oocytes injected with cortical mem-
branes from chronic animals (61 ± 2%), whereas it did not influ-
ence the small IGABA rundown in first seizure animals (72.6 ± 5%
Figures 2A,C).

The pattern of LEV effects dramatically differed from the
one of BDNF. LEV (1 μM) did not affect rundown in the hip-
pocampus, neither in control nor in epileptic tissues (48.8 ± 3
and 49.0 ± 7%, first seizure and chronic animals, respectively;
Figures 3A,B), but significantly attenuated it in the epileptic cor-
tex (91.0 ± 5 and 78.0 ± 4%, first seizure and chronic animals,
respectively; Figures 3A,C). It is noteworthy that BDNF and
LEV shared the same effect in decreasing IGABA rundown only
in the cortex from chronic animals. This effect was not linked to
a change in the current decay (T0.5 = 9.0 ± 2.0 s in untreated
cortical membranes; 8.4 ± 1.5 s with BDNF; 8.7 ± 1.0 s with LEV;
P > 0.05).

DISCUSSION
MAIN FINDINGS
We found here that: (1) an increased IGABA rundown is observed
in the hippocampus but not in the cortex at the time of the first
spontaneous seizure, whereas it is observed in both brain areas in
the chronic period; (2) the neurotrophic factor BDNF abolishes
this increased rundown in the hippocampus at the time of the first
seizure, as well as in the hippocampus and cortex in the chronic
period; (3) LEV does not affect rundown in the hippocampus,
but attenuates it in the cortex. Below, we will discuss the possible
mechanisms by which BDNF and LEV may affect IGABA current
rundown, that is, use-dependent GABAA receptor desensitization;
we will propose mechanisms that may underlie the alterations
in rundown intensity and sensitivity to drugs during the pro-
gression of epilepsy; we will examine the implications of these
findings.

BRAIN-DERIVED NEUROTROPHIC FACTOR
The effects of BDNF in epilepsy are still controversial (Simonato
et al., 2006). Whereas some studies support a proepileptogenic
role (He et al., 2004), BDNF has also been reported to exert
beneficial effects based on its neuroprotective and/or neurogenic
actions (Paradiso et al., 2009). The anti-rundown effects of BDNF
reported here confirm a previous report (Palma et al., 2007b)
and suggest an anti-seizure potential. However, it is unclear why
BDNF, at variance with LEV, can prevent increased GABAA recep-
tor rundown in all epileptic tissue that exhibit it, hippocampus
or cortex, but does not affect rundown in normal tissue (impor-
tantly, this has been also observed in the human tissue; Palma
et al., 2005b). A working hypothesis may be that this is due to
modulatory effects on GABAA receptor subunits expressed in

FIGURE 3 | Effect of levetiracetam (LEV) on IGABA run-down from

oocytes injected with membranes prepared from rats killed at various

time points after pilocarpine-induced SE. (A) Representative
superimposed currents elicited by the first and sixth GABA application
(1 mM, horizontal bar) in oocytes injected with hippocampal or cortical
membranes prepared from rats killed 6 h after the first spontaneous
seizure, in the presence or absence of 1 μM LEV, as indicated. IGABA
rundown in oocytes injected with hippocampal (B) or cortical (C)

membranes, in the absence or in the presence of LEV, as indicated. Data in
(B,C) are the means ± SEM of 9–25 oocytes per group (three to four rats;
nine frogs). IGABA peak values were normalized to the first IGABA peak
current amplitude. Holding potential, −60 mV. *P < 0.05 vs. control values,
ANOVA and post hoc Holm–Sidak test.
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the epileptic (but not as much in the normal) hippocampus and
cortex.

The molecular mechanisms underlying the increased rundown
in the epileptic tissue are still unknown. However, it has been
hypothesized that they depend on alterations in GABAA receptor
subunit composition (Mazzuferi et al., 2010). Indeed, changes in
the expression levels (thus, in the expected molecular composi-
tion) of GABAA receptors have been described in epilepsy models
and in the human epileptic tissue. Increased expression of the α4
subunit has been reported in many studies, whereas the α1 sub-
unit has been reported to be slightly increased, unaltered, or even
decreased (Brooks-Kayal et al., 1998; Sperk et al., 2004; Peng and
Houser, 2005; Sperk, 2007). Therefore, a shift in balance toward
an increase in the relative representation of α4- compared with
α1-containing GABAA receptors has been proposed, and is sup-
ported by initial immunohistochemical evidence (Mazzuferi et al.,
2010). This alteration should be proepileptic because (1) the α1
subunit is significantly more expressed in animals less susceptible
to seizures, like immature (Zhang et al., 2004) or slow kindling
rats (Poulter et al., 1999); (2) viral vector-mediated correction of
the reduced α1/α4 ratio inhibits epilepsy development (Raol et al.,
2006). Moreover, α4-containing GABAA receptors exhibit reduced
response to repetitive GABA application, i.e., increased rundown
(Lagrange et al., 2007).

It has been suggested that BDNF may favor increased α4 gene
expression and/or decreased α1 gene expression (Brooks-Kayal
and Russek, 2012). However, these effects should be pro-epileptic
and, therefore, could not account for those observed in the
present study. One alternative hypothesis may be based on pro-
tein kinase C (PKC) activation. It has been proposed that the
abnormal GABA current run-down is caused by receptor de-
phosphorylation (Palma et al., 2004) and that BDNF modulation
of GABA rundown is PKC-dependent (Palma et al., 2005a). Based
on these data, it may be hypothesized that BDNF corrects GABAA

receptor malfunction phosphorylating GABA subunits whose
expression is altered in epilepsy, like the α1 and the α4, but also
the δ or the γ2. Expression of the δ subunit has been reported to
be consistently reduced in granule cell dendrites (Schwarzer et al.,
1997; Sperk et al., 2004; Nishimura et al., 2005), and the δ subunits
may be replaced by γ2 , resulting in impairment of both tonic and
phasic GABA transmission (Zhang et al., 2007).

LEVETIRACETAM
Levetiracetam is a widely used antiepileptic drug that also has
utility in migraine prophylaxis (Lewis et al., 2004; Glauser et al.,
2006). Despite its efficacy, there is no well-accepted mechanism
that explains the antiepileptic action of LEV. It is well known
that LEV binds to the presynaptic protein SV2A, indicating a
role in vesicle exocytosis (Lynch et al., 2004). Because SV2A is
implicated in maintaining the size of the readily releasable pool of
synaptic vesicles (Custer et al., 2006), LEV has been suggested to
directly inhibit presynaptic neurotransmitter release (Yang et al.,
2007). In addition, however, PKC inhibitors have been found to
block LEV effects on GABA rundown, indicating a role for PKC
in LEV action (Palma et al., 2007a). LEV has been also reported
to increase ROMK1 channel activity in a PKA-dependent man-
ner (Lee et al., 2008). PKC-mediated phosphorylation of GABAA

receptors (with decreased rundown) and PKA-mediated phospho-
rylation of the ROMK1 channels (with stabilization of the resting
membrane potential) may both contribute to the anti-epileptic
effects of LEV, which would therefore include both a pre-synaptic
(SV2A) and a post-synaptic (PKC- and PKA-dependent) com-
ponent. Of course the latter and not the former may be impli-
cated in the effect on IGABA current rundown observed in this
study.

It still remains to be determined why LEV does not reduce
GABAA receptor rundown in the hippocampus, whereas it reduces
it in the epileptic neocortex even when it is not yet increased by
the disease progression, i.e., at the time of the first spontaneous
seizure. A working hypothesis may be that this is due to phospho-
rylation of one or more GABAA subunits differentially expressed
between the epileptic cortex and hippocampus. These subunit(s)
should be expressed even before increased rundown is detectable
in the cortex and should be different from the one that is puta-
tively targeted by BDNF. Ad hoc studies should be performed to
challenge this hypothesis. In any event, it is noteworthy that, in
a previous work in human mTLE, LEV did not affect subicular
GABAA receptors whereas it profoundly influenced the cortical
ones (Palma et al., 2007a), supporting the present finding that
LEV effects are brain region specific.

In summary, it may be hypothesized that BDNF exerts its effects
by phosphorylation of GABA subunits specifically expressed in the
epileptic brain, while LEV may act on other subunit(s) that are spe-
cific to the epileptic cortex. Moreover, LEV reduces rundown in the
cortex even before it is increased in the chronic epileptic period,
whereas BDNF can only abolish disease-associated increases in
IGABA rundown. These observations implicate differences in effi-
cacy on the control of seizures of different anatomical origin or
occurring at different stages in the natural history of mTLE.

CONCLUSION
In this study, we challenged the hypothesis that the disease pro-
gression affects drug responsiveness by examining the sensitivity
to pharmacological treatments of the increased IGABA rundown in
the epileptic hippocampus and cortex at different stages of exper-
imental mTLE. The data suggest that the sensitivity of GABAA

receptors to pharmacological interventions undergoes changes
during the natural history of mTLE, implicating that site of seizure
initiation and the timing of treatment may highly affect the ther-
apeutic outcome. Further studies will be needed to better validate
this hypothesis and to characterize its mechanism. These will
include testing other drugs for their ability to modulate rundown
in the different regions and at the different time-points, as well as
analyzing the alterations in GABA receptor subunit composition
during epilepsy development and correlating it with rundown.
Importantly, part of these experiments is amenable to verification
in the human tissue. If successful, these studies may lead to new
and more effective therapies.
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